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ABSTRACT

Prognostics and Health Management (PHM) plays a key role
in predicting the Remaining Useful Life (RUL) of systems,
which is essential for enabling decision-making for Predic-
tive Maintenance (PdM) and operations. While most research
has traditionally focused on improving the accuracy of RUL
predictions, this paper argues that four essential characteris-
tics, uncertainty, robustness, interpretability, and feasibility,
are key for real-world PHM applications. This study explores
these characteristics through a comparative analysis of two
data-driven models (DDMs): the probabilistic Bidirectional
Long Short-Term Memory (BiLSTM) model and the Adap-
tive Hidden Semi-Markov Model (AHSMM). Deep Learn-
ing (DL) models such as the BiLSTM often achieve high
prediction accuracy but struggle with uncertainty quantifica-
tion and adaptability across varying operating conditions. In
contrast, stochastic models like AHSMM offer stronger ro-
bustness and feasibility, performing well even with limited or
noisy data. Using the C-MAPSS dataset, the models are eval-
uated through the lens of the four proposed characteristics.
This more holistic approach clarifies each model’s strengths,
limitations, and practical trade-offs in PHM settings. The
findings highlight that while accuracy remains important, fo-
cusing solely on it can overlook critical factors that affect
model performance in real operational environments. Balanc-
ing all four characteristics is essential for deploying reliable
and effective decision-making for predictive maintenance and
operations.

Mariana Salinas-Camus et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Prognostics and Health Management (PHM) analyzes cur-
rent and future health conditions of engineering systems to
improve reliability, reduce maintenance costs, and ensure
safety through interconnected processes of feature extraction,
diagnostics, prognostics, and decision-making. Prognos-
tics, the most challenging PHM aspect, predicts Remaining
Useful Life (RUL) to enable Predictive Maintenance (PdM)
(Z. Huang et al., 2017), shifting maintenance from reactive
or time-based approaches to PdM planning that anticipates
failures and optimizes repair scheduling.

However, effective prognostic integration into real-world ap-
plications requires more than accurate predictions (Zio,
2022). Prognostic models must address four essential char-
acteristics: uncertainty quantification (UQ) to help decision-
makers assess risk despite inherent degradation unpredictabil-
ity (Kamariotis et al., 2024), robustness to ensure reliable
performance across varying operational scenarios (C. Huang
et al., 2024), interpretability to provide decision-making
transparency required by regulations (Goodman & Flaxman,
2017), and feasibility to function effectively with realistic
data constraints (Kamariotis et al., 2024). These characteris-
tics collectively enable trustworthy, resilient, and actionable
predictions essential for successful PdM frameworks.

This work examines the importance of these four character-
istics in developing data-driven prognostic models. While
traditional evaluation criteria like prediction accuracy remain
important, they are insufficient on their own. Real-world de-
ployment demands models that not only predict well but also
do so in a way that supports complex operational decisions.
For instance, a highly accurate model that cannot express pre-
diction confidence or requires impractical amounts of labeled
training data may not be viable in practice.
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To explore these concepts, this paper investigates data-driven
prognostic models, particularly Deep Learning (DL) and
Stochastic Models, building on the models reviewed in the
earlier comprehensive journal publication (Salinas-Camus et
al., 2025). The objective is to understand how different mod-
eling paradigms address the key requirements for effective
decision-making in PdM.

2. KEY CHARACTERISTICS IN PROGNOSTICS

Effective prognostic models for predictive maintenance re-
quire a careful balance of several essential characteristics be-
yond just high predictive accuracy. These models must also
quantify inherent uncertainties in RUL predictions, maintain
robustness across diverse operational conditions, offer inter-
pretability to meet regulatory and practical demands, and
demonstrate feasibility for deployment in real-world indus-
trial systems. Together, these characteristics ensure that prog-
nostic models deliver both technical excellence and practical
utility within comprehensive PdM frameworks.

2.1. Uncertainty

Uncertainty Quantification (UQ) in prognostics assesses how
various sources of uncertainty affect RUL predictions, which
are inherently uncertain and modeled as random variables.
Uncertainties are categorized as aleatoric (data randomness)
and epistemic (lack of knowledge) (Der Kiureghian &
Ditlevsen, 2009), with this information being crucial for in-
formed decision-making in health management systems.

