A Lithium-Ion Battery Degradation Model Agnostic to Cell Chemistry with Integrated State-of-Charge and Temperature Dependence

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Bruno Masserano Jorge E. Garcia Bustos Camilo Ramirez Benjamin Brito Schiele Cristobal E. Allendes Ricardo Salas-Espineira Sofia Mancilla Jose Luis Espinoza Aramis Perez Francisco Jaramillo-Montoya Marcos E. Orchard

Abstract

Lithium-ion battery (LIB) lifetime prognosis remains a decisive enabler for safe, economical, and sustainable electrification across mobility and stationary energy sectors. Despite the maturity of this storage technology, the impact of capacity reduction due to battery aging remains a subject of interest to this day. This study presents a degradation model that computes the incremental loss of usable capacity for every equivalent cycle experienced by the battery. The model depends on the State of Charge values and the mean ambient temperature at which the cycle occurred. The methodology generalizes the results of a previous study where an initial degradation model was calibrated on long‑term cycling data at which multiple commercial cells were driven to their end of life under varied state of charge ranges in addition to a chemical analysis of cell's degradation due to different operating temperatures. Unlike traditional calendar-plus-cycling additives or chemistry-specific semi-empirical methods, the proposed model is formulated—and further validated—under the assumption that cells exposed to comparable operating conditions degrade at comparable rates, independent of their electrode chemistry. Consequently, only the data of a single degradation campaign at a given operational mode is needed, which is typically found in the cell's datasheet, eliminating the need for time-consuming aging tests. Validation is performed using a public experimental dataset provided by the University of Stanford dataset. The results show the model's ability to predict the end-of-life within one percent of the reported battery State of Health (SOH), even for an electric vehicle usage profile. By embedding the framework in battery management systems, fleet operators can estimate remaining useful life (RUL) based on historical operational data, optimize battery usage based on less degrading SoC values and cooling systems, schedule preventive maintenance before catastrophic capacity loss, and compare alternative uses without the need for degradation studies. These contributions align with conference themes on prognostics, health management, and data-driven energy system optimization, offering a practical pathway towards longer-lived and better-valued electrified assets.

How to Cite

Masserano, B., Garcia Bustos, J. E., Ramirez, C., Brito Schiele, B., Allendes, C. E., Salas-Espineira, R., Mancilla, S., Espinoza, J. L., Perez, A., Jaramillo-Montoya, F., & Orchard, M. E. (2025). A Lithium-Ion Battery Degradation Model Agnostic to Cell Chemistry with Integrated State-of-Charge and Temperature Dependence. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4373
Abstract 2 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Remaining Useful Life (RUL), Data-driven degradation model, Temperature-dependent degradation, State of Charge-dependent degradation, Lithium-ion battery degradation, State of Health (SOH) prognostics

