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ABSTRACT

Thermal effects exert a crucial influence on the electrical be-
havior of lithium-ion batteries, significantly impacting key
parameters such as the open circuit voltage curve, internal
impedance, and cell degradation rate. Furthermore, these ef-
fects may give rise to electrolyte loss, resulting in a reduc-
tion in capacity. The cycling of batteries inherently generates
internal heat, establishing a direct relationship between cell
temperature and power demand. This article aims to pro-
vide a methodology to model electrothermal relations and
temperature influence on electrical behavior in lithium-ion
cells, as well as a simulation of extended cell operation un-
der arbitrary power loads, presenting a novel approach not
previously explored. It does this by considering three mod-
els: the Bernardi model for heat generation within the cell,
a thermal lumped model for the cell’s temperature, and the
Vogel-Fulcher-Tammann model for the capacity change as a
function of temperature. These models are then connected to
a state-of-the-art open circuit voltage model of a cell, provid-
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ing a connection from the thermal world back into the electri-
cal world. Experiments with different power demands occur
on the simulation, including estimation of thermal parame-
ters with relative errors under 1%, visualizing the effects of
the integrated models and potential for real-cell applications.

1. INTRODUCTION

When designing lithium-ion battery systems, temperature and
heat generation are critical factors that influence the electric
behavior. These changes in how a cell behaves subsequently
affect the degradation and efficiency of battery energy stor-
age systems (Spitthoff, Shearing, & Burheim, 2021). Also,
extreme temperatures significantly increase the degradation
processes (Hou, Yang, Wang, & Zhang, 2020), with the cell’s
internal heat generation and the environment’s impact on heat
release influencing these processes. The connection of these
effects thus creates a complex interdependence between ther-
mal and electrical phenomena.

The degradation of lithium-ion batteries significantly impacts
their thermal and electrical characteristics. Various method-
ologies have been proposed to assess this degradation, which
depend on factors such as the amount of available data, ac-
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cessibility to the cell, equipment, and expert knowledge. The
State of Health (SoH) is commonly employed as an indicator,
defined as the ratio between the current capacity of the cell
and its initial or nominal capacity.

SoH =
Qi

Q0
, (1)

where Qi and Q0 represent the current and initial capacities,
respectively.

Accurately estimating the SoH is crucial for operational pur-
poses, as determining the current capacity is essential for es-
timating the remaining charge within a cycle. To achieve this,
the State of Charge (SoC) is widely utilized in the literature
and can be represented as follows:

SoC(t) = SoC(0)− 1

Q0

∫ t

0

I(t) dt (2)

where:

• SoC(t) is the state of charge at time t.

• SoC(0) is the initial state of charge.

• Q0 is the nominal capacity of the battery.

• I(t) is the current flowing out of the cell at time t.

The chemical reactions that cause the cell’s degradation are
evidenced by a reduction in battery capacity, change in the
Open-Circuit Voltage (OCV) curve and an increase in inter-
nal resistance. Therefore, monitoring these variables offers a
direct method for estimating the SoH.

In the Prognostics and Health Management (PHM) area, sev-
eral studies have laid the foundation for thermal and electro-
chemical modeling work, which seeks to improve the prog-
nostic capabilities of essential variables of lithium-ion batter-
ies. In Wang et al. (2023), the authors explore using differ-
ent data-driven architectures to predict the temperatures in-
side a lithium-ion battery accurately. However, it is impor-
tant to note that these predictions, while accurate, are only
valid within a limited operational range. Even though the
implemented neural networks achieve an accurate predictive
performance, those predictions do not consider how temper-
ature affects the dynamics of the cell’s SoC or effective ca-
pacity. Similarly, Damay, Forgez, Bichat, Friedrich, and Os-
pina (2013) provides valuable insights with their lumped pa-
rameter thermal model that simulates the behavior of indi-
vidual cells. Although their model aligns well with exper-
imental validations, it may not accurately represent the im-
pact of temperature on cell capacity, potentially leading to
misestimations of the SoC under varied thermal conditions.
Furthermore, Akbarzadeh et al. (2020) developed a model
that characterizes the thermal behavior of a high-energy pris-
matic lithium-ion module by considering a lumped parameter

model of the individual cells. Although the presented model
behaves well under validation measurements, since the im-
pact of temperature on the cell’s capacity is not considered,
the SoC dynamics might be misrepresented when operating
under high-temperature conditions.