UQ remains a significant challenge for DL-based prognostic
models due to their deterministic nature (Vollert & Theissler,
2021), which typically produces point estimates rather than
uncertainty-aware predictions. Various Bayesian techniques
have been developed to address this, including Variational
Inference, Monte Carlo (MC) Dropout, Deep Gaussian Pro-
cesses, and Markov Chain Monte Carlo methods, each with
trade-offs in accuracy and computational complexity (Abdar
et al., 2021). MC Dropout (Gal & Ghahramani, 2016) is
widely adopted for its simplicity but suffers from poor ap-
proximation of complex posteriors (Fort et al., 2019) and
sensitivity to user-defined parameters (Folgoc et al., 2021;
Salinas-Camus & Eleftheroglou, 2024). Most Bayesian DL
implementations in prognostics still fall short in fully cap-
turing uncertainty, often using suboptimal dropout rates that
result in underestimated uncertainty and narrow confidence
intervals (Pei et al., 2022; Zhu et al., 2022). While advanced
approaches like concrete dropout (Lin & Li, 2022) and en-
semble methods (Alcibar et al., 2024) attempt to improve
calibration, they still suffer from assumptions like Gaussian
distributions that may not reflect real-world prognostic com-
plexities.

Stochastic models naturally account for aleatoric uncertainty
by modeling inherent randomness in degradation processes

using probabilistic approaches (Xie et al., 2016), typically
providing closed-form posterior distributions that allow con-
fidence intervals to be derived directly. However, these mod-
els often produce wide confidence intervals, given that it is
the aleatoric uncertainty that arises from the phenomenon,
as seen in Non Homogeneous Hidden Semi Markov Mod-
els (NHHSMMs) for turbofan engines (Moghaddass & Zuo,
2014) and composite specimens (Eleftheroglou & Loutas,
2016). Enhanced approaches like Similarity Learning Hid-
den Semi-Markov Model (SLHSMM) (Eleftheroglou et al.,
2024) and unit-to-unit (N. Li et al., 2022) adaptive frame-
works address this by incorporating data similarity or select-
ing optimal models for individual cases, effectively managing
uncertainty to improve prediction reliability. While stochastic
models excel at modeling aleatoric uncertainty, they gener-
ally do not capture epistemic uncertainty unless specifically
extended, such as the Generalized Hidden Markov Model
(GHMM) (Xie et al., 2016), which quantifies both uncer-
tainty types using imprecise probabilities, though at high
computational cost.

2.2. Robustness

Robustness in prognostics models refers to maintaining reli-
able predictions despite variations in operational conditions,
environmental factors, and input data quality. The primary
challenge occurs when testing conditions differ from training
data, creating domain shifts that degrade performance. While
Domain Adaptation techniques have been developed to ad-
dress these shifts (da Costa et al., 2020; X. Li et al., 2020;
Vollert & Theissler, 2021), guaranteeing robustness remains
a significant challenge for system safety and reliability.

Several DL approaches have been proposed with limited suc-
cess. Deep Convolutional Neural Networks (CNNs) with
adaptive batch normalization for turbofan engines (J. Li et
al., 2019) and domain adversarial neural networks for tur-
bofan engines and bearings (da Costa et al., 2020; X. Li
et al., 2020) showed improvements but still exhibited high
errors and volatility, with performance constrained by data
scarcity in industrial scenarios. Transfer Learning frame-
works (Zhang et al., 2021) face limitations from assum-
ing straight degradation patterns and requiring “healthy” state
data, which is often unavailable in industrial applications.

Stochastic models, particularly Hidden Markov Models
(HMMs), show promise through adaptive methodologies.
The Adaptive Non-Homogeneous Hidden Semi Markov
Model (ANHHSMM) successfully adapts to loading changes
such as impact loading without requiring large datasets, out-
performing non-adaptive models on open-hole specimens
(Eleftheroglou et al., 2020). However, it has only been
validated for brief operational changes, not sustained condi-
tion changes. The SLHSMM addresses similar challenges
by characterizing similarity between testing and training
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data, demonstrating superior performance against outliers
while reducing confidence intervals and computational costs
(Eleftheroglou et al., 2024). Nevertheless, its effectiveness
depends heavily on diverse outliers in the training set, limit-
ing its applicability in data-scarce environments.

