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ABSTRACT

Accurately forecasting lithium-ion battery degradation is es-
sential for safe and cost-effective electrification. This work
presents a cycle-wise degradation model that estimates capac-
ity loss based on usage conditions, using only data from a sin-
gle reference degradation campaign. The model characterizes
each equivalent cycle by features extracted from the battery’s
State of Charge (SoC) profile; specifically, the SoC Range
(SR) and Average Swing Range (ASR), and the average am-
bient temperature. A Similarity-Based Model maps SR and
ASR to a normalized expected cycle life, which is further
adjusted using a temperature correction factor derived from
empirical studies. Unlike approaches requiring chemistry-
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specific testing, this method assumes, and validates, that cells
under similar conditions degrade similarly, allowing general-
ization across battery types. The degradation rate also incor-
porates uncertainty through Kernel Density Estimation of ob-
served cycle-to-cycle variations in supervised datasets. Vali-
dation was performed using a public lithium-ion degradation
dataset, where the model predicted the State of Health (SoH)
trajectory of a test cell with a Mean Absolute Error (MAE)
of 0.27% of SoH percentage. Because the model uses only
operational features readily measured in battery systems, it
is practical for integration into battery management systems
for real-time SoH tracking, predictive maintenance, and us-
age optimization. Future work will expand the feature set and
refine uncertainty quantification to further improve predictive
robustness.
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1. INTRODUCTION

Accurately forecasting the health and remaining life of
lithium-ion batteries is essential for enabling more sustain-
able, cost-effective, and safe electrification solutions. This
capability is particularly valuable across a wide range of ap-
plications, from electric vehicles and drones to stationary
storage systems, where batteries are central to performance
and lifetime costs. A reliable model for State of Health
(SoH) estimation based on real usage conditions improves
decision making, allowing the identification of optimal usage
profiles (Garcia Bustos et al., 2025), improving the system’s
safety, and giving more certainty for replacement strategies
(Ahwiadi & Wang, 2025).

Lithium-ion batteries are electrochemical systems that con-
tinuously degrade over time, far from linear; multiple factors
influence this effect, including charge/discharge power rates,
idle time, operating temperature, and the State of Charge
(SoC) values experienced by the battery (Xiong, Pan, Shen,
Li, & Sun, 2020; Vetter et al., 2005). For this study, the im-
pact of operating SoC ranges and ambient temperatures on
the degradation rate of batteries is going to be analyzed, along
with the development of a cycle-wise degradation model de-
pendent on both of these factors.

The variational effect operating SoC values have on degra-
dation rate is a subject studied before; literature has shown
that different SoC ranges affect the battery degradation rate
differently (Pérez et al., 2017), also, that operation at high
or lower SoC values can asymmetrically degrade the bat-
tery (Chowdhury et al., 2024). This introduces the question
of what the optimal SoC range is for a given application,
or which battery would be ideal to choose when cycle life
preservation is of importance in decision-making.

At the same time, batteries have a specific temperature win-
dow at which performance is nominal. Studies have shown
how operating at extreme temperatures can temporarily af-
fect available capacity and also accelerate battery degrada-
tion (Tan et al., 2023). The relation between operating SoC
and temperature becomes even more complex, considering
that as the battery is used, heat is generated and transmitted
to the ambient and the battery itself, which directly impacts
the electrical behavior of the system (Rodriguez-Iturriaga et
al., 2024), the changes in electrical performance then affect
how heat is generated, making both SoC and temperature in-
trinsically linked. This is a main area of interest in current lit-
erature, and integrating these effects into predictive models is
key to enabling more informed electro-thermal management,
duty-cycle design, and aging-aware scheduling.

Over the past decades, two main approaches have emerged
for modeling lithium-ion battery degradation: physics-based
models and data-driven models, each with distinct advantages
and limitations.

Physics-based models aim to capture the underlying electro-
chemical mechanisms responsible for capacity fade and inter-
nal resistance growth over time. These models often consider
phenomena such as the formation of the Solid Electrolyte
Interphase (SEI), lithium plating, active material loss, and
electrode degradation (Edge et al., 2021). Because they are
grounded in first principles, physics-based models provide
interpretability and, in some cases, extrapolation capabilities
beyond the operating range of the calibration data. However,
they typically require detailed knowledge of the cell’s inter-
nal structure and chemistry, as well as access to parameters
that are difficult to measure directly, such as reaction kinetics
or electrolyte composition (Han et al., 2019).