Additionally, Zhu et al. (2023) constructs a fractional-order
electrochemical model of a lithium-ion battery, aiming for
computational efficiency and precision. Even though they
achieved good performance in terms of model accuracy and
computational efficiency, the model formulation assumes a
fixed battery capacity, potentially leading to biased esti-
mations of the SoC for batteries, particularly in environ-
ments where temperature control is challenging. Moreover,
Hoelle, Dengler, Zimmermann, and Hinrichsen (2023) mod-
els the thermal behavior of a lithium-ion battery with a three-
dimensional distributed simulation. The main focus of the
research is accurately characterizing temperature dynamics
along the different components of the battery, especially dur-
ing thermal runaways. Still, the simulation does not consider
heat generation from electrical sources and its high computa-
tional cost renders it impractical for online applications. Sim-
ilarly, Li, Wang, Duan, Li, and Wang (2022) reviews sev-
eral studies that use the battery’s electrochemical impedance
spectrum for heat generation prediction under various condi-
tions. Although this method is accurate and holds potential
for online estimation schemes, the thermal effect on the bat-
tery capacity is neglected. Also, precise impedance measure-
ments are often achieved with expensive laboratory equip-
ment, hindering their implementation in industrial applica-
tions, like electromobility. Finally, Yang, Patil, and Fahimi
(2019) explores the electrothermal effects in lithium-ion bat-
teries for electric vehicles, empirically testing the importance
of electric profiles in heat generation inside the battery. How-
ever, this research does not deeply inquire how thermal vari-
ables affect electrical variables such as capacity and internal
impedance, thus yielding an incomplete model.

Despite the documented relationship between thermal and
electrical phenomena, previous studies often work on these
areas separately without fully encompassing their influences.
This interrelationship is vital for an accurate prognosis of the
operational variables of lithium-ion cells (Barcellona, Col-
nago, Montrasio, & Piegari, 2022).

This work aims to shorten the gap above by considering
known and well-validated electrical and thermal models,
adding to them to better model realistic usage scenarios,
and integrating them into an electrothermal model that takes
into consideration how the electrical and thermal world af-
fect each other, thus seeking to improve the understanding of
these interactions and also facilitate the prognostic of the SoC
and SoH. This research effort proposes several significant
advancements in the electrothermal modeling of lithium-ion
batteries, aiming to enhance both the theoretical understand-
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ing and practical applications of battery health management.
The key contributions of this study are itemized as follows:

Improved Heat Model: While the simplest thermal mod-
els, such as the ohmic heat model represented by q = RT I

2

where q is the generated heat, RT is the internal resistance
and I is the current through the cell, primarily account for
resistive heating, they often overlook the entropic heat contri-
bution, which can become significant over extended periods
and numerous cycles. In particular, high-current operations
typically render this component negligible. This is supported
by findings in Akbarzadeh et al. (2020), where the entropic
term is excluded due to its minor contribution under their
experimental conditions. However, our application’s focus
on forecasting necessitates the consideration of these subtle
effects, which can lead to substantial deviations over time.
This distinction is critical, particularly in predictive scenar-
ios where the cumulative impact of entropic heating becomes
increasingly significant. Therefore, our model innovatively
incorporates an empirical approach to quantify these effects,
substantially enhancing the precision of thermal management
and thereby extending battery life in practical applications.

Temperature-Induced State of Charge Shifts: We analyze
the impact of temperature variations on the SoC, providing
insights into how thermal conditions affect battery capacity
and discharge cycles.

Parameter Analysis for Model Implementation: In this
study, parameter analysis for model implementation is essen-
tial to gain a comprehensive understanding of battery behav-
ior under various conditions. The Vogel-Fulcher-Tammann
(VFT) parameters, as derived from Lam, Bauer, and Kelder
(2011), are pivotal in elucidating the temperature dependence
of battery performance. Additionally, the open-circuit volt-
age (OCV) parameters, based on the work of D. Pola et al.
(2016), facilitate accurate modeling of the electrical behavior
under varying thermal conditions. Furthermore, the Entropic
Heat Coefficient (EHC) has been shown to be independent of
the cell type or temperature, making it applicable across dif-
ferent battery chemistries. The specifics of the thermal model
are tailored to individual battery configurations, underscoring
the necessity for customized thermal management strategies.

