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ABSTRACT

Dynamic monitoring of software and system health of a com-
plex cyber-physical system requires observers that continu-
ously monitor variables of the embedded software in order to
detect anomalies and reason about their root causes. There
exists a variety of techniques for code instrumentation, but
instrumentation might change runtime behavior and could re-
quire costly software re-certification.

In this paper, we present R2U2/E, a novel realization of
our real-time, Realizable, Responsive, and Unobtrusive Unit
(R2U2). The R2U2/E observers are executed in parallel on
a dedicated 16 or 64 core EPIPHANY co-processor, thereby
avoiding additional computational overhead to the system un-
der observation. A DMA-based shared memory access archi-
tecture allows R2U2/E to operate without any code instru-
mentation or program interference.

1. INTRODUCTION

Modern cyber-physical systems, like unmanned aircraft
(UAS), autonomous vehicles, or space systems are equipped
with numerous sensors that make it possible for the system
to perceive its environment and enable accurate guidance,
navigation, and control. Measurements of these sensors
need to be processed in real-time by a software system of
considerable size. Functions for advanced autonomous op-
erations, decision making, and planning substantially add to
the complexity of the software. This software, which needs
to be executed on board of the aircraft obviously is highly
safety-critical: failures can cause not only loss of the vehicle
and an unsuccessful end of the mission, but also might harm
human life. Therefore, such software must undergo rigorous
certification.
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Nevertheless, such cyber-physical systems can fail due to a
multitude of reasons. Faulty sensors, unreliable communica-
tion between sensor subsystem and flight computer, errors in
the design or implementation of the control system or control
logic can cause problems that could lead to total loss of the
mission or destruction of the vehicle.

If, however, off-nominal situations can be detected reliably,
on-board and in real-time, then mitigation actions can be trig-
gered, or dangerous actions avoided in the first place.

For example, the European Mars lander, Schiaparelli encoun-
tered several errors during descent and landing, which caused
the probe to shut down its retro rockets at an altitude of sev-
eral kilometers, causing it to crash into the planet with a ve-
locity of about 150m/s. A detailed incident report (Tolker-
Nielsen, 2017) found out that saturated values of the inertial
measurement units were handled wrongly by the guidance
and navigation software — it suddenly estimated a negative
altitude. Based upon those wrong estimates, the weak deci-
sion logic assumed that landing had taken place, turned off
the rockets, and activated post-landing procedures. However,
the probe was still about 3.7km above the ground. Redundant
instruments, like a Radar Doppler Altimeter (RDA), had pro-
duced correct measurements, but they had been ignored. The
incident report therefore recommends, among others (recom-
mendation 05, (Tolker-Nielsen, 2017)):

Robust and reliable sanity checks shall be implemented in the on-
board S/W to increase the robustness of the design, which could be,
but not limited to:
• Check on attitude
• Check on altitude sign (altitude cannot be negative).
• Check on vertical acceleration during terminal descent and

landing (cannot be higher than gravity).
• Check altitude magnitude change (it cannot change from 3.7

Km to a negative value in one second).
• Check wrt pre-flight timeline (altitude or acceleration profile vs

time) to check consistency of measurements
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Our system R2U2 (real-time, Realizable, Responsive, and
Unobtrusive Unit) has been designed to carry out checks
about safety and performance properties, sensor and soft-
ware consistency, as well as performing diagnostic reason-
ing and prognostics in real time while the system is in op-
eration. R2U2 combines signal processing, Metric Temporal
Logic, Bayesian Networks, and model-based prognostics to
enable the system designers to develop powerful and expres-
sive models. Checks, like those mentioned above could be
easily modeled within R2U2. A check against the pre-flight
timeline could look like

RDA-switch-on! ⌃[25,35]Backshell-separation

After the RDA has been switched on, the backshell needs to
separate within the next 25 to 35 seconds (cf. (Tolker-Nielsen,
2017), Fig. 2). R2U2 can perform numerous checks and per-
form diagnostic reasoning for root cause analysis in case of
an anomaly.

