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ABSTRACT

Existing open-source traffic tools accurately reproduce
driver behavior and congestion for conventional internal-
combustion vehicles. However, in the case of electric vehi-
cles (EVs), they often fail to incorporate critical electrical
variables, such as battery voltage, power demand, and State-
of-Health, which limits their applicability in operational
planning and decision-making. This paper introduces a simu-
lation platform tailored for EVs that bridges the gap between
traditional transportation models and the needs of the PHM
community in electromobility. The proposed platform com-
bines power and energy consumption profiles derived from
Gaussian Mixture Models with physics-based representations
of battery behavior. Model parameters are calibrated using
a publicly available dataset collected in Ann Arbor, Michi-
gan. Each trip is partitioned into segments based on abrupt
changes in speed, ensuring uniform operating conditions
within segments and enhancing model transferability across
routes. The platform simulates vehicle speed, electrical
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power demand, State-of-Charge (SoC), terminal voltage, and
incremental capacity loss at each simulation step. Battery
degradation is estimated through an empirical model fitted
to long-term cycling data. A case study demonstrates the
simulator’s ability to compare route alternatives between a
shared origin and destination. Results show that the shortest
path is not always the most energy-efficient nor the least
degrading, highlighting the value of health-aware routing.
The platform will be publicly released to enable reproducible
testing of SoC estimation, range prediction, and degradation
forecasting without requiring extensive instrumentation or
prolonged field testing.

1. INTRODUCTION

In recent years, there has been a significant shift toward elec-
tromobility, particularly with the adoption of Battery Electric
Vehicles (BEVs) in urban environments. This trend is ex-
pected to continue accelerating in the coming years, as gov-
ernments and industries worldwide increase their investments
in electric mobility technologies and supporting infrastruc-
ture (International Energy Agency, 2025). However, the full
implications of this transition are not yet completely under-
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stood, as available data often covers only a limited range
of operating scenarios. This is particularly relevant consid-
ering that, while lithium-ion batteries (LIBs) offer a viable
and efficient energy storage solution, they also present no-
table challenges. One of the most critical aspects is the un-
certainty associated with a vehicle’s achievable range for a
given route and its State-of-Charge (SoC). Although this may
initially appear to be a straightforward relationship, empirical
evidence reveals that there is often no consistent correlation
between SoC and the actual distance an electric vehicle (EV)
can travel. This discrepancy is further compounded by the
influence of the route profile, where factors such as regener-
ative braking and energy recovery during downhill travel can
significantly alter the effective range.

Moreover, unlike their internal combustion engine counter-
parts, the energy storage capacity of EV batteries degrades
over time, introducing an additional layer of uncertainty in
range estimation. On one hand, degradation affects the op-
erational performance of the battery through effects such as
capacity fade, where the charge that can be extracted de-
creases over time; increases in internal resistance, which low-
ers maximum output current and increases heat generation;
and reductions in efficiency, leading to higher energy losses
(Rahman & Alharbi, 2024). For range estimation, these ef-
fects accumulate, leading to inaccurate results (Hu, Xu, Lin,
& Pecht, 2020). On the other hand, degradation also affects
operational safety, where high degradation levels can increase
the risk of catastrophic failures such as thermal runaway. As
Gao, Li, Offer, and Wang (2024) demonstrates, degradation
affects the optimal safety thresholds used to generate early-
alarm systems for failures, potentially leading to an increase
in false negatives when degradation effects are not consid-
ered.

These two key points highlight the importance of analyzing
the evolution of degradation during operation and modeling
its effects on the vehicle’s operational characteristics, partic-
ularly its electrical and thermal variables. Several modeling
approaches have been proposed to address this challenge. For
instance, Pérez et al. (2017) presents a degradation model for
LIBs for erratic SoC swing ranges, utilizing data provided by
manufacturers, along with similarity-based models, to calcu-
late degradation rates from different usage profiles. Allendes
et al. (2024) introduces an electrothermal model for LIBs
that accounts for the influence of internal temperature on per-
formance. In this model, temperature-dependent changes in
usable capacity are incorporated, and internal resistance is
linked to heat generation, both of which can impact the cell’s
electrical behavior (Spitthoff, Shearing, & Burheim, 2021).
As Hou, Yang, Wang, and Zhang (2020) demonstrates, ele-
vated internal temperatures can, in and of themselves, accel-
erate degradation.

In this context, simulation emerges as a powerful tool to

model the complex interactions between battery behavior, ve-
hicle dynamics, and operating conditions. Simulations enable
the exploration and analysis of scenarios that are not directly
observable from empirical data alone, leveraging existing the-
oretical and experimental knowledge to model system behav-
ior. Additionally, simulators can be useful tools for testing
and benchmarking EV routing strategies. Currently, EV rout-
ing strategies are often validated in customized simulation en-
vironments (Futalef, Mufoz-Carpintero, Rozas, & Orchard,
2023), which makes it difficult to compare the performance
across different models.

Although no existing solution dedicated to simulating EVs
in urban environments was identified, related approaches can
be found in the literature. For example, DTUMOS (Yeon,
Eom, Jang, & Yeo, 2023) is a large-scale urban mobility dig-
ital twin primarily oriented toward demand-supply genera-
tion, vehicle dispatch and routing, and time-of-arrival predic-
tion, using inputs such as trip records and OpenStreetMap
data (Bennett, 2010). While effective for analyzing passenger
mobility and system-level performance indicators, this simu-
lator does not incorporate native energy or electrochemical
models, nor does it provide modules for lithium-ion battery
behavior or degradation. Consequently, it is not feasible to
use DTUMOS to simulate EV fleets.

A different approach is offered by GAMA (Amouroux, Chu,
Boucher, & Drogoul, 2009), a generic, open-source platform
for agent-based modeling that supports a broad spectrum of
applications, ranging from ecological studies and search-and-
rescue operations to urban traffic management. Despite its
flexibility, GAMA does not include built-in EV-specific en-
ergy models or frameworks for capturing lithium-ion battery
degradation. As a result, it cannot adequately address the
challenges unique to EV simulation, particularly those in-
volving battery behavior, range uncertainty, and long-term
degradation dynamics.

This work introduces a novel simulation platform called EV-
sim and specifically designed for BEVs. Unlike existing sim-
ulators, EV-sim uniquely integrates detailed predictions of
electrical variables such as voltage, current, instantaneous
power, and energy consumption, providing an unprecedented
depth of analysis for EV operations. A key innovation is
the incorporation of a real-time battery degradation model,
which accurately reflects battery capacity loss under diverse
operational scenarios. Furthermore, EV-sim models the ve-
hicle’s usage profile through detailed power and energy con-
sumption profiles, enabling real-time simulation of various
routes and generating comprehensive statistical models. This
capability allows users to evaluate the risks associated with
route choices, directly linking battery degradation and us-
age patterns. The detailed modeling of EV-specific behav-
iors is achieved with remarkably low computational demands,
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ensuring the simulator’s practical applicability in real-time
decision-making contexts and fleet management scenarios.

