An Evolutionary Algorithm for the Electric Vehicle Routing Problem with Battery Degradation and Capacitated Charging Stations
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
As CO2 emission regulations increase, fleet owners increasingly consider the adoption of Electric Vehicle (EV) fleets in their business. The conventional Vehicle Routing Problem (VRP) aims to find a set of routes to reduce operational costs. However, route planning of EVs poses different challenges than that of Internal Combustion Engine Vehicles (ICEV). The Electric Vehicle Routing Problem (E-VRP) must take into consideration EV limitations such as short driving range, high charging time, poor charging infrastructure, and battery degradation. In this work, the E-VRP is formulated as a Prognostic Decision-Making problem. It considers customer time windows, partial midtour recharging operations, non-linear charging functions, and limited Charge Station (CS) capacities. Besides, battery State of Health (SOH) policies are included in the E-VRP to prevent early degradation of EV batteries. An optimization problem is formulated with the above considerations, when each EV has a set of costumers assigned, which is solved by a Genetic Algorithm (GA) approach. This GA has been suitably designed to decide the order of customers to visit, when and how much to recharge, and when to begin the operation. A simulation study is conducted to test GA performance with fleets and networks of different sizes. Results show that E-VRP effectively enables operation of the fleet, satisfying all operational constraints.
How to Cite
##plugins.themes.bootstrap3.article.details##
Electric Vehicle Routing Problem, Genetic Algorithm, State of Charge Prognosis, Combinatorial Optimization
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.