Modeling and Simulation of Thermal Effects on Electrical Behavior in Lithium-Ion Cells

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 5, 2024
Cristóbal Allendes Ammi Beltrán Jorge E. García Diego Troncoso-Kurtovic Bruno Masserano Benjamín Brito Schiele Violeta Rivera Francisco Jaramillo Marcos E. Orchard Jorge F. Silva Heraldo Rozas Srikanth Rangarajan

Abstract

Thermal effects exert a crucial influence on the electrical behavior of lithium-ion batteries, significantly impacting key parameters such as the open circuit voltage curve, internal impedance, and cell degradation rate. Furthermore, these effects may give rise to electrolyte loss, resulting in a reduction in capacity. The cycling of batteries inherently generates internal heat, establishing a direct relationship between cell temperature and power demand. This article aims to provide a methodology to model electrothermal relations and temperature influence on electrical behavior in lithium-ion cells, as well as a simulation of extended cell operation under arbitrary power loads, presenting a novel approach not previously explored. It does this by considering three models: the Bernardi model for heat generation within the cell, a thermal lumped model for the cell’s temperature, and the Vogel-Fulcher-Tammann model for the capacity change as a function of temperature. These models are then connected to a state-of-the-art open circuit voltage model of a cell, providing a connection from the thermal world back into the electrical world. Experiments with different power demands occur on the simulation, including estimation of thermal parameters with relative errors under 1%, visualizing the effects of the integrated models and potential for real-cell applications.

How to Cite

Allendes, C., Beltrán, A., García, J. E., Troncoso-Kurtovic, D., Masserano, B., Brito Schiele, B., Rivera, V., Jaramillo, F., Orchard, M. E., Silva, J. F., Rozas, H., & Rangarajan, S. (2024). Modeling and Simulation of Thermal Effects on Electrical Behavior in Lithium-Ion Cells. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.4080
Abstract 285 | PDF Downloads 113

##plugins.themes.bootstrap3.article.details##

Keywords

energy storage, batteries, electrothermal, simulation, lithium ion

References
Akbarzadeh, M., Kalogiannis, T., Jaguemont, J., He, J., Jin, L., Berecibar, M., & Van Mierlo, J. (2020). Thermal modeling of a high-energy prismatic lithium-ion battery cell and module based on a new thermal characterization methodology. Journal of Energy Storage, 32, 101707. doi: https://doi.org/10.1016/j.est.2020.101707

Barcellona, S., Colnago, S., Montrasio, P., & Piegari, L. (2022). Integrated electro-thermal model for li-ion battery packs. Electronics, 11(10). doi: 10.3390/electronics11101537

Bernardi, D., Pawlikowski, E., & Newman, J. (1985, January). A General Energy Balance for Battery Systems. Journal of The Electrochemical Society, 132(1), 5–12. doi: 10.1149/1.2113792

Damay, N., Forgez, C., Bichat, M.-P., Friedrich, G., & Ospina, A. (2013). Thermal modeling and experimental validation of a large prismatic li-ion battery. In Iecon 2013 - 39th annual conference of the ieee industrial electronics society (p. 4694-4699). doi: 10.1109/IECON.2013.6699893

Diederichsen, K. M., Buss, H. G., & McCloskey, B. D. (2017, May). The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes. Macromolecules, 50(10), 3831–3840. doi: 10.1021/acs.macromol.7b00423

Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M., & Delacourt, C. (2010, May). Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal of Power Sources, 195(9), 2961–2968. doi: 10.1016/j.jpowsour.2009.10.105

Garcıa-Coln, L. S., del Castillo, L. F., & Goldstein, P. (1989, October). Theoretical basis for the Vogel-Fulcher- Tammann equation. Physical Review B, 40(10), 7040–7044. doi: 10.1103/physrevb.40.7040

He, F., Li, X., & Ma, L. (2014, May). Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells. International Journal of Heat and Mass Transfer, 72, 622–629. doi: 10.1016/j.ijheatmasstransfer.2014.01.038

Hoelle, S., Dengler, F., Zimmermann, S., & Hinrichsen, O. (2023, jan). 3d thermal simulation of lithium-ion battery thermal runaway in autoclave calorimetry: Development and comparison of modeling approaches. Journal of The Electrochemical Society, 170(1), 010509. doi: 10.1149/1945-7111/acac06