In contrast, data-driven models infer relationships between
operational variables (e.g., current, SoC, temperature) and
battery health indicators by analyzing experimental data.
These models range from regressions (Severson et al., 2019)
and survival analysis to machine learning techniques such as
neural networks (Wang, Zhai, Zhao, Di, & Chen, 2024) and
similarity-based methods. Their main advantage lies in their
flexibility and ease of deployment, as they require no prior
knowledge of internal battery chemistry and can be adapted
to different cell types, provided representative data is avail-
able. However, their extrapolation ability is generally limited
to the range covered in the training dataset, and they tend
to offer lower interpretability compared to physics-based ap-
proaches.

In recent literature, increasing attention has been given to in-
corporating operational variables such as temperature, SoC,
and current into lithium-ion battery degradation models.
These factors are known to have significant and often nonlin-
ear effects on aging behavior. High temperatures can lead to
decay of capacity and an increase in internal resistance (Cai
et al., 2024). In low-temperature conditions, electrochem-
ical reactions slow down, internal resistance increases, and
lithium plating can occur within the cell, all of which con-
tribute to capacity fade and safety risk (Zhang et al., 2021).
Similarly, the SoC range and resting SoC influence stress on
electrode materials, with shallow cycles and mid-range SoC
levels generally reducing degradation (Saxena, Hendricks, &
Pecht, 2016). Current levels, particularly high C-rates dur-
ing charging or discharging, can exacerbate degradation by
increasing internal heating and mechanical strain within the
electrodes (Saxena, Xing, Kwon, & Pecht, 2019) (Kim, Lee,
Shin, Kim, & Chung, 2024).

Despite the industrial relevance of degradation modeling,
high-quality degradation data remains scarce; full cycling
experiments under controlled conditions can take months to
complete for a single cell. As aresult, there is a strong need to
develop models that can extrapolate from limited datasets, us-
ing representative features of usage profiles to estimate degra-
dation across different battery types and applications.
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Building on the hypothesis that cells operated under compa-
rable conditions age in comparable ways, we present a cycle-
wise, similarity-based degradation model that needs only a
single reference degradation curve to generalize to arbitrary
SoC and temperature profiles. Each equivalent cycle is sum-
marized by three readily measured features, the SoC range
(SR), the Average Swing Range (ASR), and the mean am-
bient temperature, then matched, via a k-nearest-neighbour
search in (SR, ASR) space, to a normalized cycle life de-
rived from the reference data. This estimate is scaled by an
empirically fitted temperature factor derived from the work
of (Zhou, Qian, Allan, & Zhou, 2011) and blended with
a stochastic term learned from repeated aging campaigns,
yielding an interpretable degradation rate that can update bat-
tery SoH after every cycle without recourse to chemistry-
specific parameters.

The contributions of this work are threefold: (1) we formalize
the notion of equivalent cycles as a common operational unit,
enabling consistent SoH updates across variable usage pro-
files. (2) We define a degradation model that operates every
equivalent cycle using SoC and temperature features; and (3)
we generalize this model for any lithium-ion cell using only a
single degradation curve as a reference, usually found in the
battery’s datasheet.

The model is validated using publicly available cycling data
from (Pozzato, Allam, & Onori, 2022), demonstrating its ef-
fectiveness in estimating SoH over time under realistic usage
conditions. Ultimately, this approach supports applications in
predictive maintenance, fleet health monitoring, and thermal-
aware battery system design.

2. THEORETICAL BACKGROUND
2.1. Similarity-Based Degradation Model

Similarity-based models (SBMs) predict an output by locat-
ing past observations that lie close to the query point in a
suitable feature space and combining their recorded responses
(Cover & Hart, 1967). They require little or no global param-
eter fitting, making them suitable whenever data are scarce or
heterogeneous. In battery research, SBMs have been adopted
to translate a small set of aging experiments into health esti-
mates for a wide range of duty cycles, thereby reducing the
need for chemistry-specific testing (Berecibar et al., 2016).
We build on this idea by encoding every equivalent cycle (The
formal definition appears in Section 3) with two physically
interpretable descriptors: the SoC range,

SRy, = max(Sy) — min(Sg), (D

and the average SoC,

1 N
ASRy =5 i )
i=1

The pair (SRy, ASRy,) defines a point in a two-dimensional
similarity space.