The paper is organized as follows: Section 2 provides a the-
oretical background, detailing essential concepts and prior
work relevant to the development of the proposed platform.
Section 3 describes the proposed simulation methodology,
highlighting its distinctive features. Section 4 presents the
obtained results from various case studies and simulations.
Section 5 offers a detailed discussion and analysis of these
results. Finally, Section 6 summarizes the main conclusions
derived from this research and suggests potential directions
for future improvement.

2. THEORETICAL BACKGROUND
2.1. Battery model

To analyze battery dynamics, it is important to employ an
equivalent circuit model that captures the system’s response
under different operational conditions. In this study, a
Thévenin equivalent model is adopted, incorporating a con-
trolled voltage source to represent the open-circuit voltage
(V,¢) along with a resistance that accounts for internal losses,
for example, heat dissipation (Dfaz et al., 2020). The open-
circuit voltage V. is modeled as a function of the SoC, which
typically follows a characteristic nonlinear trend.

The V,. and SoC of a battery can be defined as:

Voe =V +1-R, (1

where V' is the measured terminal voltage, [ is the measured
electrical current, and R is the internal resistance. The SoC is
formulated as follows:

 Jnile)de

SoC(t) = SoCy o

@)
where C' denotes the nominal capacity of the battery in
ampere-hours (Ah), and i(£) is the current as a function of
time, integrated from the initial time ¢ to the current time ¢.

An analogous formulation can be used to define the State-of-
Energy (SoE), which accounts for both current and voltage
over time. The SoE is given by:

Ji u(©)i(¢) dg

SOE(t) = SOE, — > ,

3
where E represents the nominal energy of the battery in
joules (J), and u(€) and (&) are the instantaneous voltage and
current, respectively, integrated over the same time interval.

Building on this, Pola et al. (2015) introduced a five-
parameter expression for V.., as described in Eq. 4.

UOC(SOCt) = v + (UO — 'UL) . e'Y(SOCt—l)
+C¥"UL(SOC,571) (4)
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Figure 1. Battery open circuit voltage response through three
distinct operational zones during the discharge cycle.

Each term in Eq. 4 captures the behavior of the open-circuit
voltage (V,.) curve (Figure 1) across distinct operating re-
gions of the battery’s SoC. The first exponential term, (vg —
vr) - €15°Ct—1 models the initial discharge phase, where a
sharp voltage decline is observed as the battery begins to de-
plete from a fully charged state. This steep drop is governed
by the parameter -, which controls the curvature of the expo-
nential response.

The second term, « - vy, - SoCy_1, corresponds to the mid-
range discharge region. In this zone, the voltage exhibits a
nearly linear decline as SoC decreases, which is a common
characteristic of Li-ion batteries in practical applications. The
slope of this decline is determined by the weighting param-
eter «, allowing the model to represent the relatively stable
voltage behavior observed in this central segment.

The final nonlinear term, (1 — ) - vy, - (e7# — e~ V30C),
accounts for the accelerated voltage drop observed in the later
stages of discharge. This segment reflects the diminished
electrochemical activity at low SoC levels, often resulting in
a sharp and nonlinear fall-off in voltage. The parameter (3
modulates this curvature, enabling the model to accurately
represent the end-of-discharge dynamics.

This five-parameter formulation offers a phenomenological
yet efficient approximation of the typical Li-ion V,.(SoC)
profile. As described by Pola et al. (2015), the simplicity of
this structure supports reliable parameter identification with
limited training data while still capturing the key nonlineari-
ties across the full SoC range.
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2.2. Battery Degradation Model

LIBs degrade progressively as they experience charge and
discharge cycles. This cumulative effect reduces the amount
of energy the battery can store. The degradation is commonly
quantified through the State-of-Health (SoH), which repre-
sents the current maximum capacity of the battery relative to
its original nominal capacity.

The degradation model employed in this work is based on
tracking the effect of usage conditions across discrete equiv-
alent cycles. Each equivalent cycle corresponds to the cumu-
lative discharge of the battery’s current full capacity, regard-
less of the specific sequence or irregularity of the individual
charge/discharge events. This abstraction allows the model
to handle non-symmetrical, erratic operational profiles more
realistically than conventional full-cycle definitions.

After each equivalent cycle, the battery’s SoH is updated by
applying a multiplicative degradation rate, denoted as 7, fol-
lowing the recursive relation:

SoHy11 = ng - SoHy, Q)

The degradation rate 7 is not fixed but instead depends
on operating conditions experienced during the k-th cycle.
Specifically, the model characterizes each equivalent cycle as
a function of first, the difference between the maximum and
minimum SoC values during the cycle (Swing Range, from
now on defined as SR), the mean SoC value over the cycle du-
ration (Average Swing Range, from now on defined as ASR),
and the average ambient temperature during the equivalent
cycle

First, the SR and ASR features are mapped to a degrada-
tion rate 7°M using a Similarity-Based Model (SBM), as
described in (Pérez et al., 2017). In this approach, degrada-
tion rates associated with a specific proportion of the total life
cycle of a nominal degradation campaign (SR = 100 in this
case) are linked to particular combinations of SR and ASR,
and then used as reference points. Each reference point is
connected to a fraction of the total equivalent cycles the bat-
tery can perform compared to the SR = 100 case, shown in
Table 1 as “Life Cycle Percent”.

Here, the degradation rate for a new cycle is estimated via
a weighted interpolation using the 3-nearest neighbors in the
feature space. This allows the model to flexibly infer 7EM
under arbitrary SoC conditions, even those not explicitly ob-
served during training. The learned mapping effectively cap-
tures the nonlinear dependence of capacity fade on SoC dy-
namics, aligning with well-established electrochemical aging

behavior.

Then, the relation between total life cycle and ambient tem-
perature established in (Zhou, Qian, Allan, & Zhou, 2011) is

Table 1. Normalized degradation factors for each SR.