However, this checking has to come with a prize: usually,
run-time monitoring is done using software observers that are
brought into the code by instrumentation of the flight soft-
ware. Although a large number of approaches exist, there are
two severe drawbacks: additional burden on the CPU load of
the flight computer and software safety/certification issues.

It is obvious, that any additional code that must be executed
within the inner control-loop of a safety-critical system can
alter its runtime behavior. That may lead to violation of real-
time constraints, time overruns, or missed cycles. In particu-
lar, on small and weak flight computers as are often used on
drones or small spacecraft, that can lead to severe misbehav-
ior of the software and subsequent system crashes. There are
stories that small drones of a student project crashed during
flight, because the students simply added some printf state-
ments to log additional variables (pers. comm). So, a suc-
cessful monitoring must be unobtrusive in the sense that it
should not change the temporal behavior of the software or
change the CPU burden.

Flight software, as mentioned earlier, is highly safety-critical.
Therefore, regulations and standards require that this soft-
ware is certified according prescribed, published standards.
For example, DO-178C (RTCA, 2012) defines software de-
velopment standards for safety-critical software in commer-
cial transport aircraft. Certification is a highly complex,
costly and time-consuming process, where the software, after
passing is not allowed to be modified again. So, the addition
of run-time monitors to the software would require a full soft-
ware re-certification, something that is, in most cases, out of
the question.

In this paper, we present R2U2/E, a realization of R2U2, that
combines high performance, low power requirements with an
extremely high level of unobtrusiveness. Previous R2U2 ver-

sions (Geist, Rozier, & Schumann, 2014; Reinbacher, Rozier,
& Schumann, 2014; Schumann, Rozier, et al., 2015) have
been developed on a dedicated FPGA chip in order to ad-
dress the above-mentioned challenges. The new monitoring
and reasoning engines of R2U2/E are executed on a modern
EPIPHANY chip (Olofsson, Nordström, & Zain-ul-Abdin,
2014), a high-performance, energy-efficient MIMD architec-
ture with an efficient 2D mesh Network-on-Chip and a dis-
tributed shared memory model. Designed as a powerful co-
processor for numeric computation in real-time embedded
systems, this architecture combines low power requirements
with a high degree of parallel execution.

We are using the EPIPHANY chip as a co-processor to a
Zynq 7000 Series SoC system, that is running a Linux op-
erating system with the flight software. A built-in frame-
buffer architecture allows the EPIPHANY chip to access cer-
tain memory locations of the main memory using direct mem-
ory access (DMA).

R2U2/E is running in parallel on the EPIPHANY chip and
fetches the values of variables to be monitored from the main
processor’s memory. Using this novel architecture, we can
monitor sensor variables and the flight software without hav-
ing to instrument or modify the software.

Our approach addresses the two main challenges for instru-
mentation, (Watterson & Heffernan, 2007): (1) probes must
be capable of observing enough relevant information in order
to determine the system’s state, and (2) the behavior of the ob-
served system must not be affected. In the application domain
of safety-critical systems (e.g., an autopilot), critical data are
usually placed in static (dedicated) memory locations. Hence,
we have a prior knowledge or can determine the memory lo-
cation of relevant data for monitoring on startup of the sys-
tem. Besides, the memory access by means of a dedicated
DMA channel, which is executed by a dedicated processing
unit operates not only independently, but does not cause ad-
ditional computational overhead on the observed system or
alter its behavior.

The main contributions of this paper are:

• development of an unobtrusive Co-processor based mon-
itoring architecture for R2U2/E. The flight software is
running on the main processor and can be monitored in
real-time without having to instrument it,

• development of a parallel execution architecture for
R2U2/E, which uses the available processors to execute
the various R2U2 components in parallel, and

• performance and power consumption analysis of
R2U2/E running on a Parallella board (Adapteva, 2017)
with a 16 and 64 core EPIPHANY co-processor.

The rest of this paper is structured as follows: In Section 2 we
discuss related work. Section 3 will give a short overview of
R2U2 and its implementation variants, as well as a short de-
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scription of the EPIPHANY multiprocessor and the Parallella
board. Section 4 discusses details of the parallel architecture
and the unobtrusive access techniques used by R2U2/E. In
Section 5, we show results of experiments on measuring the
performance of R2U2/E on the Parallella board. Section 6
concludes and discusses future work.