A single aging campaign conducted under different SoC win-
dows produces a reference table.

A= {(xD M, xO = [SRW ASRY],  (3)

where each n(?) is the measured capacity-retention factor. To
compare cycles of unequal depth of discharge, every n(?) is
normalised to a full 100 %-depth equivalent cycle:

i SR /100
D = (), 4

Given a new point x;, = [SRy, ASRy], the k nearest neigh-
bours in A are found with Euclidean distance. The degrada-
tion factor is the distance-weighted mean

> winy
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where ¢ avoids division by zero.

This similarity approach needs only one degradation cam-
paign to build A, which remains agnostic to electrode
chemistry, and is light enough for real-time implementation
(Severson et al., 2019).

2.2. Degradation and temperature considerations

As Allendes et al. (2024) shows, there is a bidirectional re-
lation between temperature and the electrical variables of a
cell, both of which affect degradation rates through differ-
ent mechanisms. On the one hand, higher temperatures tem-
porarily increase extractable capacity, altering the SoC dy-
namics for the same usage profile; as a result, degradation
differs across temperatures. On the other hand, electrical cy-
cling of the cell generates internal heat due to ohmic and en-
tropic effects, leading to temperature increases which have
been shown to significantly accelerate the degradation pro-
cess (Hou, Yang, Wang, & Zhang, 2020). These two effects
lead to the conclusion that, in order to have a model that ac-
curately describes the degradation process, it is necessary to
include the considerations of temperature.

While the aforementioned work proposes an electrothermal
model and acknowledges the need to consider degradation, it
does not show how temperature affects the degradation rate
of a cell. Literature establishes a link between degradation
and temperature, specifically showing in Zhou et al. (2011,
Fig. 6) how the number of available cycles changes as tem-
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perature varies. In that article, this is explained through the
Arrhenius equation, which states that the chemical reaction
rate of a battery ® depends on temperature through

E (®)[ 1 1
o = q)refexp(‘é) |:T . - T:|)7 (6)

where Tt is the reference temperature, 7" is the ambient tem-
perature, R = 8.3144J K~ mol~! is the gas constant, and
E,(®) is the activation energy. These changes of the chem-
ical reaction rate then have an effect on the resistance of the
film grown on the electrode, which the authors argue is pro-
portional to the changes in capacity, therefore forming a con-
nection between temperature and available cycles.

3. METHODOLOGY

The proposed model estimates the degradation of lithium-ion
batteries by computing a degradation rate after each com-
pleted duty cycle. This rate, denoted 7, reflects the irre-
versible capacity loss associated with the usage conditions
observed during the k-th cycle, and is used to update the bat-
tery’s SoH, as shown in the practical application of the degra-
dation model in Figure 1.

Degradation

model Mk + w

(SRk,ASRk,Tk)

Coulomb Capacny Qk+1
[ SoC Profile Counting Update SOH1 =
sdt
50C;,, = SOC; + Q— o, Qe =Qulm+w)
Figure 1. Application-level structure of the degradation

model. The SoC profile is generated from a duty cycle, and
the degradation rate 7 + w is applied to update battery ca-
pacity and SoH.

The starting point of the methodology is the occurrence of
a duty cycle, defined as an operational period during which
the battery is actively used (e.g., powering a load, perform-
ing vehicle maneuvers, among others). As current is drawn
from the battery over time, the SoC decreases according to
Equation 7. Through Coulomb counting, the battery’s SoC
profile can be reconstructed from its current input, resulting
in a time-resolved trajectory of SoC values.

SOCJ_H = SOO + Qidt + gj (7)

Once enough energy has been discharged to match the current
usable capacity of the battery (Ji, an equivalent cycle is con-
sidered complete. At this point, three features are extracted:
two related to the SoC values from the coulomb counting and
the average ambient temperature during the cycle: the SoC
Range (SRy), defined as the difference between the maxi-

mum and minimum SoC values; the Average SoC (ASRy,),
computed as the mean SoC throughout the cycle duration; and
the Average Ambient Temperature (T'}), which corresponds
to the average environmental temperature experienced during
the cycle.