Hou, J., Yang, M., Wang, D., & Zhang, J. (2020). Fundamentals and challenges of lithium ion batteries at temperatures between −40◦ and 60◦c. Advanced Energy Materials, 10(18), 1904152. doi: https://doi.org/10.1002/aenm.201904152

Lam, L., Bauer, P., & Kelder, E. (2011, October). A practical circuit-based model for Li-ion battery cells in electric vehicle applications. In 2011 ieee 33rd international telecommunications energy conference (intelec). IEEE. doi: 10.1109/intlec.2011.6099803

Li, D., Wang, L., Duan, C., Li, Q., & Wang, K. (2022). Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. International Journal of Energy Research, 46(8), 10372- 10388. doi: https://doi.org/10.1002/er.7905

Maleki, H., & Howard, J. N. (2006, October). Effects of overdischarge on performance and thermal stability of a Li-ion cell. Journal of Power Sources, 160(2), 1395–1402. doi: 10.1016/j.jpowsour.2006.03.043

Paccha-Herrera, E., Calderon-Munoz, W. R., Orchard, M., Jaramillo, F., & Medjaher, K. (2020, August). Thermal Modeling Approaches for a LiCoO2 Lithium-ion Battery— A Comparative Study with Experimental Validation. Batteries, 6(3), 40. doi: 10.3390/batteries6030040

Pola, D., Guajardo, F., Jofre, E., Quintero, V., Perez, A., Acuna, D., & Orchard, M. (2016). Particle-filtering based state-of-health estimation and end-of-life prognosis for lithium-ion batteries at operation temperature. In Annual Conference of the Prognostics and Health Management Society 2016 (p. 10).

Pola, D. A., Navarrete, H. F., Orchard, M. E., Rabie, R. S., Cerda, M. A., Olivares, B. E., . . . Perez, A. (2015). Particle-Filtering-Based Discharge Time Prognosis for Lithium-Ion Batteries With a Statistical Characterization of Use Profiles. IEEE Transactions on Reliability, 64(2), 710–720. doi: http://dx.doi.org/10.1109/TR.2014.2385069

Qian, X., Xuan, D., Zhao, X., & Shi, Z. (2019, November). Heat dissipation optimization of lithium ion battery pack based on neural networks. Applied Thermal Engineering, 162, 114289. doi: 10.1016/j.applthermaleng.2019.114289

Spitthoff, L., Shearing, P. R., & Burheim, O. S. (2021). Temperature, ageing and thermal management of lithium-ion batteries. Energies, 14(5). doi: 10.3390/en14051248

Spitthoff, L., Wahl, M. S., Lamb, J. J., Shearing, P. R., Vie, P. J. S., & Burheim, O. S. (2023, April). On the Relations between Lithium-Ion Battery Reaction Entropy, Surface Temperatures and Degradation. Batteries, 9(5), 249. doi: 10.3390/batteries9050249

Wang, Y., Chen, X., Li, C., Yu, Y., Zhou, G., Wang, C., & Zhao, W. (2023). Temperature prediction of lithium ion battery based on artificial neural network model. Applied Thermal Engineering, 228, 120482. doi: 10.1016/j.applthermaleng.2023.120482

Yang, Z., Patil, D., & Fahimi, B. (2019). Electrothermal modeling of lithium-ion batteries for electric vehicles. IEEE Transactions on Vehicular Technology, 68(1), 170-179. doi: 10.1109/TVT.2018.2880138

Zhang, Y., Song, W., & Feng, Z. (2013). An Energy Efficiency Evaluation Research Based on Heat Generation Behavior of Lithium-Ion Battery. Journal of The Electrochemical Society, 160(11), A1927–A1930. doi: 10.1149/2.021311jes

Zhu, G., Kong, C., Wang, J. V., Kang, J., Yang, G., & Wang, Q. (2023). A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect. Electrochimica Acta, 438, 141461. doi: https://doi.org/10.1016/j.electacta.2022.141461
Section
Technical Research Papers

Most read articles by the same author(s)

1 2 > >>