2. RELATED WORK

Tsai, Fang, Chen, and Bi (1990) and Watterson and Heffernan
(2007) discuss non-intrusive monitoring. A dedicated moni-
toring system taps into the communication bus between the
processor and the memory. This requires that each mem-
ory access (also non-related) is processed immediately, which
forces the monitoring system to operate event triggered at a
high rate. Reinbacher, Függer, and Brauer (2013), Heffernan,
Macnamee, and Fogarty (2014), and BusMOP (Pellizzoni,
Meredith, Caccamo, & Rosu, 2008; Meredith, Jin, Griffith,
Chen, & Roşu, 2012) follow a similar non-intrusive approach
to tap into a communication bus and use an FPGA implemen-
tation in order to achieve the required performance. R2U2/E,
on the other hand, does not need to monitor the complete bus-
traffic but can access an arbitrary memory location at a spe-
cific time since it uses a dedicated DMA channel. Therefore,
it can operate independently of the system under observation.

Reinbacher, Brauer, Horauer, Steininger, and Kowalewski
(2014); Reinbacher, Geist, Moosbrugger, Horauer, and
Steininger (2012) use a parallel FPGA design for creating
runtime monitors. Similar to R2U2/E, Berkovich, Bonakdar-
pour, and Fischmeister (2015) use a dedicated multicore
architecture for optimizing the performance of runtime mon-
itors. Their monitors run on a dedicated GPU in order to
minimize the overhead on the system under observation.
They generate an instrumented C program from a specifi-
cation, whereas R2U2/E follows a non-intrusive approach.
Typical GPUs have a high performance, but with a power
consumption that can be orders of magnitude higher than the
EPIPHANY chip, making that approach less suitable for low
power embedded applications.

3. BACKGROUND

3.1. R2U2

R2U2 has been designed as tool for continuous monitoring
and system/software health management. Properties can be
specified in past-time and future-time Metric Temporal Logic
(MTL) as well as “mission time” Linear Temporal Logic.
Bayesian Networks can be used to perform probabilistic di-
agnostic reasoning and root cause analysis. The R2U2 engine
receives a vector of sensor signals and values of variables at
a certain rate (Figure 1A). The atomic propositional check-
ing (AT) unit performs various forms of signal processing,
filtering, and component prognostics (Schumann, Roychoud-
hury, & Kulkarni, 2015) before the values are discretized.

The temporal logic processing units (TL) are implemented as
special-purpose processors and use advanced monitoring al-
gorithms using storage queues (Reinbacher, Rozier, & Schu-
mann, 2014), which requires only a small memory footprint
and enables fast processing. Outputs of TL can be fed into
the Bayesian Network (BN) execution unit, which calculates
posterior probabilities of components and failure modes. BN
uses an efficient representation of the Bayesian Network as
an Arithmetic Circuit (?, ?; Schumann, Rozier, et al., 2015).
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Figure 1. R2U2 Versions

R2U2 has been developed in three main versions: the FPGA
standalone version (Reinbacher, Rozier, & Schumann, 2014)
(Figure 1A) was developed for high performance applications
and resilience against tampering. Its AT, BN, and TL compo-
nents communicate via an internal communication bus. Each
of these building blocks can be instantiated as an arbitrary
number of parallel copies, depending on the required per-
formance and available FPGA resources. The R2U2 FPGA
version has been used on different case studies, as for exam-
ple, on the NASA Swift UAS, where it was able to detect a
failing altimeter, a wrong configured magnetometer, or pitch
oscillation induced by faults originating from the file system
(Schumann et al., 2013; Geist et al., 2014).

