Rethinking RUL Prediction Uncertainty, Robustness, Interpretability, and Feasibility Matter

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Mariana Salinas-Camus Kai Goebel Nick Eleftheroglou

Abstract

Prognostics and Health Management (PHM) plays a key role in predicting the Remaining Useful Life (RUL) of systems, which is essential for enabling decision-making for Predictive Maintenance (PdM) and operations. While most research has traditionally focused on improving the accuracy of RUL predictions, this paper argues that four essential characteristics, uncertainty, robustness, interpretability, and feasibility, are key for real-world PHM applications. This study explores these characteristics through a comparative analysis of two data-driven models (DDMs): the probabilistic Bidirectional Long Short-Term Memory (BiLSTM) model and the Adaptive Hidden Semi-Markov Model (AHSMM). Deep Learning (DL) models such as the BiLSTM often achieve high prediction accuracy but struggle with uncertainty quantification and adaptability across varying operating conditions. In contrast, stochastic models like AHSMM offer stronger robustness and feasibility, performing well even with limited or noisy data. Using the C-MAPSS dataset, the models are evaluated through the lens of the four proposed characteristics. This more holistic approach clarifies each model’s strengths, limitations, and practical trade-offs in PHM settings. The findings highlight that while accuracy remains important, focusing solely on it can overlook critical factors that affect model performance in real operational environments. Balancing all four characteristics is essential for deploying reliable and effective decision-making for predictive maintenance and operations.

 

How to Cite

Salinas-Camus, M., Goebel, K., & Eleftheroglou, N. (2025). Rethinking RUL Prediction: Uncertainty, Robustness, Interpretability, and Feasibility Matter. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4361
Abstract 1 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

remaining useful life, robustness, interpretability, uncertainty, feasibility, data-driven models