SR Life Cycle Percent

100-0 1.00000
100-25 0.78750
75-0 1.12525
100-50 0.43750
75-25 0.68750
50-0 1.03125
100-75 0.40625
75-50 0.29700
62.5-37.5 0.28125
50-25 0.62500
25-0 1.00000

used to modulate the degradation rate 7, as a function of the
average ambient temperature experienced by the battery dur-
ing the k-th cycle. According to this study, elevated temper-
atures accelerate degradation due to increased reaction rates
within the cell, consistent with Arrhenius-type behavior. In
LIBs, high temperatures promote cell oxidation and the for-
mation of a Solid Electrolyte Interphase (SEI), leading to ir-
reversible capacity loss, as illustrated in Figure 2. This figure
shows that the life cycle of a lithium-ion battery can be re-
duced by more than half when operating at 55°C compared
to 25°C. To account for this, a temperature correction fac-
tor Nemp is defined as the ratio of the expected life cycle at
nominal conditions to that at the measured average temper-
ature. The final degradation rate for the equivalent cycle is
then computed as:

Nk = UIEBM * Ntemp (6)

where T]EBM is the base degradation rate obtained from the

previously mentioned SBM using the SoC profile, and emp
adjusts this rate to reflect the additional aging effects induced
by thermal exposure. This formulation ensures the model
captures the nonlinear sensitivity of battery aging to environ-
mental conditions, especially under high-temperature opera-
tion.

2.3. Maximum Driving Range

A previous study presented the Maximum Driving Range
(MDR) framework. This route-segmentation methodology
merges data-driven inference with an electrochemical bat-
tery model to predict the range of EVs (Garcia Bustos et al.,
2025). Rather than depending on fixed calibration factors
or extensive historical logs, MDR subdivides each trip into
physically uniform segments identified by roadway grade,
surface quality, and typical traffic flow attributes.
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Figure 2. Relation between total life cycle and operating am-
bient temperature for a 2000-cycle battery. [Extracted from
(Zhou et al., 2011)]

Within every segment, machine-learning regressors estimate
the expected speed profile together with the associated power
and energy demand; these estimates then serve as inputs to
a reduced-order battery model that tracks voltage dynamics,
SoC evolution, and cumulative energy depletion. The inter-
action between the statistical and physics layers captures both
driving behavior and electrochemical responses with high fi-
delity.

By deriving the segmentation adaptively during model exe-
cution, the framework naturally extends to routes that have
never been driven before, an important capability in data-
sparse contexts. By propagating uncertainty through Monte
Carlo (MC) simulations, MDR produces a probabilistic map
of hazard zones, defined as segments where the predicted ter-
minal voltage nears or falls below the battery’s cut-off thresh-
old, indicating a high likelihood of power loss and providing
actionable guidance for drivers and fleet managers. MC vali-
dation reported in Garcia Bustos et al. (2025) showed that this
probabilistic characterization reliably highlights risk regions
while accounting for sensor noise and stochastic variations in
driving patterns.

2.4. Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a probabilistic model
that approximates an unknown, potentially multi-modal den-
sity as a probability-weighted sum of K multivariate normal
distributions called “components” (Reynolds, 2015). Mathe-
matically, this model is expressed as:

K
po(x) = Y mk N(x; i, i) (7)

k=1

where each component & is defined by its parameters ©y: the
mean vector p,, the covariance matrix Xy, and the weight
7y, which represents the probability that a given data point
belongs to component k. These parameters collectively de-
fine local Gaussian clusters within the dataset.

To estimate the parameters of a GMM, we begin with a set
of independently and identically distributed (i.i.d.) samples
{x,}V_,. The Expectation-Maximization (EM) algorithm is
then applied to maximize, in an iterative manner, the follow-
ing log-likelihood function:

N
(©) = Y logpe(xn). ®)
n=1

In the E-step, EM introduces binary latent variables 2, €
{0,1}. We set 2, = 1 when sample x,, is generated by com-
ponent k and z,; = 0 otherwise. Because each observation
is assumed to come from exactly one component, we enforce
Zle znk = 1 for all n. These latent variables let us treat the
problem as if the component assignments were known, con-
verting it into a complete-data scenario (McLachlan & Krish-
nan, 2008).

The EM algorithm then alternates between two steps. In the
E-step, it computes the posterior probability (or responsibil-
ity) that component k was responsible for generating data
point x,,, given the current parameter estimates ©°!4:

A WkN(Xn;Hk72k:)
nr K
21 ™ N (s, 35)

) 9

where 7, represents the posterior probability of the k-th la-
tent variable and the n-th data point.

Then, in the M-step, the model parameters are updated based
on the computed posterior probabilities. These posterior re-
sponsibility, v,, represents the degree of belief (or expected
membership) that a given data point x,, was generated by
component k. For the case of GMMs, the mean parameter as-
sociated with each latent variable k is computed as a weighted
expected value:

N
1
,U/rllcew = E Z’Ynkxn s (10)
n=1
with the covariance matrix follows:

N
1
S = 5 0 kot — ) G = )L (D)

n=1
where the normalizing factor Ny, is calculated following:

N

Ne = ok (12)

n=1

hence ensuring that the effect of posterior responsibilities re-
mains bounded.

This process is guaranteed to monotonically increase the log-
likelihood at each iteration and converges to a local maxi-
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mum. Model complexity is typically controlled by choosing
K using the Bayesian Information Criterion (BIC) or a held-
out log-likelihood, and by applying constraints on 3 (e.g.,
diagonal, tied, or spherical) to reduce overfitting in high-
dimensional settings.

3. METHODOLOGY

The following section will present the methodology em-
ployed to develop the proposed simulator. First, the general
simulation pipeline will be introduced. Then, a segmentation
heuristic protocol that discretizes the urban routes will be de-
scribed. Finally, this section presents a probabilistic model of
energy and time consumption that defines the speeds and en-
ergy requirements of the simulated vehicle at each time step.

3.1. EV route simulation procedure

The proposed simulator consists of the following elements:

1. A graph that represents the simulated urban environment.
2. Agents that represent the EVs under study.
3. An EV energy and time consumption model.

At each step of the simulation, these elements interact with
each other to sequentially update the state of the agents. Fig-
ure 3 represents how the mentioned elements interact at each
simulation phase. The rest of this subsection will describe
each element of the simulator.

In the initialization step of the simulation, the program gener-
ates a graph that represents the simulated urban environment.
In this graph, vertices represent locations on the street and
edges represent the roads that connect the locations. Note
that the application of a graph transforms the spatial domain
from continuous to discrete; hence, the number of vertices
and edges should be large enough to represent the time con-
stants of the battery dynamics and power requirements. The
urban graph is constructed starting from an OpenStreetMap
(OSM) base map. Nodes are then inserted according to the
segments generated by the proposed segmentation protocol,
which ensures that node and edge densities accurately reflect
the street features relevant for EV simulation. Routing con-
straints are inherently captured through the connectivity and
directionality of edges provided by the OSM data and refined
during segmentation. The next subsection describes a heuris-
tic segmentation approach that defines how vertices and edges
are located to obtain a suitable graph representation of the ur-
ban environment.