The hybrid version of R2U2 instantiates the AT and BN
building blocks either as software components, or as part
of the FPGA design (Figure 1B). To that end, we utilize a
Xilinx Zynq SoC-FPGA chip which enables us to execute
software on the embedded ARM CPU, instantiate the FPGA
building blocks in the programmable logic section, and use
chip-internal communication interfaces between these com-
ponents. This version benefits from the flexibility of software
development and allows to steer the tradeoff between per-
formance and resource consumption. The hybrid version of
R2U2 has been used on the NASA Dragoneye UAS to mon-
itor and diagnose safety and security threats as, for example,
GPS Spoofing, or malicious attacks through attack patterns
(Moosbrugger, Rozier, & Schumann, 2017). It also has been
used for on-board battery prognostics (Schumann, Roychoud-
hury, & Kulkarni, 2015).

The R2U2 software-only version (Figure 1C) has been devel-
oped to run exclusively as a software component, opening up
new application areas. This R2U2 variant has be instantiated
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as a software “app” of the NASA Autonomy Operating Sys-
tem (AOS) (Lowry, Rayadurgam, Schumann, Pressburger, &
Dalal, 2017) to provide monitoring and diagnostic capabil-
ities for autonomous UAS operations. Our different R2U2
versions use the same modeling tool-chain in order to facili-
tate model interchange and reuse.

3.2. EPIPHANY and Parallella

The Parallella board is a credit-card sized high performance
computer featuring a dual-core ARM A9 processor and a 16
or 64 core EPIPHANY co-processor. This co-processor con-
sists of a scalable array of simple RISC processors with a
fast floating-point arithmetic unit. This MIMD (Multiple In-
struction, Multiple Data) mesh of independent cores is con-
nected together with a fast on-chip network within a dis-
tributed shared memory architecture (Olofsson et al., 2014).
A low-level library provides access mechanisms to the on-
chip distributed memory and the memory of the ARM pro-
cessor, Mutexes and other synchronization mechanisms, as
well as utility functions to load and control each of the cores.
Each core has two dedicated DMA channels for high-speed
data transfer between the different on- and off-chip memory
regions.

According to the EPIPHANY datasheet (Adapteva, 2014) the
processor is tailored to low power applications and capable
to achieve 102 GFLOPS peak performance while consuming
less than 2 Watts.

4. PARALLEL ARCHITECTURE OF R2U2/E

The R2U2/E architecture has to meet two important goals:
performance gain of the R2U2 monitoring and reasoning
components by exploiting the multicore architecture of the
EPIPHANY chip, and a highly unobtrusive access to the vari-
ables of the system under observation (SuO) running on the
main processor of the Parallella board.

4.1. Architecture
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Figure 2. Architecture of R2U2/E on Parallella

Figure 2 shows an overview of the architecture of R2U2/E.
The system under observation (SuO), e.g., the autopilot soft-

ware, is executed on the ARM CPU of the Parallella board as
a Linux process and can communicate with external subsys-
tems and sensors (not shown here). The SuO is configured
in such a way, that global variables of interest are located
in a specific region of the memory, which can be accessed
by R2U2 running on the EPIPHANY chip. A hardware-
based DMA (direct memory access) mechanism allows the
EPIPHANY hardware interface to copy data from specific
parts of the DRAM into the local memory of the EPIPHANY
chip. This low-level access and synchronization is imple-
mented in hardware in such a way that the Linux process is
oblivious to this access and no process- or context switches
or interrupts need to occur. With this architecture, the SuO
need not be instrumented for monitoring, and its execution is
not unduly affected by the monitoring.

R2U2/E itself resides on the cores of the EPIPHANY chip.
An additional program, running as a Linux process on the
ARM CPU is in charge of initializing the cores, coordinating
the data transfer, controlling the time stamps, or to start miti-
gation actions. For clarity, Figure 2 does not show this com-
ponent. The R2U2/E master on one of the cores is in charge
of controlling the data transfer and setting up for the worker
cores that contain distributed versions R2U2 components. In
the following, we will present the detailed architecture and
data flow on the EPIPHANY chip as well as the access mech-
anisms to the memory of the ARM CPU.