2.3. Interpretability

Interpretability is used in this work as an umbrella term that
encompasses both the understanding of the internal mech-
anisms of prognostic models (often referred to as inter-
pretability in a narrow sense) and the generation of human-
understandable explanations for model outputs (commonly
referred to as explainability) (Kobayashi & Alam, 2024).
This aspect has gained importance due to the increased use of
“black box” DL models and regulatory requirements, such as
the General Data Protection Regulation (GDPR) (Goodman
& Flaxman, 2017), which grants the right to explanation for
algorithmic decisions affecting individuals. In PHM appli-
cations involving safety-critical components, interpretability
in this broader sense is considered essential for informed
decision-making and regulatory compliance (Sharma et al.,
2024).

Local Interpretable Model-Agnostic Explanations (LIME)
and Shapley Additive Explanations (SHAP) are widely
used interpretability tools for DL-based prognostic mod-
els, focusing on feature selection and importance analysis
(Figueroa Barraza et al., 2021; Baptista et al., 2024; Serradilla
et al., 2020). However, both exhibit significant limitations in
robustness and consistency. LIME produces unreliable expla-
nations that can vary drastically for identical inputs (Alvarez-
Melis & Jaakkola, 2018; Garreau, 2023), while SHAP relies
on approximations that can diverge substantially from exact
values and may assign misleading feature importance (Ali
et al., 2023). These tools often produce conflicting feature
rankings, creating a “disagreement problem” that compli-
cates decision-making in critical PHM applications. While
approaches as trust scores (Kundu & Hoque, 2023) have been
proposed to identify suitable explanation tools, they remain
limited and do not address the root causes of explanation
biases. Other DL interpretability approaches include varia-
tional encoders creating interpretable latent spaces (Costa &
Sánchez, 2022) and Relevant Vector Machines (Alamaniotis,
2023), but these methods provide incomplete frameworks for
model interpretation since they focus on latent-space visual-
ization or general signal characteristics, without explaining
how specific inputs influence model predictions. Despite
extensive research efforts, DL models remain fundamentally
black boxes, with interpretability tools still facing significant
challenges in providing reliable explanations.

Stochastic models, in contrast, offer inherent interpretability
advantages through their probabilistic structure without re-
quiring additional explanation tools. HMMs can directly rep-

resent physical degradation stages through hidden states that
correspond to actual damage progression (matrix cracking,
delamination, fiber breakage, failure) (Loutas et al., 2017),
predict both RUL and current damage states simultaneously,
and provide intuitive insights into degradation processes
through interpretable parameters such as state transition prob-
abilities and average time spent in each damage state. En-
hanced variants, namely, the SLHSMM (Eleftheroglou et
al., 2024) and the ANHHSMM (Eleftheroglou et al., 2020)
further improve interpretability through similarity estimation
and outlier identification, offering users a deeper understand-
ing of both predictions and underlying data compared to black
box DL approaches.

2.4. Feasibility

Feasibility refers to a model’s ability to be trained and achieve
reliable results with the available data, which varies signifi-
cantly by industry and often involves limitations in data quan-
tity, quality (Zio, 2022; Gebraeel et al., 2023), diversity
(Verhagen et al., 2023), or labeling. This challenge is particu-
larly pronounced in industrial applications where labeled data
is scarce or missing measurements make it difficult to create
comprehensive training datasets for prognostic models.

DL models face significant feasibility challenges due to their
requirement for large, labeled datasets (Vollert & Theissler,
2021). To address limited data scenarios, “few-shot prog-
nostics” approaches have emerged, including Bayesian ap-
proximation enhanced probabilistic meta-learning (BA-PDL)
that provides interval estimates and uncertainty quantification
for variable-length predictions, though results can be noisy
with higher RMSE as sample size increases (Ding et al.,
2023). Graph neural networks create dynamic graphs to un-
cover hidden patterns and predict remaining lifespan even un-
der changing conditions (Ding et al., 2024), while Bayesian
DL approaches tackle unlabeled data by preprocessing mon-
itoring data to create degradation-labeled samples and em-
ploying variational inference for UQ (Pei et al., 2022). Self-
supervised LSTM-CNN frameworks use contrastive learning
to extract features from raw sensor signals, reducing depen-
dence on labeled data, though they incur high computational
overhead that limits deployment in resource-constrained set-
tings (Deng et al., 2024).

