EV-sim Urban Traffic and Battery Dynamics Simulator for Degradation-Prognostics and Range-Aware Decision-Making for Electric-Vehicle Operations

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 26, 2025
Jorge E. Garcia Bustos Benjamin Brito Schiele Bruno Masserano Cristobal E. Allendes Ricardo Salas-Espineira Fernando Oropeza Suarez Catalina Platz-Gamboa Lukas Gleisner J. Diego Troncoso-Kurtovic Francisco Jaramillo-Montoya Heraldo Rozas Marcos E. Orchard

Abstract

Existing open-source traffic tools accurately reproduce driver behavior and congestion for conventional internal-combustion vehicles. However, in the case of electric vehicles (EVs), they often fail to incorporate critical electrical variables, such as battery voltage, power demand, and State-of-Health, which limits their applicability in operational planning and decision-making. This paper introduces a simulation platform tailored for EVs that bridges the gap between traditional transportation models and the needs of the PHM community in electromobility. The proposed platform combines power and energy consumption profiles derived from Gaussian Mixture Models with physics-based representations of battery behavior. Model parameters are calibrated using a publicly available dataset collected in Ann Arbor, Michigan. Each trip is partitioned into segments based on abrupt changes in speed, ensuring uniform operating conditions within segments and enhancing model transferability across routes. The platform simulates vehicle speed, electrical power demand, State-of-Charge (SoC), terminal voltage, and incremental capacity loss at each simulation step. Battery degradation is estimated through an empirical model fitted to long-term cycling data. A case study demonstrates the simulator’s ability to compare route alternatives between a shared origin and destination. Results show that the shortest path is not always the most energy-efficient nor the least degrading, highlighting the value of health-aware routing. The platform will be publicly released to enable reproducible testing of SoC estimation, range prediction, and degradation forecasting without requiring extensive instrumentation or prolonged field testing.

How to Cite

Garcia Bustos, J. E., Brito Schiele, B., Masserano, B., Allendes, C. E., Salas-Espineira, . R., Oropeza Suarez, . F., Platz-Gamboa, C., Gleisner J., L., Troncoso-Kurtovic , . D., Jaramillo-Montoya, F., Rozas, H., & Orchard, M. E. (2025). EV-sim: Urban Traffic and Battery Dynamics Simulator for Degradation-Prognostics and Range-Aware Decision-Making for Electric-Vehicle Operations. Annual Conference of the PHM Society, 17(1). https://doi.org/10.36001/phmconf.2025.v17i1.4370
Abstract 2 | PDF Downloads 0

##plugins.themes.bootstrap3.article.details##

Keywords

Electric vehicles, Battery degradation prognostics, Simulation platform, Battery dynamics, Driving range estimation, Decision-support systems, Gaussian Mixture Models