The article’s structure consists of four main sections. Sec-
tion 2 analyzes the theoretical framework, reviews existing
models, and introduces the improvements and new models
proposed in this work, focusing on the impact of the thermal
and electrochemical behavior of lithium-ion batteries on their
efficiency and capacity. Section 3 describes the methodology
used for thermal parameter estimation, a simulation which
includes the electrothermal models, as well as results from
this simulator, demonstrating the capabilities and practical
applications of the aforementioned models. Finally, Section 4
summarizes our research contributions, discusses the implica-
tions of our findings, and suggests future research directions.

2. ELECTROTHERMAL PHENOMENA AND PROPOSED
MODELS

In this section, the existent electrical and thermal phenomena
that appear within lithium-ion cells are presented, including
how electrical usage profiles generate heat, how electrical pa-
rameters such as SoC affect battery performance, and how
temperatures dynamically change within the cell, along with
the contributions this work proposes to model such behaviors
in a way that integrates both the electrical and thermal effects.

2.1. Entropic Heat Coefficient

Under a given electrical profile, the heat generated by a cell
is modelled through the Bernardi model, where we consider
the circuit model shown in Fig. 1 for the electrical behav-
ior of a cell. While the model was originally proposed in
Bernardi, Pawlikowski, and Newman (1985), the form given
in Qian, Xuan, Zhao, and Shi (2019) and Paccha-Herrera,
Calderón-Muñoz, Orchard, Jaramillo, and Medjaher (2020)
is used, where the generated heat is given by

qgen = I(Voc − V )− IT
∂Voc

∂T
= I2RT − IT

∂Voc

∂T
. (3)

The leftmost term corresponds to irreversible heating caused
by the Joule effect, while the rightmost term corresponds to
reversible heating, caused by entropy variations within the
cell (Paccha-Herrera et al., 2020). In this equation, I is the
current flowing through the cell, where the convention that
I > 0 indicates discharging and I < 0 indicates charging is
used; RT corresponds to the equivalent internal resistance of
the cell, which can be measured through the use of an Elec-
trochemical Impedance Spectroscopy (EIS) experiment for a
particular cell; T is the internal temperature of the cell; Voc

is the open circuit voltage of the cell, and V is the terminal
voltage of the cell.

Typically, the effects of the reversible heat are ignored under
the assumption that T ∂Voc

∂T ≪ IRT (He, Li, & Ma, 2014)

Figure 1. Circuit model used for the lithium-ion cell, based
on a Thévenin equivalent circuit.
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(Qian et al., 2019) (Akbarzadeh et al., 2020), which is a real-
istic assumption, especially for high currents. However, since
the interest of this work lies on the applications of electrother-
mal models for prognosis, this effect should be considered:
while the contributions of reversible heat are low on a per-
cycle basis, these effects compound when long-term usage is
considered, thus having a non-negligibe effect on end-of-life
(EOL) prognosis.

The term ∂Voc

∂T is called the Entropic Heat Coefficient (EHC),
and it plays a crucial role in calculating reversible heating.
In Paccha-Herrera et al. (2020) and Zhang, Song, and Feng
(2013), EHC is measured by a potentiometric method, where
the cell is left in an environment with a controlled ambient
temperature, left to rest until thermal equilibrium is reached,
and discharged by 10%, repeating this cycle for different tem-
peratures until the cell is fully discharged. In those same
works, it is shown that, for a given chemistry, temperature
has a negligible effect on EHC, only showing a dependency
on SoC. In Spitthoff et al. (2023), the relation between bat-
tery degradation and EHC is studied, and the results show
that, while degradation does seem to have an effect on EHC,
no clear pattern arises and the effects are negligible. These
two observations point to the EHC as an intrinsic property of
a given chemistry, which does not depend on temperature or
degradation, motivating an empirical model where EHC only
depends on SoC: in this work, the proposed novel EHC model
is given by

∂Voc

∂T
≈ A

[
1√
2πσ2

exp

(
− (SoC−µ)

2

2σ2

)
−

− λ exp(−κSoC)

]
+B

, (4)

where A,B, σ, µ, λ and κ are shape parameters that have to
be fitted to measurements of the EHC curve. Works such
as Zhang et al. (2013) have proposed other empirical models
for EHC, which were used as inspiration but the proposed
model, during implementation, showed to be a better fit to
the available data.