4.2. Parallel Execution

The execution model of R2U2/E attempts to obtain speed-
ups with a two-level parallelization scheme: (a) execute the
R2U2 components (AT, BN, TL) in parallel to the master M
that is handling the data transfer, and (b) execute the AT and
TL component in parallel by splitting up the R2U2 model.
Each of the R2U2 components can be seen a functional block
that take an input vector It at time t and produces an output
vector Ot+1. Signal values St comprise the input to AT.

In our model, we run all worker processes in a synchronous
loop, as shown in Algorithm 1, synchronized by barriers. By
using two sets of input and output vectors, the individual com-
ponents of R2U2/E TL can be executed in parallel on differ-
ent cores. Because the workers need to have access to the
previous values of inputs and outputs, we use buffers BI and
BO that point to the respective vectors in order to avoid un-
necessary copies. These buffers and the vectors are located in
the EPIPHANY RAM that can be accessed by all cores.

For the inner level of parallelism, we employ the fact that an
R2U2 model is highly modular: a model consists of a num-
ber of filters that work on the input signals, which can be
Booleans, integers, floating point numbers, but also strings or
complex data structures. Each filter produces, for each time
stamp t, a single element of the input vector I . Therefore,
we can, without any additional need for synchronization, run
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Algorithm 1 R2U2/E. Initially: v = true, t = 0

BI  [I1, . . . , I4]; BO  [O1, . . . , O4]; BS  [S1, S2]
while true do

in parallel {
M :
if v then

swap(BI
1 , B

I
2); BS

1  DMA;
R2U2 BO

3 ; swap(BO
2 , BO

3 );
else

swap(BI
3 , B

I
4); BS

2  DMA;
R2U2 BO

1 ; swap(BO
4 , BO

1 );
end if
AT i :
if v then

BI
1  AT(BS

2 );
else

BI
3  AT(BS

1 );
end if
TLi :
if v then

BO
1  TL(BI

3 , B
I
4 , B

O
4 )

else
BO

3  TL(BI
1 , B

I
2 , B

O
2 )

end if
BN i :
if v then

BO
1  BN(BI

3)
else

BO
3  BN(BI

1)
end if
} barrier
t t+ 1; v  v̄

end while

different AT filters on different cores. In a similar way, the
R2U2 model consists of numerous individual temporal for-
mulas that can be executed independently on different pro-
cessors. Figure 3 shows the situation, where the TL engines
have access to all elements of the current input vector BI , but
only write to disjoint subsets of the output vector BO.
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Figure 3. Memory access for R2U2/E cores. Input and output
vectors used shared memory on the EPIPHANY chip

Here, our parallel execution model builds upon the memory-
mesh architecture of EPIPHANY, which allows multiple

cores to read the same memory cell. Unprotected writes are
only possible by one processor. The mapping of the elements
of the R2U2 model will be described below. In case, AT must
access results of TL or BN, as, for example, to discretize a
posterior probability, those results are fed back to the input
vector and will be processed at the next time stamp as is done
in all R2U2 implementations.

4.3. Load Balancing

The maximum update rate Rmax of R2U2/E is governed by
the maximum of the execution times, the master and each of
the workers need for one update step. It is therefore essential
to break down the individual components of the R2U2 model
into subsets that roughly exhibit the same execution time.

Each AT filter, the execution of a Bayesian network, and
the temporal logic operators have bounded, statically deter-
minable execution times (for proofs see (Reinbacher, Rozier,
& Schumann, 2014)), We are currently using a simple static
allocation method that is based upon averages of measured
execution times for the individual formula components. The
actual time-stamp rate RR2U2 must be set to a value smaller
than Rmax in order to avoid timing skews.
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Figure 4. Architecture of R2U2/E and SuO

4.4. Access to Software under Observation

The software to be monitored by R2U2, the software under
observation (SuO) is executed as a regular process on the
Linux system; global variables that are of interest for R2U2
are located in the system’s RAM memory. Ideally, R2U2 only
needs to get to know the physical memory addresses of those
global variables and then could pull their values using a direct
memory access (DMA) channel. This unprotected read-only
access is possible on the Parallella board. However, it would
require low-level code modifications.