These features form the input to the degradation model, then
the degradation rate 1 is computed in two stages, as shown
in Figure 2. First, the SR and ASR features are used in
a Similarity-Based Model (SBM) to estimate the expected
number of cycles to End-of-Life (EoL) (INy) under the cur-
rent usage conditions, relative to a nominal full-range profile.
This value is then corrected using a temperature-based com-
pensation factor y;(7T';,) derived from work in (Zhou et al.,
2011), yielding an adjusted equivalent cycle life N’, from
which the degradation rate 7, is calculated.

Additionally, a stochastic additive noise w is incorporated
into the degradation rate estimate to account for the inher-
ent variability in the aging process and unmodeled phenom-
ena that may affect capacity fade. The noise is modeled as
a non-parametric distribution empirically derived from re-
peated degradation observations under identical cycling con-
ditions from (Pozzato et al., 2022), ensuring the model can
reproduce realistic dispersion in SoH trajectories across sim-
ilar batteries.

Nominal
(SR_k,ASR_k) Cycle-Life Nj
imilari pi(SRy, ASRy,) l
Similarity Based N, = pr - Ng

Model

Temperature
Polyfit

Degradation
rate

Figure 2. Internal structure of the degradation model. The
base degradation rate is computed using a similarity-based
method and corrected for ambient temperature.

3.1. Standardization on battery cycle definition

A critical aspect in modeling lithium-ion battery degradation
is how to define a “cycle”. Traditional definitions based on
full charge-discharge cycles typically from 100% to 0% SoC
fail to reflect the diversity of usage patterns encountered in
real-world applications. In electric vehicles, drones, and en-
ergy storage systems, batteries are often used over partial SoC
windows, experience irregular discharges, or are cycled un-
der dynamic load conditions. This makes the use of a rigid
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full-cycle definition inadequate for generalizable degradation
modeling.

To resolve this, we define the concept of an equivalent cy-
cle, which provides a standardized unit of energy through-
put independent of the shape or structure of the individual
SoC profile. An equivalent cycle is defined as: A cumula-
tive discharge of energy equal to the current full capacity of
the battery, regardless of the number or shape of intermediate
subcycles that make up the discharge.

In this framework, the model continuously accumulates the
discharged energy from the battery. Once this accumulation
equals one full discharge of the current SoH-adjusted capac-
ity, an equivalent cycle is considered complete. This approach
allows the degradation model to operate consistently across
arbitrary usage conditions while preserving physical inter-
pretability.

By design, equivalent cycles decouple the model from as-
sumptions about cycle symmetry or structure. For instance, a
full 100%—-0% discharge corresponds to exactly one equiva-
lent cycle, whereas four 25%—0% discharges would also ac-
cumulate to one equivalent cycle. This makes the equivalent
cycle an ideal abstraction for usage-based degradation model-
ing, enabling accurate SoH updates on a per-cycle basis, even
when the underlying SoC trajectory is highly irregular.

3.2. SoC-based degradation rate

Following the methodology proposed in (Pérez et al., 2017),
the k-th equivalent cycle is characterized using the (S Ry) and
the (ASRy). These features serve as a compact representa-
tion of the electrochemical stress imposed on the battery dur-
ing that cycle, and for this work, the assumption that these
features are sufficient to characterize the entire SoC profile
is made. Additional features related to the SoC profile are
proposed for future work in this matter.

Here, the SoC-based cycle life N, of the battery for the given
(SRy, ASRy,) pair is computed following equation 8.

Ny = p(SRy, ASR}) - Ny ¢))

Where Ny corresponds to a baseline cycle-life of the battery
which can be obtained from the datasheet or a single degrada-
tion curve from experimental data on the battery and the term
p(SRy, ASR}) to a factor derived from the SBM, which rep-
resents the proportion of a base cycle life at SR = 100 ad-
justed to the (S Ry) and (AS Ry) of the current cycle.

The factor p is computed via k-Nearest Neighbors approach,
where each point in the space is defined from an experimen-
tal database in which cells were cycled within fixed SoC win-

dows until their capacity fell to 80% (the EoL criterion), giv-
ing the proportions of the base cycle life shown in Table 1.