Once the graph is initialized, the simulator proceeds to instan-
tiate the fleet of agents that model the EVs under study. Each
agent is fully described by a state vector with two compo-
nents: current position in the map and current SoE of the bat-
tery. In addition, each agent is characterized by a set of bat-
tery parameters and a routing policy. The battery parameters

allow modeling the electrical behavior of the battery using
Egs. 1, 3 and 4. The routing policy of the agent corresponds
to a function that chooses the next vertex that the agent will
visit based on the available contextual information. Formally,
this function can be expressed as follows in Eq. 13:

T X—=V (13)
7(T) = Vpeat (14)

where 7 is the policy function, X is an arbitrary input space
of the policy, V is the set of map vertices, and v+ 1S the
next vertex that the agent plans to visit.

After the initialization phase, the program starts the simula-
tion. It is important to note that, in the current simulations,
vehicles do not perform any charging. While future exten-
sions may include charging behavior, for the present study,
all agents deplete their batteries without recharging. At each
simulation step, the map iteratively consults which agents are
available to move to the next edge of the graph. For all agents
that are available to move, the following routine is executed.
First, the agent consults its policy to determine which edge it
will travel through to reach the next vertex. Then, the map
consults an EV energy and time consumption model to de-
fine the energy requirements and the time consumed traveling
through the selected edge. The definition of the EV energy
and time consumption model will be explained in the follow-
ing subsection.

At last, the agent is allowed to move to the next vertex along
the edge. It is noteworthy to mention that once the simulator
decides to move an agent, it also marks it as unable to move
until the internal clock of the simulation reaches the predicted
time consumption. This procedure allows coordinating the
fleet agents over time while indirectly modeling the traffic
conditions of each vertex. Also, once the movement is com-
pleted, the simulator updates the SoE of the agent’s battery
and calculates its terminal voltage using Egs. 3 and 1 respec-
tively. This procedure allows for monitoring the electrical
behavior of the EVs during the simulation.

All agent initialization parameters—including the number of
agents per run, initial SoE, battery parameters (capacity and
internal resistance ranges), and routing policies—are fully
configurable according to user requirements. These param-
eters are implemented as an external function to the simula-
tion pipeline, allowing flexible adjustment for different exper-
imental scenarios. Similarly, the simulation time resolution
and total duration can be configured to adapt the granularity
and length of each run.

Finally, the simulation stops once one of the agents runs out
of charge. Authors acknowledge that this stopping condi-
tion might be overly simplistic; therefore, including vehicle
charging options is proposed for future updates of the simu-
lator. The outputs of the finished simulator are a time series
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Figure 3. Proposed urban EV simulation pipeline.

of data for the SoE, voltage at terminals, and positions of all
agents. This information can be useful for later evaluation of
the routes taken by the agents in a post-processing stage. For
instance, this work uses the battery degradation model pre-
sented in Section 2.2 to calculate the degradation rate of the
battery associated with the traveled route. By computing this
information, it would be possible to assess whether a rout-
ing policy is acceptable in terms of its impact on the battery
lifetime.

3.2. Route Segment Protocol

This work adopts and extends a segmentation-based prepro-
cessing framework for EV telemetry data, initially introduced
in prior work (Garcia Bustos et al., 2025). The segmenta-
tion protocol plays a crucial role in developing transferable
speed and energy consumption models by partitioning raw
driving data into segments characterized by relatively homo-
geneous environmental and operational conditions. Each re-
sulting segment serves as an individual modeling unit dur-
ing both the training and inference phases, enabling statistical
generalization to previously unvisited routes.

Segmentation proceeds iteratively, terminating a segment ei-
ther when the cumulative distance exceeds a predefined upper
bound (100 meters by default) or when a Focus Point is en-
countered. These Focus Points correspond to specific mark-
ers along the route (such as traffic lights, gates, or pedestrian

crossings) that typically induce abrupt changes in vehicle ve-
locity. Consequently, their occurrence indicates transitions
in the driving context, prompting the initiation of a new seg-
ment. This dual criterion ensures that segments are both spa-
tially coherent and behaviorally informative.

After initial segmentation, a post-processing stage is applied
to refine segment definitions further. First, segments with in-
sufficient spatial length are eliminated or merged. Specifi-
cally, adjacent segments shorter than 25 meters (a criterion
not previously included) are merged to maintain statistical
reliability while preserving meaningful semantic transitions.
Once segments are finalized, each one is represented as a sin-
gle data point by aggregating internal measurements. Numer-
ical features (e.g., velocity, acceleration, and battery power)
are summarized by computing their arithmetic mean across
the segment duration. Conversely, categorical features (e.g.,
street type or presence of an intersection) are encoded accord-
ing to specialized rules. Notably, for attributes such as “Focus
Points” or “Street Type,” the most frequent non-zero value
within the segment is selected, defaulting to zero only when
necessary. This strategy prioritizes informative infrastructure
indicators, thereby improving the overall quality of feature
representation.

Formally, consider a trip divided into N segments,
Si1,...,8nN, according to the segmentation procedure de-
scribed above. Each segment n contains a set of consecutive



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

raw data points denoted by S, = ki, ka,...,ky,, where
Tn. = |Sn| represents the number of samples within that
segment. For every numerical variable u; present in the data
set, including battery voltage, current, SoC, vehicle speed,
slope, and meteorological data, the representative value at the
segment level is calculated as the arithmetic mean:

Uy = 1 Z Ug. (15)

Energy consumption, however, is treated differently. The
dataset provides incremental energy consumption measure-
ments from the battery at each sampling interval. Hence,
the representative energy consumption for segment n corre-
sponds to the cumulative energy drawn within that segment:

E,= Y E. (16)

keS,

The proposed segmentation protocol has demonstrated its
value in case studies comparing multiple routes connecting
the same origin-destination pairs. By abstracting complex
driving patterns into standardized, statistically consistent seg-
ments, the methodology provides a robust foundation for re-
producible simulations and the deployment of predictive an-
alytics within EV fleet operations. Furthermore, the modular
design and compatibility with publicly available data facili-
tate its adoption in ongoing research and future developments
in electromobility.