For this paper, we therefore use a different approach (Fig-
ure 4): the Parallella board has a built-in frame buffer, that
is usually used to drive the video display. Technically, this
is nothing more than a region of shared memory that can be
accessed by other processes or the EPIPHANY cores. Since
R2U2 is only doing read accesses to this memory no addi-
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tional access protection is needed. The loader of the SuO is
directed to place all global variables into the frame buffer. No
instrumentation or other modification of the code is required.

The R2U2 process on the host is in charge of pulling the
global variables from the frame buffer into a shared buffer
that can be accessed by the EPIPHANY cores in regular in-
tervals. Its main loop then notifies the R2U2 master on the
EPIPHANY that new data are available and that processing
by the EPIPHANY worker cores should start. After paral-
lel execution, results are read back into the host memory and
logged or used to trigger mitigation actions. Figure 4 shows
the various components of R2U2 and the interaction between
their memory regions.

5. EXPERIMENTS AND RESULTS

In this section, we present results on experiments to evalu-
ate the performance of the R2U2/E architecture. We have
instantiated this architecture for a 16 core EPIPHANY chip
mounted on a Parallella board. The SuO and the host R2U2
components are running as individual Linux processes. For
this paper, we restrict ourselves to only analyze the run-time
behavior of the temporal processing unit (TL).

In a first experiment, we evaluated the overhead the SuO has
to face, when it is writing variables into the framebuffer. For
an inner-loop access, the time to write a variable was about
7.5ns and did not change noticeable from the time needed
to write to the non-shared global memory. The time also did
not change measurably, when R2U2 was accessing the shared
frame buffer. This indicates that monitoring via R2U2/E can
be done in a very unobtrusive manner.

We then determined the execution times for a single update
of the R2U2 master running on the EPIPHANY chip. Table 1
shows that it takes considerable time on the host component
to package the data, start the master, which in turn fetches
the data and sends back results. As expected, most of the
time is spent copying the input and result data between the
processors. A single update cycle of the R2U2 master takes
about 13µs without data transfer. We also observed that a
high rate, with which the SuO writes into the frame buffer
can slow down the R2U2/E cycle rate. Note that here, we
are measuring means of minimal execution times for R2U2
operations. In a regular application, R2U2 would be executed
with a fixed update rate R, which must be larger than our
experimentally obtained maximum update rate.

In order to obtain execution times for each TL operator, we
use typical formulas from prior case studies, (Moosbrugger
et al., 2017; Schumann, Moosbrugger, & Rozier, 2016; Geist
et al., 2014; Schumann, Roychoudhury, & Kulkarni, 2015) or
artificial formulas running on regular input traces.

Table 1 shows mean execution times for Boolean operators
(_,^,!,¬), the � (previously) operator, as well as MTL

operators with time points (e.g., ⇤[10]p) and intervals (e.g.,
⇤[5,10]p). As a comparison, we measured the run-times of
the software version of R2U2 as called from the octave1 sys-
tem. Here again, we ignore the interface overhead to octave.
In a sequential mode, the single operators take about twice the
time on the EPIPHANY chip. However, as soon as more than
2 workers are operating at full speed, R2U2/E will be faster
than R2U2 running on the ARM CPU. Theoretically, a max-
imum speed-up of about 7 over the ARM execution should
be achievable with a 16 core EPIPHANY chip. On a 64 core
chip, a considerably higher speed-up of about 30 should be
possible.

Table 1. Basic performance for R2U2/E (†) and R2U2 run-
ning on ARM A9 (‡)

Operation t[us]† t[us]‡

Master (M) 13.1 NA
M with transfer 28.2 NA
M with high bandwidth transfer 38.4 NA
Boolean 0.23 0.12
Temporal (time point) 0.4 0.2
Temporal (interval) 0.8 0.45
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Figure 5. Performance of R2U2/E

The overall calculation time for our models depends on the
number as well as the types of TL operators in the formula.
Figure 5A shows the mean execution time of two different
formulas being executed. The number of operators in the for-
mula corresponds to the number of instructions of the TL pro-
cessor. Each of them have been executed on a single core, as
well as on our 16 core implementation. Times have been mea-
sured without data transfer. The red and the magenta traces
1
http://octave.org
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are formulas that contain 5 temporal logic operators with tim-
ing constraints, whereas the blue and the green trace do only
contain only temporal logic operators without intervals.