2.2. Lumped parameter thermal model

Purely thermal phenomena are modelled by a simplified
lumped circuit analogue, proposed by Forgez, Vinh Do,
Friedrich, Morcrette, and Delacourt (2010, Fig. 6b). The
model is shown in Fig. 2, and it is taken directly from Forgez
et al. (2010, Fig. 6b). It aims to model the internal and sur-
face temperatures using three parameters, which have to be
fitted to data from a given cell: heat capacity of the cell Cp,
thermal resistivity between the internals of the cell and the
surface Rin, and thermal resistivity between the surface and
the environment Rout.

Since a circuit analogue is used in a context where electrical

phenomena are also modelled, a different name is given for
electrical and thermal resistances: electrical resistances are
simply referred to as resistances, while thermal resistances
are called resistivities, so as to avoid confusion between the
two.

By analyzing the circuit analgoue, it can be seen that the
model can be represented as the following Linear Time-
Invariant (LTI) system

ẋ = − 1

Cp(Rin +Rout)
x+

(
1

Cp(Rin+Rout)
1
Cp

)
u (5)

y =
Rout

Rin +Rout
x+

(
Rin

Rin+Rout
0
)
u, (6)

where x ≡ Tin is the hidden state (internal temperature), y ≡
Ts are measurements taken at the surface of the cell, and u ≡(
Tamb qgen

)⊤
are the inputs to the model.

An important aspect to take into consideration is that, while
the lumped model takes the generated heat as an input, ac-
cording to the rest of the models the heat would depend on
the current temperature of the cell: thus, in reality, the system
would be non-linear as the input would depend on the state.
However, this can be circumvented in practice by using a heat
profile that implicitly considers the rest of the effects, thus al-
lowing the LTI model to be valid while keeping accuracy.

Figure 2. Simplified electrical analogue used for the lumped
thermal model.

2.3. Capacity change with temperature

An electrolyte’s electrical conductivity has been shown to de-
pend on its temperature, with lower temperatures severely di-
minishing is conductivity and higher temperatures allowing
for better electrical conductivity, which is crucial for battery
performance given that a battery’s electrical parameters are
a function of electrolyte’s conductivity, as well as other pa-
rameters. In Diederichsen, Buss, and McCloskey (2017), the
electrolyte conductivity and temperature are related through
the use of the VFT (Vogel-Fulcher-Tammann) equation, pro-
posed by Garcı́a-Coln, del Castillo, and Goldstein (1989)
from the works of Fulcher and Tammann that were developed
on top of Vogel’s findings. In Lam et al. (2011), a slightly
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modified VFT equation is proposed that models the relation
between the usable cell capacity Quse and the nominal cell
capacity Q0 as

Quse(t, T ) = Q0(t) exp

(
k1

T − k2
− k1

Tref − k1

)
, (7)

where k1 and k2 are empirically fitted parameters, and Tref

is the reference temperature at which the nominal capacity is
measured. The nominal capacity Q0(t) corresponds to the
cell capacity at the reference temperature, considering capac-
ity loss due to degradation effects, while the usable capacity
Quse(t, T ) corresponds to the amount of charge that can be
extracted from the cell at a given temperature T , consider-
ing the increases in electrolyte conductivity. It is extremely
relevant to note that this increase in capacity is temporary,
and does not consider electrolyte loss or lack thereof due to
mechanisms such as electrolyte evaporation: thus, this lim-
its the practical ranges at which the model can be considered
valid, since it is known that extreme temperatures promote
rapid degradation of the cell, as is shown in works such as
Hou et al. (2020). Taking these permanent factors into con-
sideration would require modelling the effects of temperature
on Q0(t) on a cycle-to-cycle basis, which escapes the scope
of the paper.

This VFT model was used by D. Pola et al. (2016) to imple-
ment a temperature-informed SoH prognostic framework us-
ing particle filtering, where it showed promising results, thus
validating the use of the model for EOL prognosis.

