Unsupervised Fault Detection in a Controlled Conical Tank

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 5, 2024
Joaquín Ortega Camilo Ramírez
Tomás Rojas
Ferhat Tamssaouet
Marcos Orchard
Jorge Silva

Abstract

Current trends in the Industrial Internet of Things (IIoT) have increased the sensorization of systems, thus increasing data availability to apply data-driven fault detection and diagnosis techniques to monitor these systems. In this work, we show the capabilities of an information-driven method for detecting and quantifying faults in a subsystem common among a broad range of industries: the conical tank. Our main experiment consists of using a simple black-box model (multi-layer perceptron -- MLP) to capture the dynamics of a PID-controlled conical tank built in Simulink and then induce pump failures of different severities; the derived data-driven indicators that we developed increase with the severity of the fault validating its usefulness in this controlled setting. A complementary experiment is carried out to enrich our analysis; this consists of simulating an open-loop discrete-time version of the conical tank to explore a range of fault severity and analyze the distribution of the indicators across this range. All our results show the applicability of the data-driven fault monitoring method in conical tanks subjected to either open- or closed-loop operation.

How to Cite

Ortega, J., Ramírez, C., Rojas, T., Tamssaouet, F., Orchard, M., & Silva, J. (2024). Unsupervised Fault Detection in a Controlled Conical Tank. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.4137
Abstract 155 | PDF Downloads 74 Presentation Downloads 15

##plugins.themes.bootstrap3.article.details##

Keywords

Fault Detection, Fault Diagnosis, Internet of Things, Mutual Information, Conical Tank, Independence Test

References
Abid, A., Khan, M. T., & Iqbal, J. (2021). A review on fault detection and diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5), 3639–3664.

Amin, A. A., & Hasan, K. M. (2019). A review of fault tolerant control systems: advancements and applications. Measurement, 143, 58–68. Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practitioners (Vol. 30). Springer.

Chen, H., Wang, X.-B., Li, J.-m., & Yang, Z.-X. (2024). Dynamic focusing network for semi-supervised mechanical fault diagnosis of rotating machinery. IEEE Transactions on Industrial Informatics.

Costa, B. S. J., Angelov, P. P., & Guedes, L. A. (2015). Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing, 150, 289– 303.

Dus.teNor, D., Frisk, E., Cocquempot, V., Krysander, M., & Staroswiecki, M. (2006). Structural analysis of fault isolability in the damadics benchmark. Control Engineering Practice, 14(6), 597–608.

Ghosh, D., Sharman, R., Rao, H. R.,&Upadhyaya, S. (2007). Self-healing systems—survey and synthesis. Decision support systems, 42(4), 2164–2185.

Jauregui, C. (2016). Evaluacion de estrategias de sintonizaci on de controladores fraccionarios para planta no lineal: sistema de estanques (Master’s thesis, Universidad de Chile). Retrieved from https://repositorio.uchile.cl/ handle/2250/140963

Jiang, J., & Yu, X. (2012). Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in control, 36(1), 60–72.

Jieyang, P., Kimmig, A., Dongkun, W., Niu, Z., Zhi, F., Jiahai, W., . . . Ovtcharova, J. (2023). A systematic review of data-driven approaches to fault diagnosis and early warning. Journal of Intelligent Manufacturing, 34(8), 3277–3304. doi: 10.1007/s10845-022-02020-0

Lucke, M., Mei, X., Stief, A., Chioua, M., & Thornhill, N. F. (2019). Variable selection for fault detection and identification based on mutual information of alarm series. IFAC-PapersOnLine, 52(1), 673–678.

Patel, H. R., & Shah, V. A. (2019). Passive fault tolerant control system using feed-forward neural network for two-tank interacting conical level control system against partial actuator failures and disturbances. IFACPapersOnLine, 52(14), 141–146.

Ramanathan, P., Mangla, K. K., & Satpathy, S. (2018). Smart controller for conical tank system using reinforcement learning algorithm. Measurement, 116, 422–428. doi: 10.1016/j.measurement.2017.11.007

Ramırez, C., Silva, J. F., Tamssaouet, F., Rojas, T., & Orchard, M. E. (2024). Fault detection and monitoring using an information-driven strategy: Method, theory, and application. arXiv preprint arXiv:2405.03667. doi: 10.48550/arXiv.2405.03667

Raval, S., Patel, H. R., & Shah, V. A. (2021). Fault-tolerant controller comparative study and analysis for benchmark two-tank interacting level control system. SN Computer Science, 2, 1–10.

Silva, J. F., & Narayanan, S. (2012). Complexity-regularized tree-structured partition for mutual information estimation. IEEE transactions on information theory, 58(3), 1940–1952.

Srinivasan, K., Sindhiya, D., & Devassy, J. (2016). Design of fuzzy based model predictive controller for conical tank system. In 2016 ieee international conference on control and robotics engineering (iccre) (pp. 1–6). doi: 10.1109/ICCRE.2016.7476135

Sun, B., Wang, J., He, Z., Zhou, H., & Gu, F. (2019). Fault identification for a closed-loop control system based on an improved deep neural network. Sensors, 19(9), 2131.

Talebi, H. A., & Khorasani, K. (2012). A neural network based multiplicative actuator fault detection and isolation of nonlinear systems. IEEE Transactions on Control Systems Technology, 21(3), 842–851.

Thuillier, J., Jha, M. S., Le Martelot, S., & Theilliol, D. (2024). Prognostics aware control design for extended remaining useful life: Application to liquid propellant reusable rocket engine. International Journal of Prognostics and Health Management, 15(1).

Vavilala, S. K., Thirumavalavan, V., & Chandrasekaran, K. (2020). Level control of a conical tank using the fractional order controller. Computers & Electrical Engineering, 87, 106690. doi: 10.1016/j.compeleceng .2020.106690

Yang, J.-M., & Kwak, S. W. (2022). Self-repairing corrective control for input/output asynchronous sequential machines with transient faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems.

Yin, J., & Yan, X. (2019). Mutual information–dynamic stacked sparse autoencoders for fault detection. Industrial & Engineering Chemistry Research, 58(47), 21614–21624.
Section
Technical Research Papers

Most read articles by the same author(s)

1 2 > >>