Particle-Filtering-Based State-of-Health Estimation and End-of-Life Prognosis for Lithium-Ion Batteries at Operation Temperature



Published Oct 3, 2016
Daniel Pola Felipe Guajardo Esteban Jofré Vanessa Quintero Aramis Pérez David Acuña Marcos Orchard


We present the implementation of a particle-filtering-based framework that estimates the State-of-Health (SOH) and predicts the End-of-Life (EOL) of Lithium-Ion batteries, efficiently incorporating variations of ambient temperature in the analysis. The proposed approach uses an empirical statespace model, in which inputs are explicitly defined as the average temperature of operation and the output of an external module that detects self-recharge phenomena, on the other hand the output is a function that relates the current SOH and temperature with the Usable Capacity in that cycle. In addition, this approach allows to deal with data losses and outliers. In order to correct erroneous initial conditions in state estimates, an Outer Feedback Correction Loop is implemented. Finally, this framework is validated using degradation data from four sources: experimental degradation data from two Li-Ion 18650 cells, accelerated degradation data openly provided by NASA Ames Research Center, and artificially generated degradation data at different ambient temperatures.

How to Cite

Pola, D., Guajardo, F., Jofré, E., Quintero, V., Pérez, A., Acuña, D., & Orchard, M. (2016). Particle-Filtering-Based State-of-Health Estimation and End-of-Life Prognosis for Lithium-Ion Batteries at Operation Temperature. Annual Conference of the PHM Society, 8(1).
Abstract 476 | PDF Downloads 328



particle filtering, Lithium-ion battery, temperature, State of Health Estimation, Battery Remaining Useful Life

Acuña, D. (2016). Manejo de incertidumbre ante pérdida parcial o total de datos en algoritmos basados en métodos secuenciales de monte carlo y nueva definición de probabilidad de falla en el contexto de monitoreo en línea (Unpublished master’s thesis). Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Andre, D., Nuhic, A., Soczka-Guth, T., & Sauer, D. (2013). Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Engineering Applications of Artificial Intelligence, 26, 951-961.
Andrieu, C., Doucet, A., & Punskaya, E. (2001). Sequential monte carlo methods in practice. In A. Doucet, N. de Freitas, & N. Gordon (Eds.), (pp. 79–95). New York, NY: Springer New York. doi: 10.1007/978-1-4757-3437-94
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002, Feb). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi: 10.1109/78.978374
Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimatios for automotive applications. Journal of Power Sources, 241, 680-689.
Berecibar, M., Devriendt, F., Dubarry, M., Villarreal, I., Omar, N., Verbeke, W., & Mierlo, J. V. (2016, July). Online state of health estimation on nmc cells based on predictive analytics. Journal of Power Sources, 320, 239250.
Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Mierlo, J. V., & den Bossche, P. V. (2016, April). Critical review of state of health estimation methods of li-ion batteries for real applications. Renewable and Sustainable Energy Reviews, 56, 572587.
Dalal, M., Ma, J., & He, D. (2011). Lithium-ion battery life prognostic health management system using particle filtering framework. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 225, 81-90.
Drouilhet, S., & Johnson, B. (1997, January). A battery life prediction method for hybrid power applications. Presented at the 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.
Huggins, R. A. (2008). Advanced batteries: Materials science aspects. Springer-Verlac.
Jeon, D. H., & Baek, S. M. (2011). Thermal modeling of cylindrical lithium ion batttery during discharge cycle. Energy Conversion and Management, 52, 2973-2981.
Lam, L., Bauer, P., & Kelder, E. (2011, October). A practical circuit-based model for Li-ion battery cells in electric vehicle applications. Telecommunications Energy Conference (INTELEC), IEEE 33rd International.
Mommaa, T., Matsunaga, M., Mukoyama, D., & Osaka, T. (2012). AC impedance analysis of lithium ion battery under temperature control. Journal of Power Sources, 216, 304-307.
Moreira, J., Nascimento, C., & Rodrigues, L. (2012). Health monitoring and remaining useful life estimation of lithium-ion aeronautical batteries. IEEE.
Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 86(9), 1506 - 1511.
Olivares, B., Cerda, M., Orchard, M., & Silva, J. (2013, February). Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Transactions on Instrumentation and Measurement, 62, 364-376.
Orchard, M., Tang, M., Saha, B., Goebel, K., & Vachtsevanos, G. (2010, September). Risk-sensitive particlefiltering-based prognosis framework for estimation of remaining useful life in energy storage devices. Studies in Informatics and Control, 19, 209-218.
Orchard, M., Tobar, F., & Vachtsevanos, G. (2009, December). Outer feedback correction loops in particle filtering-based prognostic algorithms: Statistical performance comparison. Studies in Informatics and Control, 18, 295-304.
Orchard, M., & Vachtsevanos, G. (2009). A particle-filtering approach for on-line fault diagnosis and failure prognosis. Transactions of the Institute of Measurement and Control 2009, 31, 221-246.
Pascoe, P., & Anbuky, A. (2004). Standby vrla battery reserve life estimation. Telecommunications Energy Conference INTELEC. 26th Annual International, 516-523.
Pattipati, B., Sankavaram, C., & Pattipati, K. (2011). System identification and estimation framework for pivotal automotive battery management system characteristics. Transactions on Systems, Man, AND CYBERNETICS - PART C: APPLICATIONS AND REVIEWS, 41, 869-884.
Ranjbar, A., Banaei, A., Khoobroo, A., & Fahimi, B. (2012, March). Online estimation of state of charge in li-ion batteries using impulse response concept. IEEE Transactions on Smart Grid, 3(1).
Saha, B., & Goebel, K. (2009). Modeling li-ion battery capacity depletion in a particle filtering framework. Annual Conference of the Prognostics and Health Management Society, San Diego, CA.
Saha, B., & Goebel, K. (Visited: Oct.2007). Battery data set. (NASA Ames Prognostics Data Repository, NASA Ames, Moffett Field, CA)
Santhanagopalan, S., Zhang, Q., Kumaresan, K., & White, R. E. (2008). Parameter estimation and life modeling of lithium-ion cells. Journal of The Electrochemical Society, 155, A345-A353.
Thomas, E., Case, H., Doughty, D., jungst, R., Nagasubramanian, G., & Roth, E. (2003). Accelerated power degradation of Li-ion cells. Journal of Power Sources, 124, 254-260. United States Advanced Battery Consortium. (1996, January). Electric vehicle battery test procedures (Revision 2 ed.) [Computer software manual].
Vetter, J., Novk, P., Wagner, M., C. Veit, K. M., Besenhard, J., Winter, M., . . . Hammouche., A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147, 269-281.
Wei, H.,Williard, N., Osterman, M., & Pecht, M. (2011). Remaining useful performance analysis of batteries. IEEE Conference on Prognostics and Health Management (PHM), 1-6.
Zhou, C., Qian, K., Allan, M., & Zhou, W. (2011, December). Modeling of the cost of EV battery wear due V2G application in power systems. IEEE Transactions on Energy Conversion, 26(4).
Technical Research Papers

Most read articles by the same author(s)

1 2 > >>