Table 1. Normalized degradation factors for each SR.

SR Life Cycle Percent

100-0 1.00000
100-25 0.78750
75-0 1.12525
100-50 0.43750
75-25 0.68750
50-0 1.03125
100-75 0.40625
75-50 0.29700
62.5-37.5 0.28125
50-25 0.62500
25-0 1.00000

The main difference in contribution from the original SBM
formulation is that each reference point in the table was asso-
ciated with a relative degradation factor, designed to multiply
a base degradation rate defined by the nominal cycle life in
the battery’s datasheet. In contrast, our approach uses a nor-
malized representation: each reference point corresponds to
the fraction of total cycle life (i.e., number of equivalent cy-
cles to EoL) associated with that SoC condition, relative to a
base case of full-range cycling (SR = 100). This allows for
extrapolating the reference points to be applied to batteries
with any arbitrary cycle life, regardless of their chemistry, as
long as they remain lithium-ion batteries. These values are
presented in Table 1.

As a new equivalent cycle occurs with arbitrary SR and ASR
values, the model performs a weighted interpolation using the
three nearest neighbors in the feature space. This interpola-
tion yields a new life expectancy value Ny, defined as the
estimated number of equivalent cycles the battery could sus-
tain under the current conditions until its EoL.

This formulation enables the degradation model to flexibly
adapt to diverse usage conditions, even those not explicitly
covered in the original dataset. By expressing the degrada-
tion rate in terms of a normalized equivalent cycle life, the
model preserves physical interpretability and compatibility
across different cell types and duty cycles.

3.3. Temperature-based degradation rate

In addition to SoC-related stressors, the ambient temperature
at which a battery operates plays a significant role in its long-
term degradation. Elevated temperatures accelerate electro-
chemical side reactions, increase internal resistance, and pro-
mote the growth of passivation layers such as the SEI. This is
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also the case for lower temperatures, where lithium dendrites
can form, all of which contribute to a faster reduction in us-
able capacity and a higher risk of thermal runaway (Edge et
al., 2021).

To account for these thermal effects, the model incorporates a
temperature-dependent correction factor, denoted as i (Tk),
which scales the equivalent cycle life estimated by the SBM
Ny.. This factor is defined such that:

Nj. = 7 (Tk) - N, )

where Ny, is the uncorrected number of equivalent cycles to
EoL estimated by the SBM, and N, is the adjusted value af-
ter accounting for the ambient temperature T';, experienced
during the cycle.

The temperature compensation factor (T ) is derived from
the experimental results reported by Zhou et al. (2011), which
show a strong nonlinear dependence of cycle life on ambient
temperature. In that study, a lithium-ion cell with a nominal
life of 2000 cycles at 25°C was observed to degrade more
rapidly as the temperature increased, with the cycle life re-
duced by more than 50% at 55°C, the same was observed for
lower temperatures. We extracted this curve and fitted a poly-
nomial approximation to it, producing a continuous mapping
from average temperature to a normalized cycle life factor
ranging between 0 and 1, so that the resulting compensation
curve can be applied to any cell regardless of its nominal cy-
cle life.

The factor . (T';,) thus represents the proportion of total life
that remains at a given average ambient temperature, relative
to nominal conditions (typically around 25°C). This compen-
sation is integrated into the degradation model by modifying
the life expectancy value passed to the SoC-based degrada-
tion rate formula:

SoHgor /NG
— (2o-Eon 10
Nk (SOHBOL) ) ( )

where N} = 74 (T%) - Ny corresponds to the temperature-
adjusted cycle life, SoHgo1, the SoH defined at the EOL of
the battery after the N, cycles happen and SoHpoy, the SoH
defined at the beginning of life (BoL) of the battery. This
temperature-based adjustment ensures that the model cap-
tures the acceleration of degradation under both high and low
temperature conditions, while preserving compatibility with
the normalized framework of the SBM. As a result, the degra-
dation rate 7, for each equivalent cycle reflects both SoC pro-
file features and the thermal stress encountered during opera-
tion.

3.4. Uncertainty characterization of the degradation rate

While the proposed degradation model computes a determin-
istic degradation rate 7 based on the SoC profile and average
ambient temperature of each equivalent cycle, experimen-
tal evidence shows that degradation is inherently stochastic
(Pozzato et al., 2022). Even under tightly controlled cycling
protocols, lithium-ion batteries exhibit variability in aging be-
havior due to internal material heterogeneity, measurement
noise, manufacturing inconsistencies, and other unmodeled
effects.