In this work, it is established that the distinction between us-
able and nominal capacity gives rise to the notions of usable
and nominal SoC, where the usable SoC corresponds to the
charge left within the cell as a proportion of the usable ca-
pacity of the cell. These states of charge were observed to
behave in such a way that a fully charged cell has the same
usable and nominal states of charge, and as it discharges they
begin to diverge: thus, this effect was named “SoC shift”, and
it is modelled by

SoCuse(t, T ) = 1 +
SoC0(t)− 1

κ(T )
, (8)

where κ(T ) ≡ exp
(

k1

T−k2
− k1

Tref−k2

)
comes from the VFT

equation. Note that this definition causes nominal and us-
able SoC to match only at a full charge, and, as SoC drops,
the curves differ between each other. SoC shift was defined
in this way to better match experimental and predicted OCV
curves, where the effect of temperature on OCV is more no-
ticeable at lower states of charge.

Figure 3 shows how nominal and usable SoC relate to each
other at different temperatures. At reference temperature,
both states equal each other by definition but, as tempera-
ture increases, the usable SoC is higher than the nominal one,

while at lower temperatures it is lower. For lower temper-
atures, a low nominal SoC results in negative usable SoC,
which does not make physical sense but, in practice, it im-
plies the possibility that low temperatures can lead to overdis-
charge when it is not expected: for example, at a temperature
of -40 °C, while one might nominally think that the SoC of
the cell is 20 %, in reality the usable SoC would be near 0 %,
implying that the cell is fully discharged and, if kept being
discharged, it puts the cell in the overdischarge regime, which
has been shown to lead to permanent capacity loss and shorter
life expectancy (Maleki & Howard, 2006).
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SoC variation with temperature

T° = 233 K (-40 °C)
T° = 373 K (100 °C)
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Figure 3. Difference between usable and nominal SoC pre-
dicted by SoC shift.

2.4. Open circuit voltage

The open circuit voltage is modelled as a function of SoC, by
considering

Voc(SoC) = vL + (v0 − vL)e
γ(SoC−1) + αvL(SoC−1)+

+ (1− α)vL

(
e−β − e−β

√
SoC
)
,

(9)

where vL, v0, α, β and γ are estimated from battery data. This
equation is proposed by D. A. Pola et al. (2015) with the goal
of modelling the different areas of the OCV curve.

In order to incorporate thermal effects into the electric behav-
ior, the usable SoC is used in Eq. 9 rather than the nominal
one, thus introducing a dependency of OCV on temperature
through SoC shifting. This model also has an effect on heat
generation through the Bernardi model, presented in Eq. 3,
by introducing a dependency of OCV on temperature: thus, a
closed loop is formed, connecting the electrical and thermal
worlds. The theoretical implications of this model can be seen
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in Fig. 4, showing how OCV of the cell theoretically changes
as a function of temperature, where it can be seen that, for
any particular nominal SoC, OCV is directly proportional to
cell temperature.
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Figure 4. Predicted effect of SoC shift and EHC model on
OCV curve.

3. MODEL VALIDATION

In this section, the methodology for the validation of the mod-
els using a simulated environment is described. This includes
how thermal parameters are estimated from data, the design
of the simulation itself, and the experiments that were per-
formed within the simulation.

3.1. Parameter estimation for the different models

For the setup this work is interested in, most parameters are
intrinsic to the cell to be experimented on, depending mostly
on cell degradation and chemistry (two effects which are not
being considered). These parameters include the ones for the
heat generation and EHC model where, as was pointed out,
EHC was shown to be an invariant of a given cell chemistry;
and OCV, where it has been shown that the OCV characteris-
tic of a cell mostly depends on degradation and temperature
(the latter of which is being modelled in this work).

For VFT, not enough bibliography has been found to sup-
port the claim that, when applied to lithium-ion cells, the
parameters of the model are only dependent on cell’s chem-
istry. However, due to it modelling the cell’s underlying elec-
trolyte’s conductivity, the reasonable assumption that they
only depend on cell chemistry and degradation is made: thus,
this work uses bibliographically available parameters for the
simulation.

Lastly, there are the parameters for the thermal model. These

are the most problematic because, unlike the previous ones,
they are not only dependent on cell chemistry and degrada-
tion: they also depend on the configuration of the experi-
ment itself, since a cell wrapped in a thermally insulating
case would have a different thermal behavior than a cell in
an open environment. Thus, these parameters have to be fit-
ted for each experimental configuration. While Forgez et al.
(2010) and Paccha-Herrera et al. (2020) used a method based
on the permanent regime behavior of the models, in this work
Least Squares (LS) regression is used to fit the three parame-
ters of the thermal model.

