Unobtrusive Software and System Health Management with R2U2 on a parallel MIMD Coprocessor

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Johann Schumann Patrick Moosbrugger

Abstract

Dynamic monitoring of software and system health of a complex cyber-physical system requires observers that continuously monitor variables of the embedded software in order to detect anomalies and reason about their root causes. There exists a variety of techniques for code instrumentation, but instrumentation might change runtime behavior and could require costly software re-certification. In this paper, we present R2U2/E, a novel realization of our real-time, Realizable, Responsive, and Unobtrusive Unit (R2U2). The R2U2/E observers are executed in parallel on a dedicated 16 or 64 core EPIPHANY co-processor, thereby avoiding additional computational overhead to the system under observation. A DMA-based shared memory access architecture allows R2U2/E to operate without any code instrumentation or program interference.

How to Cite

Schumann, J., & Moosbrugger, P. (2017). Unobtrusive Software and System Health Management with R2U2 on a parallel MIMD Coprocessor. Annual Conference of the PHM Society, 9(1). https://doi.org/10.36001/phmconf.2017.v9i1.2479
Abstract 73 | PDF Downloads 58

##plugins.themes.bootstrap3.article.details##

Keywords

software health management, Subsystem Health Monitoring, Runtime verification

References
Adapteva. (2014). E64G401 Epiphany 64-core Microprocessor Datasheet Retrieved from http://www.adapteva.com/docs/e64g401 datasheet.pdf
Adapteva. (2017). The Parallella board. Retrieved from https://www.parallella.org/board
Berkovich, S., Bonakdarpour, B., & Fischmeister, S. (2015). Runtime verification with minimal intrusion through parallelism. Formal Methods in System Design, 46(3), 317–348.
Geist, J., Rozier, K. Y., & Schumann, J. (2014). Runtime Observer Pairs and Bayesian Network Reasoners Onboard FPGAs: Flight-Certifiable System Health Management for Embedded Systems. In RV14 (pp. 215–230).
Heffernan, D., Macnamee, C., & Fogarty, P. (2014). Runtime verification monitoring for automotive embedded systems using the ISO 26262 functional safety standard as a guide for the definition of the monitored properties. IET Software, 8(5), 193-203.
Lowry, M., Rayadurgam, S., Schumann, J., Pressburger, T., & Dalal, M. (2017). Integrating run-time and designtime assurance for AOS. In Safe and Secure Systems and Software Symposium (S5).
Meredith, P. O., Jin, D., Griffith, D., Chen, F., & Ros¸u, G. (2012). An overview of the MOP runtime verification framework. International Journal on Software Tools for Technology Transfer, 14(3), 249–289.
Moosbrugger, P., Rozier, K. Y., & Schumann, J. (2017). R2U2: Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems. Formal Methods in System Design, 51(1), 31–61.
Olofsson, A., Nordstr¨om, T., & Zain-ul-Abdin. (2014). Kickstarting high-performance energy-efficient manycore architectures with Epiphany. CoRR, abs/1412.5538.
Pellizzoni, R., Meredith, P., Caccamo, M., & Rosu, G. (2008). Hardware runtime monitoring for dependable COTS-based real-time embedded systems. In RTSS08 (pp. 481–491).
Reinbacher, T., Brauer, J., Horauer, M., Steininger, A., & Kowalewski, S. (2014). Runtime verification of microcontroller binary code. Science of Computer Programming, 80, 109–129.
Reinbacher, T., F¨ugger, M., & Brauer, J. (2013). Real-time runtime verification on chip. In RV13 (pp. 110–125).
Reinbacher, T., Geist, J., Moosbrugger, P., Horauer, M., & Steininger, A. (2012). Parallel runtime verification of temporal properties for embedded software. In MESA12 (pp. 224–231).
Reinbacher, T., Rozier, K. Y., & Schumann, J. (2014). Temporal-logic based runtime observer pairs for system health management of real-time systems. In TACAS14 (pp. 357–372).
RTCA. (2012). DO-178C/ED-12C: Software considerations in airborne systems and equipment certification. Retrieved from http://www.rtca.org
Schumann, J., Moosbrugger, P., & Rozier, K. Y. (2016). Runtime Analysis with R2U2: A Tool Exhibition Report. In RV16 (pp. 504–509).
Schumann, J., Roychoudhury, I., & Kulkarni, C. (2015). Diagnostic reasoning using prognostic information for unmanned aerial systems. In PHM15.
Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., & Ippolito, C. (2013). Towards realtime, on-board, hardware-supported sensor and software health management for unmanned aerial systems. In PHM13 (pp. 381–401).
Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., & Ippolito, C. (2015). Towards realtime, on-board, hardware-supported sensor and software health management for unmanned aerial systems. IJPHM, 6(1), 1–27.
Tolker-Nielsen, T. (2017). Exomars 2016 - Schiaparelli anomaly inquiry (Tech. Rep.). European Space Agency. Retrieved from http://exploration.esa.int/jump.cfm?oid=59176
Tsai, J. J. P., Fang, K. Y., Chen, H. Y., & Bi, Y. D. (1990). A noninterference monitoring and replay mechanism for real-time software testing and debugging. IEEE Trans SW Eng, 16(8), 897–916.
Watterson, C., & Heffernan, D. (2007). Runtime verification and monitoring of embedded systems. IET Software, 1(5), 172-179.
Section
Technical Papers