3.3. Electric-Vehicle Energy and Time Consumption
Modeling

The simulation procedure described in Section 3.1 makes use
of an EV energy and time consumption model to define the
cost of traveling through an edge of the map in terms of en-
ergy and time. Since the urban environment is inherently
stochastic, a consumption model must also represent such un-
certainty in its outputs to correctly model the phenomenon
(Garcia Bustos et al., 2025). Although neural network ar-
chitectures have proven to be successful for this task (Garcia
Bustos et al., 2025), these models are considered computa-
tionally intensive. Hence, the present work employed an en-
semble of GMMs to compute the consumptions due to their
ability to represent uncertainty and low computational cost.
Note that for this application, the computational cost of mod-
els is an important factor, since they will be employed exten-
sively during simulations.

Inspired by previous work that tackles this problem (Garcia
Bustos et al., 2025), the consumption model is trained using
a two-step approach. An initial model is trained to predict
EV speed from the edge features, then a second model uses
these predictions to obtain energy consumption predictions.

Finally, the time consumption is calculated using spread pre-
diction and the edge length. Mathematically, the first model
can be defined as a function:

So, : X xR = [0,1] 17)
895 (L,S) :p(8|l‘), (18)

where Sy, is the speed prediction model, z € X is the in-
put feature vector, 6, are model parameters and p(s|z) is the
probability of traveling with a speed s though the edge. Sim-
ilarly, the second model follows:

Ep, : X xR xR —[0,1] (19)
59e(xa 8,6) :p(6|$,8) ) (20)

where &£, is the energy consumption prediction model, s € R
is a sample of the previously obtained vehicle speed predic-
tion, #, are model parameters and p(e|z, s) is the probability
of using e units of energy to travel through the edge. Since
these models characterize probabilities, values are sampled
from the predicted distributions in each simulation step.

To implement the probabilistic models Sp, and &y, , an en-
semble of GMMs was employed. In this architecture, an ini-
tial GMM is trained using the EM algorithm. Once the model
is trained, it can infer a set of latent variables zj, from an input
vector x € X following Bayes’ theorem:

p(@|zi) - pzk)
Z;ivﬂ p(x|zx) - p(2x)

In the context of this work, the latent variable z;, can be inter-
preted as a driving profile that is conditional on the character-
istics of the road.

p(zklz) = ) 21

With the computed posterior probability, a second GMM can
be trained to model the output distribution from the latent
variables conditioned on the input. Mathematically, this is
expressed as:

N

pyle) = plylz)p(zlz) (22)

k=1

where p(y|x) is the distribution of the model output y given
an input z. Note that for this model, p(y|z)) is a Gaussian
distribution; hence, p(y|x) is also a GMM. The primary dif-
ference between the first and second GMMs is that for the first
model, the latent variable z, is still unknown; hence, it must
be inferred in the E-step of the EM algorithm. In contrast, for
the second GMM, the latent variable is already defined using
Eq. 21, thus it is already given for the EM algorithm.
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3.4. Reproducibility

This section presents the implementation details required to
reproduce all results reported in this work. It includes the
dataset version, data cleaning and segmentation rules, the
splitting strategy used to avoid information leakage, feature
processing, modeling configurations, and the environment
setup. All experiments were run using fixed random seeds,
and Monte Carlo simulations were performed with a consis-
tent number of repetitions across experiments.

3.4.1. Data and splitting.

The dataset used in this study is the Vehicle Energy Dataset
(VED) (Oh, Leblanc, & Peng, 2022), collected in Ann Arbor
between November 2017 and November 2018. The complete
dataset comprises 32,940 trips covering nearly 600,000 km
from 383 privately owned vehicles instrumented at 1 Hz.
The fleet includes 264 gasoline, 92 hybrid, and 27 plug-
in hybrid or battery-electric units, with three 2013 Nissan
Leafs contributing about 7,500 km of purely electric oper-
ation. Each EV log provides time-aligned measurements
of GPS (latitude and longitude), vehicle speed, HV battery
voltage and current, ambient air temperature, and auxiliary
power usage. Data is organized in weekly CSV files labeled
VED_mmddyy_week . csv, while static attributes such as en-
gine type, drive train, and weight are stored separately.

The altitude of the road network ranges from 220 m to 330 m
above sea level, with ambient temperatures between —15°C
and 35°C, occasionally accompanied by rain or snow. These
conditions establish a realistic framework for energy con-
sumption and traffic modeling, serving as a rigorous bench-
mark for validating the proposed simulator under representa-
tive urban driving scenarios.

To prevent information leakage, we partition the data at the
level of Trip and Vehicle, allocating 70 % of trips to training,
20 % to validation, and 10 % to testing. Normalization statis-
tics (mean and standard deviation) are computed exclusively
on the training set and applied consistently during validation
and testing stages.

The evaluation presented in Section 4 focuses on four rep-
resentative test trips from the BEV 455, with specifications
detailed in Table 3 and route plots in Figure 4.

3.4.2. Models and hyperparameters.

The predictive framework uses two GMMs: a speed model
that estimates segment-level speed distributions conditioned
on climatic and road variables and an energy model that
estimates segment-level energy consumption conditioned on
speed and contextual covariates. Tables 5 and 4 summarize
the predictors and targets; the energy model is conditioned on
the speed model by the mean speed of the predicted segment.

Both GMMs were trained once and serialized (joblib) for
consistent evaluation. During simulation, the trained mod-
els are loaded to generate predictions; Monte Carlo sampling
is used to propagate segment-level uncertainty to route-level
performance.

Table 2. Hyperparameters for the speed and energy GMMs.

Model Components  Covariance type Initializations
Speed model 175 full 5
Energy model 175 tied 5

3.4.3. Training, evaluation, and MC.

Both models are trained with EM using k-means seeding for
component means, full covariance matrices, and an €/ diag-
onal regularization for numerical stability. EM iterates until
the absolute change in log-likelihood is below the tolerance
or the maximum number of iterations is reached. When mul-
tiple initializations are specified, the solution with the highest
final log-likelihood is retained. Convergence diagnostics (fi-
nal log-likelihood and iteration count) are recorded.

Evaluation is conducted on the held-out test set with the same
preprocessing statistics used during training. We report per-
trip and overall mean absolute error (MAE) for the speed
model and the energy model, and include uncertainty bands
obtained via MC propagation at the route level. MC simula-
tions draw from the fitted mixture distributions to propagate
segment-level uncertainty through the energy estimates; un-
less otherwise stated, we use N = 100 runs to compute con-
fidence intervals and risk curves.

To ensure reproducibility of stochastic components (initial-
ization and sampling), we fix the global random seed to 42.
The NumPy random generator used in seeding, sampling, and
toy data generation is initialized with this seed so that k-
means initialization and EM restarts are deterministic given
the same configuration. All experiments are executed with
the same configuration files and environment specification to
guarantee repeatability across runs.

