Unsupervised Fault Detection in a Controlled Conical Tank

J. Ortega, C. Ramírez, T. Rojas, F. Tamssaouet, M. Orchard, and J. Silva

16th Annual Conference of the Prognostics and Health Management Society

November, 2024

Presenter: Marcos Orchard

Outline

Motivation and FDI	01
Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case — Black-Box Model	04
Complementary White-Box Analysis	08
Conclusion and Future Work	11

Motivation and FDI

Fault Detection and Identification (FDI)

Motivation and FDI Fault Detection and Identification (FDI)

Provides information regarding process and subprocess failure, enabling predictive maintenance

01 - 2/4

Motivation and FDI

Fault Detection and Identification (FDI)

Provides information regarding process and subprocess failure, enabling predictive maintenance

Challenges

- Non-linear systems
- Controlled systems

Motivation and FDI

Fault Detection and Identification (FDI)

Provides information regarding process and subprocess failure, enabling predictive maintenance

Challenges

- Non-linear systems
- Controlled systems

Our contribution

- MI-based
- unsupervised
- FDI scheme

Study case: controlled conical tank

01 - 4/4

Outline

Motivation and FDI

Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case — Black-Box Model	04
Complementary White-Box Analysis	08
Conclusion and Future Work	11

01

Controlled Conical Tank

Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

02 - 2/4

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

Model of Jáuregui (2016) $= \frac{\alpha_1 \cdot f + \alpha_2 - \beta \sqrt{h_c}}{0.63h_c^2 + 11.4h_c + 17.1}$

$$egin{aligned} lpha_1 &= 543 \ {
m cm}^3 {
m s}^{-1} \ lpha_2 &= -78.23 \ {
m cm}^3 {
m s}^{-1} \ eta &= 20.21 \ {
m cm}^{5/2} {
m s}^{-1} \end{aligned}$$

02 - 3/4

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

Model of Jáuregui (2016) $c = rac{lpha_1 \cdot f + lpha_2 - eta \sqrt{h_{ m c}}}{0.63 h_{ m c}^2 + 11.4 h_{ m c} + 17.1}$

f : pump usage percentage (%) $h_{
m c}$: water height (cm)

Zero-order hold (ZOH) samples each 15 s

02 - 4/4

Outline

Motivation and FDI	01
Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case — Black-Box Model	04
Complementary White-Box Analysis	08
Conclusion and Future Work	11

Additive noise system

Additive noise system

Fault detection scheme

03 - 2/7

Additive noise system

System sampling (data acquisition)

Fault detection scheme

03 - 3/7

03 - 4/7

03 - 5/7

03 - 6/7

MI quantifies statistical dependency

03 - 7/7

Outline

Motivation and FDI	01
Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case – Black-Box Model	04
Complementary White-Box Analysis	08
Conclusion and Future Work	11

Study Case – Black-Box Model **Model:** Multilayer perceptron (MLP) trained using nominal data

Data 90 hours of nominal operation

^{04 - 2/3}

Model: Multilayer perceptron (MLP) trained using nominal data

Model inputs $h_{\rm c}(t-1), f(t-1), h_{\rm c}(t-2), f(t-2)$

Model output $h_{\rm c}(t)$

Architecture

2 hidden layers of 100 and 50 units **ReLU** activation functions

Loss function

Mean sqaured error (MSE)

Hyperparameters

ADAM optimizer Learning rate 1e-4

04 - 3/3

Induced faults: pump failures

 δ quantifies the severify of the fault

 $F_{ ext{in}} = lpha_1 (1 - \delta \cdot s(t - T_{ ext{fault}})) \cdot f + lpha_2$

Monitoring pipeline

Monitoring pipeline: rolling window

06 - 2/2

Study Case – Black-Box Model Results

Study Case – Black-Box Model Results

40

Time (hours)

60

80

20

Ó

Study Case – Black-Box Model Results

Fault Severity

07 – 3/3

Outline

Motivation and FDI	01
Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case — Black-Box Model	04
Complementary White-Box Analysis	80
Conclusion and Future Work	11

Complementary White-Box Analysis

Model: Twin healthy system build from expert knowledge

The white-box model (nominal twin model) replicates the ODEs that determine a healthy system.

Complementary White-Box Analysis

Model: Twin healthy system build from expert knowledge

The white-box model (nominal twin model) replicates the ODEs that determine a healthy system.

Model input
$$f(t)$$

08 - 2/2

Complementary White-Box Analysis Model: Twin healthy system build from expert knowledge

5 hours from inputs sampled uniformly from [30%, 40%] each 15 s

No rolling window (all data is used)

Complementary White-Box Analysis Results

100 simulations

Complementary White-Box Analysis Results

100 simulations

100 simulations

10 - 2/3

Complementary White-Box Analysis Results

100 simulations

100 simulations

1000 simulations per fault severity

10 - 3/3

Outline

Motivation and FDI	01
Controlled Conical Tank	02
MI-based Fault Detection Methodology	03
Study Case — Black-Box Model	04
Complementary White-Box Analysis	08
Conclusion and Future Work	11

• We provided a method that detects faults with no requirement of expert knowledge.

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.

11 - 2/5

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.

11 – 3/5

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.
- Our method does not require prior availability of faulty data (unsupervised).

11 - 4/5

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.
- Our method does not require prior availability of faulty data (unsupervised).
- More sophisticated models may be tested (i.e., closed–loop twin model) and comparison with other FDI methods in the same settings may be useful.

11 - 5/5

Unsupervised Fault Detection in a Controlled Conical Tank

Joaquín Ortega

Camilo Ramírez

Tomás Rojas

Ferhat Tamssaouet

Marcos Orchard

Jorge Silva

November, 2024

camilo.ramirez@ug.uchile.cl

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

References

- Jáuregui, C. (2016). Evaluación de estrategias de sintonización de controladores fraccionarios para planta no lineal: sistema de estanques (Master's thesis, Universidad de Chile). Retrieved from https://repositorio.uchile.cl/handle/2250/140963
- Ramírez, C., Silva, J. F., Tamssaouet F., Rojas, T., & Orchard, M. E. (2024). Fault detection and monitoring using an information-driven strategy: Method, theory, and application. arXiv preprint arxiv:2405.03667. doi: 10.48550/arXiv.2405.03667

11 - 5/5