To quantify this uncertainty, we analyzed a supervised degra-
dation dataset in which multiple battery cells were cycled un-
der the exact same SoC profile until reaching a predefined
EoL condition. The SoH of each cell was periodically mea-
sured every few repeated cycles, enabling the empirical cal-
culation of a degradation rate for each observation:

1/N;
= (o) (an
J SOHBOL

Where SoH; correspond to the SoH value reported by the
dataset every few repeated equivalent cycles and N 4 the accu-
mulated equivalent cycles experienced by each cell until the
j-th measure.

In theory, since all cells were subjected to the same repeating
duty cycle, the degradation rate n; should remain constant
across cycles. However, the observed values 7); in Figure 3
displayed significant variation, revealing an underlying dis-
tribution of degradation outcomes even under identical con-
ditions.

—— KDE Approximation
1000+ Data
Sampled Distribution

8001

600

Density

400

200+

0 T T 7 ¥ T
0.980 0.985 0.990 0.995 1.000 1.005 1.010
Degradation Rate Value

Figure 3. Histogram of observed 7); values from the degrada-
tion dataset (Pozzato et al., 2022).

To characterize this variability, we applied a Kernel Density
Estimation (KDE) technique to the empirical distribution of
observed 7); values. The KDE yields a smooth, continuous
estimate of the probability density function (PDF) of degra-
dation rates for a fixed cycle type. From this distribution, the
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standard deviation o, was extracted to represent the intrinsic
uncertainty in the degradation process.

This uncertainty was incorporated into the final degradation
model by treating the degradation rate 7y, calculated by the
model as a random variable with an additive stochastic term:

e =n,+w,  w~KDE, (12)

where 7, is the deterministic degradation rate obtained from
SoC and temperature features (as described in Sections 3.2
and 3.3), and w is a stochastic term derived from the KDE.

This formulation allows the model to not only estimate the ex-
pected capacity loss per equivalent cycle but also reflect the
range of possible deviations due to factors not captured ex-
plicitly by the input features. As such, the uncertainty-aware
model provides a more realistic framework for applications
in prognostics and risk-informed battery management.

4. CASE STUDY
4.1. Degradation dataset description

To validate the performance of the proposed model using em-
pirical data, both for training and validation phases, the degra-
dation dataset in (Pozzato et al., 2022) provides degradation
data for various INR21700-M50T lithium-ion cells with a
nominal capacity of 4,850 mAh identified by a code name
XY (X being a letter and Y a number). The cells underwent
cycling from a fully healthy state down to approximately 91%
SoH. The operational cycle implemented for degradation test-
ing is outlined in Table 2.

Table 2. Degradation dataset operational cycle

Step Action Termination Condition
1 CC Charge at variable C-  Voltage reaches 4 V
Rate
CV Charge Current below 50 mA

3 CC Charge at C/4

4 CV Charge followed by
30-min rest

5 CC Discharge at C/4

Voltage reaches 4.2 V
Current below 50 mA

20 % capacity discharged
(80 % SoC)

60 % capacity discharged
(20 % SoC)

6 UDDS Discharge

The dataset specifically comprises lithium-ion cells cycled
under controlled laboratory conditions, characterized by a
constant temperature environment of 25°C. Each cycle in-
cludes constant current-constant voltage (CCCV) charging
and specific discharge protocols. The discharge phase in-

volves an initial constant current phase down to 80% SoC,
followed by a scaled version of the Urban Dynamometer
Driving Schedule (UDDS) to simulate real-world urban driv-
ing scenarios, continuing down to 20% SoC. The CCCV
charging stage varies in current rates among cells, allowing
analysis across diverse charging conditions.

Specifically, for validating this particular model, the cycling
data of cell W9, the identifier for one of the cells, from
the original dataset, was initially utilized to parameterize the
model. Critical variables of interest included the number
of operational cycles executed and the recorded SoH values
throughout the degradation process under these defined oper-
ational conditions. Additionally, Incremental Capacity Anal-
ysis (ICA) was performed periodically, providing accurate
ground-truth capacity measurements, facilitating the interpo-
lation of capacity values for each discharge cycle. Although
it is worth noting, from Figure 4, that some ground truth val-
ues between 100 and 200 equivalent cycles of the cells used
in this case study are missing due to problems with the exper-
iment process.