At this stage, the simulator codebase is in active develop-
ment as a beta version. Our plan is to release the finalized
open source implementation, along with the preprocessing
and training scripts, once the framework is fully stabilized.
This staged release strategy ensures that the community will
access a tested and documented version that can be reliably
reused.

4. RESULTS

4.1. Case Study

This case study analyzes four test trips performed using a sin-
gle battery-electric vehicle. The selected trips were drawn
from a publicly available driving dataset collected in Ann Ar-
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bor, Michigan, between November 2017 and October 2018
(Oh et al., 2022).

Each selected trajectory was recorded using the BEV 455
(2013 Nissan Leaf), following a distinct urban route (see Fig-
ure 4), thereby exposing the simulator to varied traffic density,
slopes, stop-and-go patterns, and climate conditions. Table 3
summarizes basic characteristics such as distance, cumulative
elevation gain, and average ambient temperature to contextu-
alize the data set.

Although some trips appear spatially similar, their departure
times and weather profiles differ markedly. This diversity is
intentional, as it allows us to assess how well the segment-
level speed and energy regressors generalize when faced with
traffic and climate regimes unseen during training. Impor-
tantly, the case studies reported here are designed primarily
to demonstrate the simulator’s end-to-end capabilities, link-
ing route choice, traffic, ambient conditions, and cycle-wise
battery degradation, rather than to benchmark the underly-
ing predictive models used. A broader benchmarking cam-
paign across additional routes, weather conditions, and vehi-
cle/pack configurations is planned as future work.

Trip 1197 Trip 1648 Trip 2323 Trip 1509

Figure 4. Geographic layout of the four evaluation routes ex-
tracted from the Ann Arbor dataset. Each colored polyline
represents the recorded trajectory of a single trip.

Having established the accuracy of these statistical models,
we now move to a second validation layer that examines the
complete simulation pipeline. Four agents, each correspond-
ing to a test trip, are simulated in parallel on the street network

Table 3. Key characteristics of the four test trips.

Trip Distance [km] Elevation change [m] Avg. Temp. [°C]

1197 14.62 16.49 1.53
1509 13.09 -0.50 13.50
1648 15.80 -26.35 28.74
2323 14.58 24.50 9.00

graph, replicating the historical trajectories. At each segment,
the agents update their position, velocity, power demand, and
residual charge. Weather variables retrieved from the World
Weather Online API (World Weather Online, 2025) are incor-
porated, exposing the simulated battery to the same ambient
conditions as those experienced by the actual vehicle during
the recorded trips.

The evaluation focuses on two observable quantities: net en-
ergy consumption and total travel time. The energy is ob-
tained from the power demand model, and the travel time
is calculated from the speed model. Then both outputs are
compared with the values recorded on the board. (Figure 5)
visualizes these comparisons and discusses simulator fidelity
segment by segment.

To further illustrate the platform’s flexibility, two comple-
mentary analyses are presented. First, leveraging the in-
tegrated degradation model, the simulator estimates battery
degradation by quantifying capacity loss accrued per duty
cycle, as previously defined in Section 2.2. This capabil-
ity enables predictive assessment of battery health over re-
peated execution of identical trips, highlighting implications
for long-term fleet management. Second, an additional analy-
sis evaluates the risk of battery disconnection using the MDR
methodology introduced in Section 2.3 earlier. By simulat-
ing an agent under a constrained routing policy, in which the
vehicle moves from a starting location to a specified destina-
tion without revisiting previously traversed nodes, the plat-
form assesses how user-defined routing constraints influence
operational risks such as prematurely reaching battery cut-off
voltage.

These two analyses are based on the precision of the segment-
level speed and energy estimates generated by our Gaussian-
mixture regressors. The predictor sets used at each stage are
summarized in Tables 4 and 5. Table 4 lists the 13 variables
that drive the Stage-1 speed model, grouped into meteorol-
ogy, road geometry, traffic context, and segment dynamics.
The Stage-2 energy model (Table 5) relies on only five inputs,
namely the predicted mean speed for the current segment, the
predicted mean speed for the previous segment, the segment
length, and two descriptors of weather and road conditions.
By separating the feature sets in this way, the simulator first
captures how external factors influence driving behavior and
then converts that behavior into battery-power demand with-
out redundant information.

10
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Table 4. Predictor variables for the speed model (Stage 1).

Category Variables

Meteorology Outside-air temperature (°C);
Precipitation rate (mm/h);
Relative humidity (%)
Segment length (m);
Road-grade ratio;

Smoothed altitude (m);
Signed slope angle (°)
Posted speed limit (km/h);
Node type?;

Street class®;

Distance since trip start (m)
Segment duration (s);

Speed — previous segment (km/h)

Road geometry

Traffic context

Dynamics

b

2 crossing, roundabout, efc.; ° motorway, arterial, residential, etc.

Table 5. Predictor variables for the energy model (Stage 2).

Category Variables

Meteorology Outside-air temperature (°C);
Precipitation rate (mm/h)

Segment length (m);

Road-grade ratio

Predicted mean speed — current segment
(km/h))

Predicted mean speed — previous seg-
ment (km/h)

Segment duration (s)

Road geometry

Dynamics

4.2. Energy and Speed Modeling

This subsection provides an integrated analysis of both the
speed and energy consumption models, evaluating their ac-
curacy across the selected trips. Table 6 summarizes the
MAE:s for both models. The results indicate that the speed
model achieves MAEs ranging from 4.615 km/h (Trip 1197)
to 6.381km/h (Trip 1509), while the accumulated energy
model reports MAEs between 0.132kWh (Trip 1509) and
0.217 kWh (Trip 1648). In general, despite variations in route
characteristics, traffic conditions, and elevation changes, the
models exhibit robust performance, suggesting a high degree
of generalizability.

Figure 5 illustrates the predicted accumulated energy con-
sumption compared to the Ground Truth (GT) across each
route. The predicted mean closely matches the observed data,
with minor discrepancies typically associated with abrupt
changes in driving conditions, such as transitions from urban
to suburban environments or terrain elevation. Importantly,
the probabilistic confidence intervals (Cls) effectively encap-
sulate the observed values, highlighting the model’s efficacy
in quantifying the uncertainty.

Notably, for Trip 1197 (Figure 5a)) and Trip 2323 (Fig-
ure 5c)), the accumulated energy errors remain below
0.2kWh for the majority of segments, consistent with the
low overall MAEs of 0.177kWh and 0.166 kWh, respec-
tively. Trip 1509 (Figure 5b)), despite having the shortest
distance among these four routes, exhibits slightly larger

Table 6. MAE:s for speed and accumulated energy models.