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Acharya, U. R. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information fusion, 76, 243–297.
Alamaniotis, M. (2023). Explainable prognostics method through differential evolved rvr ensemble of relevance vector machines. In Annual conference of the phm society (Vol. 15, p. -).
Alcibar, J., Aizpurua, J. I., & Zugasti, E. (2024). Towards a probabilistic fusion approach for robust battery prognostics. arXiv preprint arXiv:2405.15292.
Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Herrera, F. (2023). Explainable artificial intelligence (xai): What we know and what is left to attain trustworthy artificial intelligence. Information Fusion, 99, 101805. doi:https://doi.org/10.1016/j.inffus.2023.101805
Alvarez-Melis, D., & Jaakkola, T. S. (2018). On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049.
Baptista, M., Mishra, M., Henriques, E., & Prendinger, H. (2024, 11). Using explainable artificial intelligence to interpret remaining useful life estimation with gated recurrent unit. Annual Conference of the PHM Society, 16, -. doi: 10.36001/phmconf.2024.v16i1.4124
Caceres, J., Gonzalez, D., Zhou, T., & Droguett, E. L. (2021). A probabilistic bayesian recurrent neural network for remaining useful life prognostics considering epistemic and aleatory uncertainties. Structural Control and Health Monitoring, 28(10), e2811.
Coble, J., & Hines, J. W. (2009). Identifying optimal prognostic parameters from data: a genetic algorithms approach. In Annual conference of the phm society (Vol. 1, p. -).
Costa, N., & Sanchez, L. (2022). Variational encoding ap- proach for interpretable assessment of remaining useful life estimation. Reliability Engineering & System Safety, 222, 108353.
da Costa, P. R. d. O., Akc¸ay, A., Zhang, Y., & Kaymak, U. (2020). Remaining useful lifetime prediction via deep domain adaptation. Reliability Engineering & System Safety, 195, 106682.
Deng, W., Nguyen, K. T., Gogu, C., Medjaher, K., & Morio, J. (2024). Enhancing prognostics for sparse labeled data using advanced contrastive self-supervised learning with downstream integration. Engineering Applications of Artificial Intelligence, 138, 109268.
Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? does it matter? Structural safety, 31(2), 105–112.
Ding, P., Jia, M., Ding, Y., Cao, Y., Zhuang, J., & Zhao, X. (2023). Machinery probabilistic few-shot prognostics considering prediction uncertainty. IEEE/ASME Transactions on Mechatronics.
Ding, P., Xia, J., Zhao, X., & Jia, M. (2024). Graph structure few-shot prognostics for machinery remaining useful life prediction under variable operating conditions. Advanced Engineering Informatics, 60, 102360.
Eleftheroglou, N., Galanopoulos, G., & Loutas, T. (2024). Similarity learning hidden semi-markov model for adaptive prognostics of composite structures. Reliability Engineering & System Safety, 243, 109808.
Eleftheroglou, N., & Loutas, T. (2016). Fatigue damage diagnostics and prognostics of composites utilizing structural health monitoring data and stochastic processes. Structural Health Monitoring, 15(4), 473–488.
Eleftheroglou, N., Zarouchas, D., & Benedictus, R. (2020). An adaptive probabilistic data-driven methodology for prognosis of the fatigue life of composite structures. Composite Structures, 245, 112386.
Figueroa Barraza, J., Lopez Droguett, E., & Martins, M. R. (2021). Towards interpretable deep learning: a feature selection framework for prognostics and health management using deep neural networks. Sensors, 21(17), 5888.
Folgoc, L. L., Baltatzis, V., Desai, S., Devaraj, A., Ellis, S., Manzanera, O. E. M., . . . Glocker, B. (2021). Is mc dropout bayesian? arXiv preprint arXiv:2110.04286.
Fort, S., Hu, H., & Lakshminarayanan, B. (2019). Deep ensembles: A loss landscape perspective. arxiv 2019. arXiv preprint arXiv:1912.02757.
Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050–1059).
Garreau, D. (2023). Chapter 14 - theoretical analysis of lime. In J. Benois-Pineau, R. Bourqui, D. Petkovic, & G. Quenot (Eds.), Explainable deep learning ai (p. 293-316). Academic Press. doi: https://doi.org/10.1016/B978-0-32-396098-4.00020-X
Gebraeel, N., Lei, Y., Li, N., Si, X., & Zio, E. (2023). Prognostics and remaining useful life prediction of machinery: advances, opportunities and challenges. Journal of Dynamics, Monitoring and Diagnostics, 1–12.
Goodman, B., & Flaxman, S. (2017). European union regulations on algorithmic decision-making and a “right to explanation”. AI magazine, 38(3), 50–57.
Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5), 559–570.
Huang, C., Bu, S., Lee, H. H., Chan, C. H., Kong, S. W., & Yung, W. K. (2024). Prognostics and health management for predictive maintenance: A review. Journal of Manufacturing Systems, 75, 78–101.