The method for thermal parameter estimation is based on the
LTI characterization of the model. Suppose the following LTI
system is given

xk+1 = Aθxk +Bθuk (10)
yk = Cθxk +Dθuk, (11)

where θ are the underlying parameters of the system (in this
case, the thermal parameters). It can be seen that, while the
system itself behaves linearly, it is not linear with respect to
the underlying parameters, motivating the need for LS min-
imization. From dynamical systems theory, it is known that
the response of the system can be expressed as

y0:k = Aθ(x0,u0:k) , (12)

where Aθ(·, ·) is the input-output operator, which is intrinsic
to the system under parameters θ. Suppose the parameters θ∗

of a given system are to be estimated from noisy measure-
ments y0:k under the known input u0:k and initial conditions
x0. Then, the estimated parameters θ̂(y0:k) are obtained by
solving

θ̂(y0:k) = arg min
θ

∥y0:k −Aθ(x0,u0:k)∥2 . (13)

This minimization is done in Python, by using the L-BFGS-B
solver to minimize MSE under the constraint θ ⪰ 0 and us-
ing the scipy library to simulate Aθ(x0,u0:k) for some given
parameters.

A relevant aspect to take into consideration is that proper esti-
mation requires knowledge of the initial conditions x0, some-
thing which can not be taken for granted in most applications.
However, for the particular problem this work is interested
in, by letting the rest cell at a controlled ambient temperature
until it reaches thermal equilibrium, the internal temperature
converges to the surface temperature, thus allowing measure-
ments of initial internal temperature to be taken.

3.2. Simulation of cell under load

A simulation of a lithium-ion cell was implemented in
Simulink 2024a, following the diagram shown in Fig. 5. All
the previously mentioned models, along with the contribu-
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Bernardi & EHC
model

Vogel-Fulcher-Tammann

Current calculation

OCV

Figure 5. Diagram of the simulation, showing the models that were used, and how they were integrated with each other to
produce real-time results.

tions from this work, were included in the simulation, thus
introducing the interdependence between electrical and ther-
mal phenomena that has been discussed.

The simulation consists of the model of a cell with two inputs:
power and ambient temperature profiles over the desired sim-
ulation horizon. The parameters of the different models can
be directly introduced into the cell, thus allowing the user to
easily perform different experiments.

In Table 1, the parameters used for the different models in the
simulation are shown along with their origin. Some of the
parameters were obtained from bibliography, but thermal pa-
rameters were arbitrarily chosen within a reasonable range1.
The effects of these thermal parameters has a large effect on
the resulting shape of the outputs: however, the quality of the
param

3.3. Experiments performed on the simulation

Two different experiments were performed on the simulation.

The first experiment has the purpose of testing the provided
thermal parameter estimation. The cell starts at 0 °C and is
then cycled under a constant ambient temperature of 25 °C.
The cycling profile is shown in Fig. 6 which was chosen to ac-
centuate the temperature differences between the cell, while
giving it time to rest. Both the differences in the starting tem-
perature and the input profile were chosen to maximize the
information that the data carries of the parameters. The data
is then contaminated with additive white Gaussian noise to
better reflect a realistic scenario, and the parameters are es-
timated. The results of this estimation are shown in Table 2,
and the measurements along with the fitted curve are shown
in Fig. 8.

1To choose a reasonable range, the thermal parameters from Forgez et al.
(2010) and Paccha-Herrera et al. (2020) were taken as a reference.

Associated model Parameter Value

Heat generation∗

A 4× 10−5 VK−1

B 5× 10−5 VK−1

κ 3
µ 0.4
σ 0.05
λ 7
RT 0.12Ω

OCV∗∗

α 0.15
β 17
γ 10.5
v0 4.14V
vL 3.977V

VFT∗∗∗
k1 −5.738K
k2 209.9K
Tref 298K

Thermal∗∗∗∗
Cp 100 JK−1

Rin 3KW−1

Rout 9KW−1

(∗) RT was obtained from D. A. Pola et al. (2015, Table I),
the rest were obtained by manually fitting the EHC curve
shown by Paccha-Herrera et al. (2020, Figure 9)
(∗∗) Obtained from D. A. Pola et al. (2015, Table I).
(∗∗∗) Obtained from Lam et al. (2011, Table I).
(∗∗∗∗) Arbitrarily chosen within a reasonable range.

Table 1. Parameters used for the different models in the sim-
ulation.