TripID  Speed MAE (km/h)  Accumulated Energy MAE (kWh)
1197 4.615 0.177
1509 6.381 0.132
1648 5914 0.217
2323 5.424 0.166

uncertainty bands during the mid-trip segments (20-60),
possibly due to more variable traffic patterns. Nevertheless,
the predicted mean curve still aligns closely with the true cu-
mulative energy profile. In Trip 1648 (Figure 5d)), the model
captures the gradual increase in energy use when ascending
and descending small hills, with the CI widening modestly
toward the end of the trip.

Figure 6 illustrates the segment-level speed predictions for
the same four trips. Again, the predicted mean (blue line)
reproduces the key oscillations and plateaus observed in the
GT (open circles). The 90% CI (gray shading) generally
encompasses observed speed values, demonstrating that the
model effectively captures variability in driving behavior due
to stop-and-go traffic, traffic lights, and varying speed limits.

For Trip 1197 (Figure 6a)), which traverses both urban grid
and arterial highways, the model adjusts rapidly to sudden
speed drops. In Trip 1509 (Figure 6b)), predictions closely
follow the GT on highway segments (speed approximately
70km/h), but show slightly larger uncertainty around low-
speed segments (< 20km/h), likely due to transient stops.
Trip 2323 (Figure 6¢)) features multiple stop-and-go cycles:
the model’s CIs widen during these cycles, but the mean
curve still remains within 5 km/h of the measured speed. Fi-
nally, Trip 1648 (Figure 6d)) includes one long uphill seg-
ment where speeds drop below 30 km/h; the predicted mean
underestimates slightly in that region, but maintains coverage
within the CI.

Overall, the reported errors verify that the learning frame-
work reproduces segment-level dynamics with sufficient fi-
delity for downstream decision-making. Speed MAEs below
6.5 km/h represent at most 9 % of the mean cruising speed
observed in the dataset, while energy MAEs under 0.22 kWh
correspond to relative deviations below 6 % of trip energy de-
mand. These bounds fall comfortably within the tolerances
typically required for range-aware routing, charge-planning,
and preliminary degradation assessments, confirming that the
stand-alone speed and energy models provide a reliable foun-
dation for the more elaborate simulations examined in subse-
quent sections.

4.3. Real-World Driving Simulations for Electric Vehicles

To evaluate the simulator’s ability to reproduce trip-level met-
rics, Tables 7 and 8 compare GT observations with predic-
tions from EV-sim across four representative trips. Specif-

11
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Figure 5. Accumulated energy consumption (kWh) for four distinct trips. Circles represent ground-truth measurements, solid
lines indicate predicted means, and shaded regions denote 90 % Cls.

ically, these metrics assess total travel time, final SoC, and
total energy consumption per trip.

Table 7 presents the raw simulated and observed values for
each variable. For instance, Trip 1197 exhibits nearly identi-
cal SoC values (64.10 %) between EV-sim and the GT, while
the predicted travel time deviates by less than 5 % from the
actual duration. Similarly, energy estimates for Trips 1648
and 2323 differ by just 0.02 and 0.15 kWh, respectively, con-
firming that the simulator preserves fidelity in cumulative in-
dicators.

Table 8 complements this analysis by reporting the MAE
and associated percentage deviations. Energy MAEs re-
main below 0.51 kWh across all trips, while SoC MAEs stay
within 1.1 percentage points. Notably, Trip 1509 shows the
highest energy error at 9.16 %, likely due to transient low-
speed patterns that compound power estimation inaccuracies.
Conversely, Trip 1648, despite a moderate travel time error
(5.13 %), yields the lowest energy deviation (0.32 %), sug-

gesting a robust match between speed, power, and voltage
profiles under varying terrain.

Together, these results demonstrate that EV-sim provides reli-
able trip-level predictions of energy and time, with deviations
small enough to support use cases such as energy-aware rout-
ing, charge-planning, and range forecasting under real-world
conditions.

To translate aggregate trip statistics into a route-specific risk
metric, we use the MDR framework to estimate the probabil-
ity of battery disconnection. Because the Ann Arbor dataset
does not include trips that fully deplete the pack, we syn-
thetically concatenate repeated out-and-back traversals of a
selected route. For each MC replication, the simulator draws
a fresh sequence of segment-level speed and power samples,
executes the round-trip loop until the terminal voltage reaches
the cut-off threshold, and records the distance traveled at that
instant. Accumulating these outcomes yields a cumulative-
risk curve that quantifies how the likelihood of an involuntary
shutdown grows with distance.

12
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Figure 7. The cumulative probability of vehicle disconnec-

tion obtained from 100 MC repetitions of Trip 2323.

Figure 7 shows the resulting curve for Trip 2323. The prob-
ability of disconnection remains below 10% for the first
70 km, then rises sharply and reaches 100 % at approximately
108 km. The companion plot in Figure 8 shows the corre-
sponding terminal-voltage envelope. The median trajectory
drops from 392V to approximately 338 V, and the 90 % band
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Figure 8. Mean terminal-voltage trajectory (blue) and its
90 % confidence band (grey) for the same MC experiment.

intersects the cut-off line at the same distance, confirming in-
ternal consistency.

These results demonstrate how EV-sim can convert segment-
level uncertainty into a practical, probabilistic range-safety
metric, enabling fleet operators to proactively anticipate dis-
connection risk and schedule charging or rerouting actions.
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Table 7. Comparison between simulated (EV-sim) and GT values for total travel time, final SoC, and energy consumption.

| Final SoC (%) | Energy (kWh)

TripID | Total Time (s)
| EV-sim GT
1197 1810.72  1902.80
1509 157144  1521.80
1648 913.97 963.40
2323 1652.23  1674.10

64.10
55.91
60.87
84.89

| EV-sim GT | EV-sim GT
64.10 5.71 6.08
56.46 3.76 3.45
61.22 3.78 3.76
85.98 4.88 5.03

Table 8. MAE and relative errors between simulation and GT data for travel time, final SoC, and energy consumption.