Huang, Z., Xu, Z., Ke, X., Wang, W., & Sun, Y. (2017). Remaining useful life prediction for an adaptive skew-wiener process model. Mechanical Systems and Signal Processing, 87, 294–306.
Kamariotis, A., Tatsis, K., Chatzi, E., Goebel, K., & Straub, D. (2024). A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance. Reliability Engineering & System Safety, 242, 109723.
Kobayashi, K., & Alam, S. B. (2024). Explainable, interpretable, and trustworthy ai for an intelligent digital twin: A case study on remaining useful life. Engineering Applications of Artificial Intelligence, 129, 107620.
Kontogiannis, T., Salinas-Camus, M., & Eleftheroglou, N. (2025). Hidden markov models for aviation prognostics. In Stochastic modeling and statistical methods (p. 1). Academic Press.
Kundu, R. K., & Hoque, K. A. (2023). Explainable predictive maintenance is not enough: quantifying trust in remaining useful life estimation. In Annual conference of the phm society (Vol. 15, p. -).
Li, J., Li, X., & He, D. (2019). Domain adaptation remaining useful life prediction method based on adabn-dcnn. In 2019 prognostics and system health management conference (phm-qingdao) (pp. 1–6).
Li, N., Wang, M., Lei, Y., Si, X., Yang, B., & Li, X. (2024). A nonparametric degradation modeling method for remaining useful life prediction with fragment data. Reliability Engineering & System Safety, 249, 110224. doi: https://doi.org/10.1016/j.ress.2024.110224
Li, N., Xu, P., Lei, Y., Cai, X., & Kong, D. (2022). A self-data-driven method for remaining useful life prediction of wind turbines considering continuously varying speeds. Mechanical Systems and Signal Processing, 165, 108315. doi: https://doi.org/10.1016/j.ymssp.2021.108315
Li, X., Zhang, W., Ma, H., Luo, Z., & Li, X. (2020). Data alignments in machinery remaining useful life prediction using deep adversarial neural networks. Knowledge-Based Systems, 197, 105843.
Lin, Y.H., & Li, G.H. (2022). A bayesian deep learning framework for rul prediction incorporating uncertainty quantification and calibration. IEEE Transactions on Industrial Informatics, 18(10), 7274–7284.
Loutas, T., Eleftheroglou, N., & Zarouchas, D. (2017). A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data. Composite Structures, 161, 522–529.
Moghaddass, R., & Zuo, M. J. (2014). An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process. Reliability Engineering & System Safety, 124, 92–104.
Pei, H., Si, X. S., Hu, C., Li, T., He, C., & Pang, Z. (2022). Bayesian deep-learning-based prognostic model for equipment without label data related to lifetime. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 504–517.
Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.
Salinas-Camus, M., & Eleftheroglou, N. (2024). Uncertainty in aircraft turbofan engine prognostics on the c-mapss dataset. In Phm society european conference (Vol. 8, pp. 10–10).
Salinas-Camus, M., Goebel, K., & Eleftheroglou, N. (2025). A comprehensive review and evaluation framework for data-driven prognostics: Uncertainty, robustness, interpretability, and feasibility. Mechanical Systems and Signal Processing, 237, 113015. doi: https://doi.org/10.1016/j.ymssp.2025.113015
Serradilla, O., Zugasti, E., Cernuda, C., Aranburu, A., de Okariz, J. R., & Zurutuza, U. (2020). Interpreting remaining useful life estimations combining explainable artificial intelligence and domain knowledge in industrial machinery. In 2020 ieee international conference on fuzzy systems (fuzz-ieee) (pp. 1–8).
Sharma, J., Mittal, M. L., & Soni, G. (2024). Condition-based maintenance using machine learning and role of interpretability: a review. International Journal of System Assurance Engineering and Management, 15(4), 1345–1360.
Verhagen, W. J., Santos, B. F., Freeman, F., van Kessel, P., Zarouchas, D., Loutas, T., . . . Heiets, I. (2023). Condition-based maintenance in aviation: Challenges and opportunities. Aerospace, 10(9), 762.
Vollert, S., & Theissler, A. (2021). Challenges of machine learning-based rul prognosis: A review on nasa’s c-mapss data set. In 2021 26th ieee international conference on emerging technologies and factory automation (etfa) (pp. 1–8).
Xie, F. Y., Hu, Y. M., Wu, B., & Wang, Y. (2016). A generalized hidden markov model and its applications in recognition of cutting states. International Journal of Precision Engineering and Manufacturing, 17, 1471–1482.
Zhang, W., Li, X., Ma, H., Luo, Z., & Li, X. (2021). Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliability Engineering & System Safety, 211, 107556.
Zhu, R., Chen, Y., Peng, W., & Ye, Z.-S. (2022). Bayesian deep-learning for rul prediction: An active learning perspective. Reliability Engineering & System Safety, 228, 108758.
Zio, E. (2022). Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218. doi: 10.1016/j.ress.2021.108119
Section
Technical Research Papers

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>