A relevant point to note is that the thermal model takes qgen as
an input, not the power profile. Thus, in order to perform the
estimation, data from the generated heat must be extracted in
order to properly include the electrothermal phenomena that
was previously discussed.

The second experiment has the purpose of acting as a val-
idation of the parameter estimation. A cell with the same
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Figure 6. Inputs used for the experimental validation of the
parameter estimation.

parameters as the previous experiment is discharged under
a semi-realistic power profile, in different testing conditions
than those used for the parameter estimation. The previously
estimated parameters are used, and the difference between the
simulation with the real parameters and the one with the es-
timated parameters is shown. The power profile used as an
input for this experiment is shown in Fig. 7, while the result-
ing temperatures, including the predicted internal tempera-
ture, are shown in Fig. 9.

Using both experiments, the measured and predicted temper-
atures are compared by considering RMSE and MAE as error
metrics. The values for the metrics of each experiment are
shown in Table 3.

From Table 2 and Figs. 8 and 9, the estimation of the ther-
mal parameters proves to be satisfactory for this very reduced
simulated scenario, with percentual errors in the estimated
parameters under 1 % despite the artificial noise introduced
into the simulation. In Table 3, both RMSE and MAE are
under 1 ◦C for both the training and validation experiments,
with the training metrics being higher due to the artificially
introduced noise. However, further experimental validation
in a non-simulated environment, with estimation of thermal
parameters of a real cell, and comparisons of real and simu-
lated curves, is required to show the wide applicability of the
interconnected models to real world modelling and prognos-
tics purposes.

4. CONCLUSIONS

In this work, four bibliographically available models of dif-
ferent electrical and thermal phenomena within lithium-ion
cells were integrated, along with some extensions this work

0 5 10 15
Time (h)

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Po
w

er
(W

)

Validation experiment power profile

Figure 7. Inputs used as a validation of the generalizability of
the estimation, taken from a realistic power profile.
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Figure 8. Outputs of the experimental validation of the pa-
rameter estimation, including the calculation of generated
heat.
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Figure 9. Outputs of the validation experiment, including the
internal temperature predicted by the model and the absolute
error at each timestamp.

Parameter Expected Estimated Error (%)

Cp 100 JK−1 99.9040 JK−1 0.10
Rin 3KW−1 3.0111KW−1 0.37
Rout 9KW−1 9.0009KW−1 0.01

Table 2. Parameters estimated from simulated data, along
with the percentual error.

RMSE (°C) MAE (°C)

Training 1 7.983× 10−1

Validation 4.6305× 10−4 2.487× 10−4

Table 3. RMSE and MAE from the training and validation
temperatures. The training was performed with artificially
introduced noise, explaining the difference in scales.

proposes. The following observed phenomena were linked
together: how heat is generated within the cell due to electri-
cal usage, using the Bernardi model and a proposed empiri-
cal entropic-heat coefficient model; how this heat generation,
along with environmental factors, affect temperatures within
the cell by considering a lumped parameter thermal model;
how temperature causes changes in the usable capacity of
the cell, introducing the phenomenon that this work named
SoC shift, wherein temperature affects the perceived state of
charge of the cell; and lastly, how SoC shift has an effect on
the open circuit voltage characteristic of the cell, changing
the electrical performance of the cell.

The integration of these different electrical and thermal phe-
nomena, which had been previously worked on separately
by other authors, results in a more complete electrothermal
model of how a cell performs under temperature consider-
ations, which could be used for more accurate diagnosis of
relevant variables, such as temperature-aware state of health
and prognosis of a battery’s end of life.

A methodology for thermal parameter estimation from tem-
perature measurements was proposed, and a simulation of
a lithium-ion cell was developed, which included the pre-
viously named electrothermal phenomena. The estimation
methodology was validated in a simulated environment with
good performance and promising results, but the authors ac-
knowledge the need for more validation under an experimen-
tal context, with real lithium-ion cells.

This motivates the need for future work, where the proposed
models are validated with real lithium-ion cells in a con-
trolled laboratory environment, which would allow the au-
thors to explore the scalability of these models to larger and
more complex battery configurations, more akin to industry-
relevant scenarios such as electric vehicles’ battery systems.
Another key aspect to orient future work upon is studying the
long-term effects of different thermal management solutions
on battery degradation and reliability.
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