References
Ahwiadi, M., & Wang, W. (2025, 1). Battery health monitoring and remaining useful life prediction techniques: A review of technologies. Batteries, 11, 31. doi: https://doi.org/10.3390/batteries11010031
Allendes, C., Beltrán, A., García, J. E., Troncoso-Kurtovic, D., Masserano, B., Brito Schiele, B., . . . Rangarajan, S. (2024, nov). Modeling and simulation of thermal effects on electrical behavior in lithium-ion cells. Annual Conference of the PHM Society, 16(1). doi: https://doi.org/10.36001/phmconf.2024.v16i1.4080
Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., & Van den Bossche, P. (2016). Critical review of state of health estimation methods of li-ion batteries for real applications. Renewable and Sustainable Energy Reviews, 56, 572-587. doi: https://doi.org/ 10.1016/j.rser.2015.11.042
Cai, Q., Ji, Q., Chen, X., Wang, T., Li, L., Yuan, Q., . . . jun Cheng, Y. (2024, 10). Comprehensive study of high temperature calendar aging on cylinder li-ion battery. Chemical Engineering Science, 298. doi: https://doi .org/10.1016/j.ces.2024.120355
Chowdhury, N. R., Smith, A. J., Frenander, K., Mikheenkova, A., Lindström, R. W., & Thiringer, T. (2024, 1). Influence of state of charge window on the degradation of tesla lithium-ion battery cells. Journal of Energy Storage, 76, 110001. doi: https://doi.org/10.1016/ j.est.2023.110001
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21-27. doi: https://doi.org/10.1109/TIT.1967 .1053964
Edge, J. S., O’Kane, S., Prosser, R., Kirkaldy, N. D., Patel, A. N., Hales, A., . . . Offer, G. J. (2021, 4). Lithium ion battery degradation: what you need to know (Vol. 23). Royal Society of Chemistry. doi: https://doi.org/10.1039/d1cp00359c
García Bustos, J. E., Baeza, C., Schiele, B. B., Rivera, V., Masserano, B., Orchard, M. E., . . . Perez, A. (2025, 2). A novel data-driven framework for driving range prognostics in electric vehicles. Engineering Applications of Artificial Intelligence, 142, 109925. doi: https://doi.org/10.1016/j.engappai.2024.109925
Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., & Ouyang, M. (2019, 8). A review on the key issues of the lithium ion battery degradation among the whole life cycle (Vol. 1). Elsevier B.V. doi: https://doi.org/10.1016/ j.etran.2019.100005
Hou, J., Yang, M., Wang, D., & Zhang, J. (2020, Feb). Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 °C. Advanced Energy Materials, 10(18). doi: https://doi.org/10.1002/ aenm.201904152
Kim, D. H., Lee, J., Shin, K., Kim, K. B., & Chung, K. Y. (2024, 8). Empirical capacity degradation model for a lithium-ion battery based on various c-rate charging conditions. Journal of Electrochemical Science and Technology, 15, 414-420. doi: https://doi.org/ 10.33961/jecst.2024.00241
Pozzato, G., Allam, A., & Onori, S. (2022, 4). Lithium ion battery aging dataset based on electric vehicle real driving profiles. Data in Brief, 41, 107995. doi: https:// doi.org/10.1016/j.dib.2022.107995
Pérez, A., Quintero, V., Rozas, H., Jaramillo, F., Moreno, R., & Orchard, M. (2017). Modelling the degradation process of lithium-ion batteries when operating at erratic state-of-charge swing ranges. In 2017 4th international conference on control, decision and information technologies (codit) (p. 0860-0865). doi: https://doi.org/10.1109/CoDIT.2017.8102703 Rodríguez-Iturriaga, P., García, V. M.,
Rodríguez-Bolívar, S., Valdés, E. E., Anseán, D., & López-Villanueva, J. A. (2024, 8). A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion. Applied Energy, 367, 123327. doi: https://doi.org/10.1016/j.apenergy.2024.123327
Saxena, S., Hendricks, C., & Pecht, M. (2016, 9). Cycle life testing and modeling of graphite/licoo2 cells under different state of charge ranges. Journal of Power Sources, 327, 394-400. doi: https://doi.org/10.1016/ j.jpowsour.2016.07.057
Saxena, S., Xing, Y., Kwon, D., & Pecht, M. (2019, 5). Accelerated degradation model for c-rate loading of lithium-ion batteries. International Journal of Electrical Power and Energy Systems, 107, 438-445. doi: https://doi.org/10.1016/j.ijepes.2018.12.016
Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., . . . Braatz, R. D. (2019, 3). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4, 383-391. doi: https://doi.org/ 10.1038/s41560-019-0356-8
Tan, S., Shadike, Z., Cai, X., Lin, R., Kludze, A., Borodin, O., . . . Yang, X.-Q. (2023, 12). Review on low temperature electrolytes for lithium-ion and lithium metal batteries. Electrochemical Energy Reviews, 6, 35. doi: https://doi.org/10.1007/s41918-023-00199-1
Vetter, J., Novák, P., Wagner, M., Veit, C., Möller, K.-C., Besenhard, J., . . . Hammouche, A. (2005, 9). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269-281. doi: https://doi.org/10.1016/ j.jpowsour.2005.01.006
Wang, F., Zhai, Z., Zhao, Z., Di, Y., & Chen, X. (2024, 12). Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nature Communications, 15. doi: https://doi.org/10.1038/ s41467-024-48779-z
Xiong, R., Pan, Y., Shen, W., Li, H., & Sun, F. (2020, 10). Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 131, 110048. doi: https://doi.org/10.1016/j .rser.2020.110048
Zhang, G., Wei, X., Han, G., Dai, H., Zhu, J., Wang, X., . . . Ye, J. (2021, 2). Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. Journal of Power Sources, 484. doi: https:// doi.org/10.1016/j.jpowsour.2020.229312
Zhou, C., Qian, K., Allan, M., & Zhou, W. (2011). Modeling of the cost of ev battery wear due to v2g application in power systems. IEEE Transactions on Energy Conversion, 26(4), 1041-1050. doi: https://doi.org/10.1109/ TEC.2011.2159977
Section
Technical Research Papers

Most read articles by the same author(s)

<< < 1 2