In contrast, stochastic models demonstrate superior feasi-
bility as they can be effectively trained with small datasets
without requiring labeled data. The NHHSMM has been
successfully trained using only 8 degradation histories
(Eleftheroglou & Loutas, 2016), while advanced variants
such as ANHHSMM and SLHSMM are particularly well-
suited for few-shot prognostics, capable of adapting to or
utilizing just a single degradation history. Additionally, non-
parametric stochastic models based on functional principal
component analysis can handle fragmented data with miss-
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ing sensor readings, maintaining reliable RUL predictions
even with up to 25% of data missing, demonstrating their
robustness in data-scarce industrial environments (N. Li et
al., 2024).

3. CASE STUDY

This case study compares two prognostic models, one DL-
based and one stochastic, across four key characteristics. The
DL model is a Bidirectional Long Short-Term Memory (BiL-
STM) network, known for its ability to capture temporal de-
pendencies. Inspired on the approach in (Caceres et al.,
2021), it uses a probabilistic framework for predicting the
RUL while capturing the aleatoric and epistemic uncertainty.

The stochastic model is the Adaptive Hidden Semi-Markov
Model (AHSMM), chosen for its robustness in generalizing
to unseen degradation patterns, following the framework in
(Eleftheroglou et al., 2020).

Both models are evaluated using the C-MAPSS FD001 sub-
dataset, which includes one fault mode and one operational
condition. To ensure full RUL labels are available, only com-
plete run-to-failure trajectories are used, 64 for training and
16 for testing, enabling consistent evaluation of metrics like
uncertainty coverage across the entire life cycle. Hyperpa-
rameters for both models are optimized on this baseline data.

Model performance is assessed using Root Mean Square Er-
ror (RMSE), standard deviation of RMSE across test in-
stances, uncertainty coverage, and Continuous Ranked Prob-
ability Score (CRPS) (Hersbach, 2000), with different exper-
iments conducted to evaluate all four key characteristics.

3.1. Prognostics Models

The following subsections briefly describe the mathematical
modeling and architecture of each prognostic model used in
this study.

3.1.1. Adaptive Hidden Semi-Markov Model

The Hidden Semi-Markov Model (HSMM) extends the clas-
sic HMM (Rabiner, 1989), by explicitly modeling the sojourn
time, i.e., how long the system remains in each damage state,
using a Weibull distribution. Each state Si emits observations
for a duration sampled from the Weibull distribution.

The model assumes left-to-right transitions (no recovery),
starts from a healthy state, and ends in a known failure state.
Parameters are learned via the Expectation-Maximization
(EM) algorithm, and each damage state corresponds to a level
of degradation. Due to the model’s constraint of being trained
on a single feature, sensor s11 is selected as input based
on its superior prognosability, trendability, and monotonicity
(Coble & Hines, 2009). The optimal number of states (seven

for this case study) is determined using the Bayesian Infor-
mation Criterion (BIC) (Moghaddass & Zuo, 2014).

The AHSMM enhances the HSMM by adjusting future state
durations based on observed transitions. When a transition
from state Si to Si+1 occurs, the observed sojourn time Ti

is compared to its expected value Ei, and their ratio defines
the resampling factor Rf . This factor updates the scale pa-
rameter for the next state’s Weibull distribution, as shown in
Equation 1. By adapting the scale parameter (while keep-
ing the shape parameter fixed), the Weibull distribution better
represents the sojourn time when the degradation process has
changed.

β∗
i+1 =

Ei+1Rf

Γ
(
1 + 1

αi+1

) (1)

To estimate RUL, a probabilistic time-dependent measure is
used (Kontogiannis et al., 2025), accounting for time τ al-
ready spent in the current state. The probabilities of staying
in or transitioning out of the current state are:

di,i+1 = P (d ≤ τ | St = i), di,i = 1− di,i+1. (2)

The final RUL distribution, which includes future state dura-
tions and a Gaussian noise term N (1, ϵ), is given by:

Pr(RULt
i) = di,i

(
Di(d− τ) +

N−1∑
k=i+1

Dk(d) +N (1, ϵ)

)

+ di,i+1

(
N−1∑
k=i+1

Dk(d) +N (1, ϵ)

)
.