As Figure 5A shows, the execution time grows linearly with
the size of formula, as long as the type of the TL operators
does not change. Figure 5B indicates how an increasing num-
ber of temporal operators lead to slightly increased (sequen-
tial) execution times. The relatively low number of temporal
operators compared to Boolean operators is indicative of most
of our R2U2 models.

Figure 5A also shows how the non-trivial time consumed for
synchronization and data transfer influences the overall sys-
tem behavior. Even with a formula length of 255 operators
(currently the maximum for this configuration) and optimal
load balancing, the execution time on 16 cores is still domi-
nated by the synchronization overhead of 13.1µs.
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Figure 6. Speed-ups for R2U2 model with 198 Boolean and
36 temporal operators

The substantial data transfer and synchronization overhead
reduces the achievable speed-up for smaller R2U2 models.
Figure 6 shows the speed-up curves for an existing R2U2
model. Brown and blue lines show the measured speed-up
values against running R2U2/E with one TL core for a ran-
dom mapping of formulas to the cores (blue) and for a near-
optimal mapping (brown). The execution times of the host
and master component of R2U2/E limit the maximal speed
up to approximately 3 for this formula (red line in Figure 6),
which is achieved when a larger number of cores are active.
The dashed blue line corresponds to the maximal speed-up
ignoring communication and synchronization overhead. It
shows that for this R2U2 formula only 3 cores could be kept
busy in a meaningful manner. This in an indication that the
R2U2/E architecture is most beneficial for large and complex
sets of temporal formulas.

For the R2U2/E implementation, we made initial measure-
ments on the overall power consumption. Execution of the TL
engine on the ARM CPU (ignoring all data transfer) uses ap-
proximately 0.2W. 15 workers on the EPIPHANY chip take
0.35W of power (again ignoring all data transfer), yielding
a reduction in power usage by a factor of approximately 8.
The overall R2U2/E architecture on the host side and on the
EPIPHANY chip uses approximately 1.5W. Since we could
not measure the power consumption of the individual compo-

nents of the Parallella board separately, these numbers should
be regarded with caution.

6. CONCLUSIONS

In this paper, we presented R2U2/E, a parallel and unobtru-
sive architecture of the R2U2 runtime monitoring system,
which is running on a parallel EPIPHANY chip with 16 or
64 cores. The execution of R2U2 on a co-processor relieves
the flight computer from computational burdens for monitor-
ing and makes R2U2 substantially more unobtrusive. With a
DMA-based architecture for the access of variables of inter-
est, the flight software does not need to be instrumented or
otherwise modified and can access these data without chang-
ing the behavior of the flight software in a noticeable manner.

On the EPIPHANY chip, a master processor handles synchro-
nization and data transport and is in charge of controlling all
workers that work in lock-step on the given input data. Inde-
pendent subformulas can be executed in parallel on different
processors, providing a good potential for high speed ups for
most R2U2 models.

Although R2U2/E can achieve timestamp rates for the tem-
poral logic engine of about 20kHz, there is much room for
improvement of this architecture. In particular, the transfer
of the data from SuO via the host-side R2U2 currently is the
main bottleneck prohibiting higher update rates. Direct mem-
ory access of the R2U2 master on the shared buffer should
solve this issue. Furthermore, R2U2/E on the EPIPHANY
will be extended to handle control and should only notify the
host-side of R2U2 in case properties are violated, which is
expected to happen only at a low rate.

The current implementation of R2U2/E replicates the formu-
las over all cores, thus wasting precious local memory. Small
changes to the R2U2 modeling and compilation tool chain
will allow us to monitor more and larger properties, taking
advantage of the inherent speedup. Finally, we are planning
to investigate how to specify R2U2 models, which contain
components with bounded, but high computational require-
ments, e.g., large Bayesian networks or model-based particle
filters and how to efficiently map them to our R2U2/E archi-
tecture.
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