November, 2024 **Presenter:** Marcos Orchard

Unsupervised Fault Detection in a Controlled Conical Tank

J. Ortega, C. Ramírez, T. Rojas, F. Tamssaouet, M. Orchard, and J. Silva

16th Annual Conference of the Prognostics and Health Management Society

Outline

Fault Detection and Identification (FDI)

 $O1 - 1/4$

Motivation and FDI Fault Detection and Identification (FDI)

Provides information regarding process and subprocess failure, enabling predictive maintenance

 $01 - 2/4$

Fault Detection and Identification (FDI)

- Non-linear systems
- Controlled systems

 $01 - 3/4$

Provides information regarding process and subprocess failure, enabling predictive maintenance

Challenges

Fault Detection and Identification (FDI)

- Non-linear systems
- Controlled systems

Provides information regarding process and subprocess failure, enabling predictive maintenance

Challenges

Our contribution

- MI-based
- unsupervised
- FDI scheme

Study case: controlled conical tank

 $O1 - 4/4$

Outline

Controlled Conical Tank

Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

 $O2 - 1/4$

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

 $O2 - 2/4$

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

Model of Jáuregui (2016) $= \ \frac{\alpha_1\cdot f + \alpha_2 - \beta\sqrt{h_{\rm c}}}{0.63 h_{\rm c}^2 + 11.4 h_{\rm c} + 17.1}$

$$
\begin{array}{l} \alpha_1=543\, \mathrm{cm}^3 \mathrm{s}^{-1}\\ \alpha_2=-78.23\, \mathrm{cm}^3 \mathrm{s}^{-1}\\ \beta=20.21\, \mathrm{cm}^{5/2} \mathrm{s}^{-1} \end{array}
$$

 $O2 - 3/4$

Controlled Conical Tank Proportional-derivative-integral (PID) controller tuned with particle swarm optimization (PSO)

Model of Jáuregui (2016) $\hskip1cm = \frac{\alpha_1 \cdot f + \alpha_2 - \beta \sqrt{h_{\rm c}}}{0.63 h_{\rm c}^2 + 11.4 h_{\rm c} + 17.1}$

: pump usage percentage (%) $h_{\rm c}$: water height (cm)

Zero-order hold (ZOH) samples each 15 s

 $O2 - 4/4$

Outline

03 - 1/7

Additive noise system

03 - 2/7

Additive noise system Fault detection scheme

03 - 3/7

Additive noise system Fault detection scheme

System sampling (data acquisition)

 $03 - 4/7$

03 - 5/7

 X_{\cdot} $X \sim \mu$ Input System input Add.
System $\big|W \sim \mathrm{U}([0,1])\big|$ **System** \bm{n} Underlying Y **Noise** Output model model $\rightarrow \oplus \leftarrow$ $Y-\hat{Y}$ Y System output Residual **Additive noise system Fault detection scheme** Residuals System sampling Twin model (estimation errors) (data acquisition) estimations computing

03 - 6/7

 X_{\cdot} $X \sim \mu$ Input **System input** Add.
System $\big|W \sim \mathrm{U}([0,1])\big|$ Model **System** \hat{Y} Underlying Y **Noise** Output **Estimated output** model model $\rightarrow \oplus \leftarrow$ $Y-\hat{Y}$ Y System output Residual **Additive noise system Fault detection scheme** Residuals Input-residual System sampling Twin model (estimation errors) \rightarrow mutual information (data acquisition) estimations computing (MI) estimation

MI quantifies statistical dependency

 $03 - 7/7$

Outline

Study Case — Black-Box Model Model: Multilayer perceptron (MLP) trained using nominal data

 $04 - 1/3$

Study Case — Black-Box Model Model: Multilayer perceptron (MLP) trained using nominal data

 $04 - 2/3$

Data 90 hours of nominal operation

Model: Multilayer perceptron (MLP) trained using nominal data

Model inputs $h_c(t-1), f(t-1), h_c(t-2), f(t-2)$

Model output $h_{\rm c}(t)$

Architecture

2 hidden layers of 100 and 50 units ReLU activation functions

Loss function

Mean sqaured error (MSE)

Hyperparameters

ADAM optimizer Learning rate 1e-4

 $04 - 3/3$

Induced faults: pump failures

 δ quantifies the severify of the fault

$F_{\rm in} = \alpha_1(1-\delta\cdot s(t-T_{\rm fault}))\cdot f + \alpha_2$

 $05 - 1/1$

 $06 - 1/2$

Monitoring pipeline

 $06 - 2/2$

Monitoring pipeline: rolling window

Study Case — Black-Box Model Results

 $07 - 1/3$

Study Case — Black-Box Model Results

 $07 - 2/3$

Study Case — Black-Box Model Results

Fault Severity

07 - 3/3

Outline

Complementary White-Box Analysis

Model: Twin healthy system build from expert knowledge

The white-box model (nominal twin model) replicates the ODEs that determine a healthy system.

 $08 - 1/2$

Complementary White-Box Analysis

Model: Twin healthy system build from expert knowledge

The white-box model (nominal twin model) replicates the ODEs that determine a healthy system.

$$
\frac{\textbf{Model input}}{f(t)}
$$

 $08 - 2/2$

09 - 1/1

Complementary White-Box Analysis Model: Twin healthy system build from expert knowledge

5 hours from inputs sampled uniformly from [30%, 40%] each 15 s

No rolling window (all data is used)

Complementary White-Box Analysis Results

100 simulations

 $10 - 1/3$

Complementary White-Box Analysis Results

100 simulations 100 simulations

 $10 - 2/3$

Complementary White-Box Analysis Results

100 simulations 100 simulations 1000 simulations per fault severity

 $10 - 3/3$

Outline

We provided a method that detects faults with no requirement of expert knowledge.

 $11 - 1/5$

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.

 $11 - 2/5$

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.

 $11 - 3/5$

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.
- **Our method does not require prior availability of faulty data (unsupervised).**

 $11 - 4/5$

- We provided a method that detects faults with no requirement of expert knowledge.
- In addition to detecting faults, our method quantify their severity.
- Expert knowledge enables a white-box analysis, which provide further insights of our indicator's behavior on system faults.
- **Our method does not require prior availability of faulty data (unsupervised).**
- More sophisticated models may be tested (i.e., closed-loop twin model) and comparison with other FDI methods in the same settings may be useful.

 $11 - 5/5$

November, 2024 **camilo.ramirez@ug.uchile.cl**

Unsupervised Fault Detection in a Controlled Conical Tank

Joaquín Ortega

Camilo Ramírez

Tomás Rojas

Ferhat Tamssaouet

Marcos Orchard

Jorge Silva

References

- Jáuregui, C. (2016). Evaluación de estrategias de sintonización de controladores fraccionarios para planta no lineal: sistema de estanques (Master's thesis, Universidad de Chile). Retrieved from https://repositorio.uchile.cl/handle/2250/140963
- Ramírez, C., Silva, J. F., Tamssaouet F., Rojas, T., & Orchard, M. E. (2024). Fault detection and monitoring using an information-driven strategy: Method, theory, and application. arXiv preprint arxiv:2405.03667. doi: 10.48550/arXiv.2405.03667

 $11 - 5/5$