References
Allendes, C., Beltrán, A., García, J. E., Troncoso-Kurtovic, D., Masserano, B., Brito Schiele, B., … Rangarajan, S. (2024, November). Modeling and simulation of thermal effects on electrical behavior in lithium-ion cells. Annual Conference of the PHM Society, 16(1). doi: https://doi.org/10.36001/phmconf.2024.v16i1.4080
Amouroux, E., Chu, T.-Q., Boucher, A., & Drogoul, A. (2009). Gama: An environment for implementing and running spatially explicit multi-agent simulations. In Agent computing and multi-agent systems (p. 359–371). Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-01639-4_32
Bennett, J. (2010). OpenStreetMap. Packt Publishing Ltd.
Díaz, C., Quintero, V., Pérez, A., Jaramillo, F., Burgos-Mellado, C., Rozas, H., … Cárdenas, R. (2020). Particle-filtering-based prognostics for the state of maximum power available in lithium-ion batteries at electromobility applications. IEEE Transactions on Vehicular Technology, 69(7), 7187–7200. doi: https://doi.org/10.1109/TVT.2020.2993949
Futalef, J.-P., Muñoz-Carpintero, D., Rozas, H., & Orchard, M. E. (2023). An online decision-making strategy for routing of electric vehicle fleets. Information Sciences, 625, 715–737.
Gao, X., Li, R., Offer, G. J., & Wang, H. (2024). Mapping safety transitions as batteries degrade: A model-based analysis towards full-lifespan battery safety management. arXiv. doi: https://doi.org/10.48550/arXiv.2408.16604
García Bustos, J. E., Baeza, C., Schiele, B. B., Rivera, V., Masserano, B., Orchard, M. E., … Perez, A. (2025, 2). A novel data-driven framework for driving range prognostics in electric vehicles. Engineering Applications of Artificial Intelligence, 142, 109925. doi: https://doi.org/10.1016/j.engappai.2024.109925
Hou, J., Yang, M., Wang, D., & Zhang, J. (2020, February). Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Advanced Energy Materials, 10(18). doi: https://doi.org/10.1002/aenm.201904152
Hu, X., Xu, L., Lin, X., & Pecht, M. (2020, February). Battery lifetime prognostics. Joule, 4(2), 310–346. doi: https://doi.org/10.1016/j.joule.2019.11.018
International Energy Agency. (2025). Global EV Outlook 2025. Paris. Retrieved from https://www.iea.org/reports/global-ev-outlook-2025 (Licence: CC BY 4.0).
McLachlan, G. J., & Krishnan, T. (2008). The EM Algorithm and Extensions. John Wiley & Sons.
Oh, G., Leblanc, D. J., & Peng, H. (2022). Vehicle energy dataset (VED), a large-scale dataset for vehicle energy consumption research. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3302–3312. doi: https://doi.org/10.1109/TITS.2020.3035596
Pola, D. A., Navarrete, H. F., Orchard, M. E., Rabié, R. S., Cerda, M. A., Olivares, B. E., … Pérez, A. (2015). Particle-Filtering-Based Discharge Time Prognosis for Lithium-Ion Batteries With a Statistical Characterization of Use Profiles. IEEE Transactions on Reliability, 64(2), 710–720. doi: https://doi.org/10.1109/TR.2014.2385069
Pérez, A., Quintero, V., Rozas, H., Jaramillo, F., Moreno, R., & Orchard, M. (2017). Modelling the degradation process of lithium-ion batteries when operating at erratic state-of-charge swing ranges. In 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT) (p. 0860-0865). doi: https://doi.org/10.1109/CoDIT.2017.8102703
Rahman, T., & Alharbi, T. (2024, June). Exploring lithium-ion battery degradation: A concise review of critical factors, impacts, data-driven degradation estimation techniques, and sustainable directions for energy storage systems. Batteries, 10(7), 220. doi: https://doi.org/10.3390/batteries10070220
Reynolds, D. (2015). Gaussian mixture models. In Encyclopedia of Biometrics (pp. 827–832). Springer.
Spitthoff, L., Shearing, P. R., & Burheim, O. S. (2021). Temperature, ageing and thermal management of lithium-ion batteries. Energies, 14(5). doi: https://doi.org/10.3390/en14051248
World Weather Online. (2025). World Weather Online API documentation. https://www.worldweatheronline.com/developer. (Accessed: 25 Jun 2025).
Yeon, H., Eom, T., Jang, K., & Yeo, J. (2023, March). DTUMOS, digital twin for large-scale urban mobility operating system. Scientific Reports, 13(1). doi: https://doi.org/10.1038/s41598-023-32326-9
Zhou, C., Qian, K., Allan, M., & Zhou, W. (2011). Modeling of the cost of EV battery wear due to V2G application in power systems. IEEE Transactions on Energy Conversion, 26(4), 1041–1050. doi: https://doi.org/10.1109/TEC.2011.2159977
Section
Technical Research Papers

Most read articles by the same author(s)