(3)

This formulation yields a full probability distribution over
RUL, not just a point estimate. The 95% confidence inter-
vals are computed from the cumulative distribution function,
enabling prognostics with aleatoric UQ.

3.1.2. Probabilistic Bidirectional Long Short-Term Mem-
ory network

A model based on a Bidirectional Long Short-Term Mem-
ory (BiLSTM) network was developed, inspired by the work
of (Caceres et al., 2021), as mentioned before. The input
data consisted of multivariate time series from selected en-
gine sensors that show high correlation values (s2, s4, s7,
s11, s12, s15, s17, s20, and s21), along with the correspond-
ing RUL values (for an analysis with only one sensor see
(Salinas-Camus et al., 2025)). The data was segmented into
overlapping windows of 10 timesteps with a stride of 1, al-
lowing for online use. Each window was labeled using the
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RUL value at its final timestep. If a window contained the
end of an engine’s life (RUL = 0), it was padded using the
last valid row to maintain uniform shape across samples. Sen-
sor features and RUL values were normalized using separate
standard scalers.

The model architecture includes two stacked Bidirectional
LSTM layers, each with 100 units, followed by dropout layers
with a rate of 0.2. These values are derived from a Bayesian
optimization performed with Keras Tuner. These dropout
layers served both as regularization during training and as
a mechanism for uncertainty estimation via MC dropout at
inference time. The model produces two outputs: the pre-
dicted mean RUL and a predicted standard deviation, which,
after being passed through a softplus activation, represents
the aleatoric uncertainty. To additionally estimate epistemic
uncertainty, 100 stochastic forward passes are performed dur-
ing inference using MC dropout.

Training was performed using the Adam optimizer with a
learning rate of 1e-4. The loss function, shown in Equation
4, is the negative log-likelihood of the Gaussian predictive
distribution with a regularizer to encourage well-calibrated
predictions. Early stopping and learning rate reduction on a
plateau were used to prevent overfitting and improve conver-
gence.

L = − 1

N

N∑
i=1

logN (yi|µi, σ
2
i ) + λ · 1

N

N∑
i=1

(log(σi))
2 (4)

To estimate epistemic uncertainty, 100 stochastic forward
passes are performed during inference using MC dropout.
The mean and standard deviation of the predictions were used
to compute 95% confidence intervals. The final evaluation in-
cluded denormalizing the predicted RUL values.

3.2. Results

This section presents the results for both models using the
baseline case, followed by an analysis of the four key charac-
teristics using targeted experiments to evaluate model behav-
ior.

3.2.1. Baseline

The baseline case uses subdataset FD001, featuring a single
operational condition and fault mode. Figure 1 shows over-
lapping lifetime distributions for training and test sets, indi-
cating well-aligned distributions.

Table 1 summarizes baseline results: AHSMM achieves an
RMSE of 34.48, while BiLSTM slightly outperforms it with
33.65. However, BiLSTM predictions have higher variability,
reflecting less consistency.

Figure 1. Lifetime distribution for baseline case.

Figure 2 illustrates predictions for engine 7. BiLSTM shows
greater volatility, likely due to sensitivity to input fluctua-
tions, whereas AHSMM provides smoother but occasionally
jumpy predictions from discrete state transitions. Both mod-
els improve accuracy in the final cycles as degradation be-
comes clearer.

Model RMSE SD
BiLSTM 33.65 19.29
AHSMM 34.48 9.34

Table 1. Results of prognostic models for baseline case.

Figure 2. RUL predictions for engine 7 in baseline case.

3.2.2. Uncertainty

UQ remains a major challenge in prognostics, particularly
when comparing models that account for different sources of
uncertainty. In this section, the coverage metric, which mea-
sures how often true RUL values fall within predicted inter-
vals, and CRPS, which assesses the accuracy and sharpness
of the full predictive distribution, are used to evaluate uncer-
tainty.