4.2. Results

After defining the model parameters with cell W9 (training
cell), we evaluated performance using cell W10 (validation).
The validation process was structured in two phases. First,
one of the cells in the dataset was selected to calibrate the
degradation model. This involved extracting the reference
degradation rates used in the SBM, estimating the tempera-
ture compensation curve from ambient data, and computing
the uncertainty distribution of 73 based on repeated cyclic
SoH measurements. This battery serves as the reference cell
and provides all necessary degradation parameters to simulate
behavior under different conditions.

In the second phase, a different cell from the dataset was used
to evaluate the model’s predictive capabilities. The time se-
ries of current measurements for this cell was processed using
Coulomb counting to reconstruct the SoC profile. As energy
was discharged, the simulation tracked the cumulative capac-
ity loss. Every time an equivalent cycle was completed, the
SoC profile and ambient temperature during that cycle were
used to compute the degradation rate 7y, incorporating both
the SBM estimate and the temperature-based correction.

The SoH was updated iteratively after each equivalent cycle,
following:

SoHg+1 = (mx + w) - SoHy, (13)

where w ~ K DE represents the modeled uncertainty ex-
tracted from the reference cell’s observed degradation vari-
ability. The complete degradation curve of the dataset was
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calculated repeatedly with Monte Carlo simulations to char-
acterize the uncertainty of the aging process. Figure 4 shows
the comparison between the simulated SoH trajectories and
the experimentally measured SoH of the validation cell, ob-
taining a MAE of 0.0027, equivalent to approximately 0.25%
SoH error. The results demonstrate that the model is capable
of accurately reproducing the degradation trend using only
input features derived from operational data (SoC profile and
ambient temperature), without requiring multiple full-cycle
tests or chemistry-specific models. The predicted EoL point
closely matches the actual EoL within a small error margin.
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Figure 4. Comparison of predicted SoH from the degradation
model vs. measured SoH of the test cell from the degradation
dataset.

This validation confirms the model’s suitability for practical
applications, such as health-aware battery management, us-
age optimization, and predictive maintenance. Furthermore,
the generalizability of the methodology enables its deploy-
ment across different battery chemistries and usage profiles,
as long as one representative degradation case is available for
calibration.

5. CONCLUSION AND FUTURE WORK

This paper presented an interpretable and generalizable
degradation model for lithium-ion batteries, capable of esti-
mating capacity loss after each equivalent cycle based on the
operating conditions of the battery. By using three simple
but informative features from the SoC profile alongside the
ambient temperature, the model effectively captures the main
drivers of degradation without requiring detailed information
about cell chemistry or internal structure.

A key innovation in this work is the use of a normalized SBM,
which interprets each SoC condition in terms of its relative
cycle life fraction, rather than applying absolute degradation
factors. This allows the model to be calibrated from a single
degradation dataset and then applied to different usage pro-
files and battery types, provided they share similar lithium-
ion chemistries. The inclusion of a temperature correction
factor, derived from empirical degradation trends, enhances

the model’s sensitivity to thermal effects, while the incorpo-
ration of stochastic uncertainty through kernel density estima-
tion acknowledges the real-world variability of battery aging.
The predicted EoL point showed a MAE of approximately
0.25%, confirming the model’s accuracy and practical utility.

Because the model relies only on features that can be derived
from current and temperature measurements commonly avail-
able in Battery Management Systems, it can be seamlessly
integrated into existing frameworks for SoH estimation, Re-
maining Useful Life (RUL) prediction, and health-aware en-
ergy management. These characteristics make the approach
especially attractive for fleet-level optimization, predictive
maintenance, and long-term reliability assessment.

Future work will focus on extending the model by incorpo-
rating additional features beyond SR and ASR, such as cur-
rent magnitude, rest times, and voltage windows, which are
known to influence degradation. Furthermore, we aim to ex-
plore uncertainty quantification more rigorously, including
additional degradation datasets for the training process and
the use of Bayesian or probabilistic machine learning tech-
niques.
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