Trip ID | Travel Time | Final SoC | Energy Consumption

| MAE (s) Error (%) | MAE (%) Error (%) | MAE (kWh) Error (%)

1197 420.46 4.84+11.92 0.068 0.014 0.505 6.11£5.91

1509 201.25 3.2646.59 0.554 0.981 0.485 9.16£6.97

1648 238.81 5.13£15.73 0.348 0.568 0.329 0.32+£2.04

2323 289.93 1.31+13.34 1.082 1.258 0.401 2.93+8.21
4.4. Battery-health projection for vehicle 455 0.0060 — ;g 1
All the trips in the dataset that correspond to vehicle 455 were 0.0045 1 % o
concatenated end-to-end. Every time the accumulated charge = So6
reached the full usable capacity of the pack, we declared one 3 0:00507 % g:i:
equivalent cycle and logged the SR, the ASR, and the outside- 0.0015 4 2034
air temperature associated with that cycle. The resulting data © ‘;jj

is highly heterogeneous: SR spans from 0.3 % to 39 %, ASR
from 49 % to 94 %, and ambient temperature from —8 °C to
27°C. This variety makes the profile representative of the
different seasons and driving missions encountered by the ve-
hicle.

The battery currently shows a measured SoH of 90 % and the
manufacturer quotes 2000 equivalent cycles to reach the 70 %
end-of-life limit under 100 % swings. Starting from these
conditions, we propagated the calendar forward, assuming
that future use repeats the same sequence of cycles. One hun-
dred MC runs were performed; at every cycle, the degradation
model drew a random realization of the rate 1 conditioned on
the observed SR, ASR, and temperature.

Figure 9 gives the probability density of the number of cy-
cles required to hit the 70 % threshold, whereas the right-hand
panel shows the corresponding cumulative distribution. The
most likely time to the end of life is approximately 900 equiv-
alent cycles, and there is a 90 % chance that failure will occur
between 830 and 1020 cycles.

Figure 10 plots the SoH trajectory obtained by stacking the
cycles in chronological order. The solid line is the ensemble
mean, and the shaded band marks the 5-95 % CI.

The monotonic decline confirms that the duty cycle is suf-
ficiently aggressive to drive the pack from 90 % to 70 % in
roughly 100 £ 80 cycles. These results illustrate how the pro-
posed degradation module converts heterogeneous field data
into a quantitative, uncertainty-aware forecast of the remain-
ing useful life.

0.0000 T T T T T
780 840 900 960 1020 1080
Cycles until SoH = 70 %

780 840 900 960 1020 1080
Cycles until SoH = 70 %

Figure 9. Left: probability density of the number of equiva-
lent cycles required to reach the 70 % SoH threshold. Right:
corresponding cumulative distribution.

5. DISCUSSION

The combined use of GMMs for segment-level feature pre-
diction and a physics-based battery representation yields ac-
curate and reliable estimates of speed, energy demand, and
SoC across diverse urban routes. Speed MAEs remain
below 6.5km/h and accumulated-energy MAEs stay under
0.53kWh for trips of 10-20km, despite pronounced vari-
ations in traffic density, slope, and stop-and-go behavior.
Ninety-percent confidence bands consistently enclose most
GT points, indicating that the uncertainty quantification is
well-calibrated.

At the trip level, Tables 7 and 8 show that predicted travel
time, final SoC, and energy consumption align closely with
recorded data. SoC errors are limited to 1.1 % and energy
deviations stay below 10 %, confirming that the framework
captures cumulative effects such as power loss on hills and
recuperation during deceleration. These tolerances meet the
requirements for range-aware routing, charge-planning, and
preliminary degradation assessment in fleet operations.

The extended maximum-driving-range experiment demon-
strates that the simulator also produces meaningful risk met-
rics when empirical data do not cover full-depletion cases. By
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Figure 10. Mean SoH (dark blue) with 90 % confidence band
(light blue) obtained from 100 MC simulations.

looping a representative route in an MC setting, EV-sim con-
structs a cumulative probability curve of battery disconnec-
tion. For Trip 2323 the risk remains under 10 % up to 70 km
and reaches 100 % near 108 km, while the companion volt-
age envelope confirms that failure coincides with the cut-off
threshold. This ability to translate segment-level stochasticity
into a route-specific safety metric enables proactive schedul-
ing of charging stops or dynamic rerouting.

Finally, the degradation prognostic module ties these opera-
tional results to the battery’s long-term outlook. For vehicle
455, the MC projection suggests that only 1000 £ 80 equiv-
alent cycles remain before the 70 % SoH limit, even though
the pack is now at 90 %. This short horizon matches the ag-
gressive duty cycle just characterized and the wide ambient
span from —7°C to 26°C, a combination known to accelerate
both cycling and calendar aging.

Several limitations suggest directions for future work. First,
the evaluation will be expanded to encompass a broader range
of routes, climates, and traffic scenarios. Second, additional
electro-thermal effects, such as temperature-dependent inter-
nal resistance and active cooling, will be incorporated to re-
fine degradation forecasts. Third, live traffic, weather, and
charging-station data will be integrated via external APIs, en-
abling closed-loop studies where vehicle decisions respond to
real-time conditions. Addressing these points will strengthen
EV-sim as a decision-support tool for large-scale electric-fleet
management.

6. CONCLUSIONS

This work introduces EV-sim, a simulation framework that
bridges data-driven traffic modeling with battery-physics
awareness to support health-centered decision-making for
electric-vehicle fleets. By emulating realistic driving behav-
ior while tracking electrochemical states, the platform pro-
vides a laboratory-grade environment in which researchers
and operators can explore how route profiles, traffic condi-

tions, and cell aging interact without the expense of continu-
ous on-board instrumentation or long cycling campaigns.

A built-in MC module extends the analysis from point predic-
tions to risk quantification. Segment-level uncertainty propa-
gates to cumulative probabilities of voltage cut-off, yielding
disconnection-risk curves that translate directly into proactive
charge scheduling and route selection. Because the architec-
ture is modular, additional physical layers, such as detailed
thermal models or live data streams from weather and charg-
ing networks, can be integrated with minimal effort, turning
EV-sim into a flexible bench for control strategies and prog-
nostic algorithms.

Validation on four real urban trips shows that the framework
predicts speed, energy demand, and SoC within margins suit-
able for everyday fleet management. Synthetic full-depletion
tests further demonstrate that EV-sim can estimate range risk
even when historical logs never reach cut-off voltage, a pre-
requisite for safety-critical deployment. Taken together, these
results position EV-sim as a practical and extensible tool for
research and operational planning. A forthcoming public re-
lease will enable reproducible studies across a wide spec-
trum of routes, climates, and vehicle types, encouraging the
community to accelerate advances in health-aware electrified
transport.

Planned work includes explicit modeling of charging-station
interactions, integration of temperature-dependent resistance
and active thermal control, and extension to mixed fleets that
incorporate heavy-duty and autonomous vehicles. These up-
grades will further position EV-sim as a reference environ-
ment for research on energy and health-aware decision sup-
port in electric mobility.
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