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: pump usage percentage (%)
: water height (cm)

Zero-order hold (ZOH) samples each 15 s
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Method by Ramírez et al. (2024)
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Model: Multilayer perceptron (MLP) trained using nominal data
Healthy system (Simulink)

Nominal data

Sampling

Nominal model

Training

Model inputs

Model output

Architecture
2 hidden layers of 100 and 50 units
ReLU activation functions

Loss function
Mean sqaured error (MSE)

Hyperparameters
ADAM optimizer
Learning rate 1e-4
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Model: Twin healthy system build from expert knowledge

Open loop faulty system
(Euler’s method)

Nominal twin model

Data
5 hours from inputs sampled
uniformly from [30%, 40%] each 15 sInput

Output

Estimated
output

Residual

Input-Residual estimated
mutual information (EMI)

No rolling window (all data is used)
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We provided a method that detects faults with no requirement of expert
knowledge.

In addition to detecting faults, our method quantify their severity.

Expert knowledge enables a white-box analysis, which provide further
insights of our indicator’s behavior on system faults.

Our method does not require prior availability of faulty data
(unsupervised).

More sophisticated models may be tested (i.e., closed-loop twin model) and
comparison with other FDI methods in the same settings may be useful.
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