The coverage metric is defined as the proportion of true val-
ues that fall within the predicted confidence bounds. For each
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time step t, if yt is the true RUL and [lt, ut] is the predicted
95% confidence interval, coverage is calculated as:

Ct =

{
1, if lt ≤ yt ≤ ut

0, otherwise
, Coverage =

1

T

T∑
t=1

Ct (5)

As shown in Table 2, both models achieve high coverage, in-
dicating reliable intervals. However, BiLSTM yields a lower
CRPS, suggesting sharper and more accurate distributions.
This reflects better-calibrated uncertainty estimates, partly
due to its modeling of both aleatoric (via predicted mean and
SD) and epistemic uncertainty (via MC dropout). In contrast,
AHSMM captures only aleatoric uncertainty.

Despite high reliability, the wide intervals highlight the need
to consider interval width alongside coverage and CRPS to
ensure predictions remain actionable.

Model Cov. CRPS
BiLSTM 0.98 14.76
AHSMM 0.97 19.49

Table 2. Coverage results of the prognostics models for the
baseline case.

3.2.3. Robustness

Robustness was assessed by evaluating the models’ general-
ization ability when tested on unseen fault modes. Both mod-
els were trained on the FD001 dataset, which includes only
HPC degradation, and tested on the FD003 dataset, which
introduces an additional fault mode (fan degradation) under
the same operating conditions. This mismatch in degradation
mechanisms introduces a distribution shift, as shown in Fig-
ure 3 that challenges the models’ adaptability.

Figure 3. Lifetime distribution for robustness case.

Table 3 shows that both models experience a significant
increase in RMSE when exposed to this new fault mode,
indicating degraded predictive accuracy. BiLSTM sees a
146.39% increase in RMSE, while the AHSMM shows a
slightly lower decline in performance at 137.47%.

Model RMSE ∆RMSE (%) SD
BiLSTM 82.91 +146.39% 49.67
AHSMM 81.88 +137.47% 51.60

Table 3. Results of prognostic models for robustness case.

Model Cov. (%) ∆Cov. (%) CRPS ∆CRPS (%)
BiLSTM 0.72 -26.53% 14.72 +0.27%
AHSMM 0.82 -15.46% 46.26 +137.35%

Table 4. Results of prognostics models in terms of uncertainty
for robustness case.

Despite the drop in accuracy, the coverage metric in Table 4
indicates that both models still provide reasonably reliable
uncertainty estimates. AHSMM achieves a higher coverage
(0.82 vs. 0.72 for BiLSTM), although both show reduced per-
formance compared to their baselines. This is expected, as the
models are exposed to a fault type not seen during training.

Regarding CRPS, the BiLSTM maintains a low and stable
score (+0.27% change), suggesting its probabilistic predic-
tions remain relatively well-calibrated and sharp despite the
challenging conditions. In contrast, the AHSMM’s CRPS de-
teriorates substantially (+137.35%), indicating less accurate
UQ under the new fault mode.

Figures 4 (shorter lifetime with respect to training) and 5
(longer lifetime with respect to training) visualize the RUL
predictions of both models. Notably, in Figure 5, the BiL-
STM model fails to converge to a RUL of zero. As a su-
pervised model, the BiLSTM struggles with data that di-
verges from the training distribution, leading to unreliable
predictions toward the end of the lifetime—particularly for
engines with longer operational durations than those seen dur-
ing training. This drop in accuracy near the end of life is par-
ticularly concerning for critical applications, where precise
end-of-life prediction is essential.

Figure 4. RUL predictions for engine 92.

On the other hand, AHSMM demonstrates slightly better ro-
bustness in terms of both RMSE and UQ, with more consis-
tent predictions through the lifetime of the engine and higher
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Figure 5. RUL predictions for engine 55.

coverage. Its performance under this distribution shift sug-
gests it may be more suitable for applications that might con-
tain unseen data during online operation.

3.2.4. Interpretability

The AHSMM offers a relatively interpretable approach to
RUL prediction, thanks to its structured design and reliance
on the Weibull distribution, which is commonly used in re-
liability analysis. The scale parameter of the Weibull distri-
bution is dynamically adjusted based on observed transitions,
allowing the model to adapt to real-time degradation behav-
ior. This adaptive mechanism creates a direct and intuitive
link between predictions and observed data.

Figure 6 shows the sojourn time Weibull distributions for hid-
den states 5 and 6 for engine 37, which has a short lifetime
of 170 cycles, making it a left outlier in the overall distribu-
tion (see Figure 1). The adaptive mechanism, depicted by the
dashed lines, shifts the distributions to the left to account for
the shorter time spent in each state.

Figure 6. Sojourn time Weibull distributions for hidden states
5 and 6 for engine 37 RUL prediction.

In addition, the AHSMM provides visual representations of
degradation progression, enhancing transparency. Each hid-
den state corresponds to a degradation level, and transitions

between states can be tracked and interpreted. Figure 7 shows
the sequence of estimated states for engine 37, which can be
used as a diagnostic tool to assess the system’s condition.

Figure 7. Diagnostics of engine 37’s degradation levels based
on hidden state estimates.

In contrast, the BiLSTM model, with 32,9202 trainable pa-
rameters, operates as a black box. While powerful, its pre-
dictions are less interpretable and difficult to trace back to
specific features or time points. However, interpretability can
be partially recovered through post hoc analysis. Figure 8
presents a SHAP-based heatmap of feature importance over
time, averaged across all samples. Sensors 4, 11, and 12
emerge as the most influential, with sensor 11 peaking near
the end of life. Interestingly, the same sensor is used exclu-
sively by the AHSMM due to its high values for prognostics
metrics (i.e., monotonicity, trendability, and prognosability).

Figure 8. SHAP-based heatmap of feature importance over
time.

3.2.5. Feasibility

The feasibility analysis investigates how the number of avail-
able training histories affects the RMSE performance of both
models. To assess this, a progressive reduction approach is
used: in each iteration, five degradation histories are ran-
domly removed from the training set, and both models are
retrained.
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Figure 9 illustrates the results of this experiment. The
AHSMM demonstrates robust performance, maintaining a
relatively stable RMSE until the training set is reduced to just
two histories. In contrast, the BiLSTM model shows greater
sensitivity to the size of the training data. Its performance be-
gins to degrade noticeably when fewer than 14 training his-
tories are available, highlighting its higher data dependency
compared to the AHSMM.

Figure 9. Impact of number of training histories on accuracy
error.

4. CONCLUSION AND FUTURE WORK

This paper analyzes data-driven prognostic models through
four key characteristics: uncertainty, robustness, inter-
pretability, and feasibility. Prognostic models are broadly
categorized as Deep Learning (DL) or stochastic. A case
study using the C-MAPSS dataset compared a probabilistic
BiLSTM (DL) and an AHSMM (stochastic), highlighting
their respective strengths and limitations.

Uncertainty quantification (UQ) remains a major challenge.
Stochastic models capture and report uncertainty effectively
but often yield wide confidence intervals. DL models tend
to be more accurate but often overlook UQ, risking unreli-
able predictions, though some integrate probabilistic frame-
works. This highlights the need to better understand uncer-
tainty sources and data requirements.

Robustness is critical under varying conditions. DL mod-
els show promise through domain adaptation but face chal-
lenges in industrial settings. Stochastic models like AHSMM
adapt better to unseen scenarios. Both performed similarly
on RMSE, but BiLSTM struggled with degradation patterns
absent from training data, especially near end-of-life, crucial
for PHM.

Interpretability is essential in safety-critical domains.
AHSMM offers clear, intuitive degradation representations.
DL models, including BiLSTM, are often black boxes,
though tools like SHAP can partially address this. Balancing
interpretability and performance remains challenging.

Feasibility depends on data availability. Techniques like few-
shot learning and Bayesian inference help address scarcity.
In the case study, AHSMM maintained performance with
just two training histories, while BiLSTM’s performance de-
clined, emphasizing the need for models effective under lim-
ited data.

These differences arise from theoretical foundations.
Stochastic models, based on Markovian assumptions and
explicit probabilistic frameworks, naturally support UQ,
robustness through adaptable degradation modeling, inter-
pretability via state transitions and fewer parameters, and
feasibility with limited data. DL models, as flexible de-
terministic approximators, capture complex nonlinearities
but lack inherent uncertainty and interpretability, typically
requiring larger datasets and methods like Bayesian exten-
sions to improve robustness, since they map monitoring data
directly to RUL rather than modeling degradation.

In summary, no single model excels across all four charac-
teristics. Both DL and stochastic approaches offer valuable
strengths but involve trade-offs among accuracy, uncertainty,
robustness, interpretability, and feasibility.
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