Automatic detection of rare observations during production tests using statistical models
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Engines are verified through production tests before delivering them to customers. During those tests, lot of measures are taken on different parts of the engine, considering multiple physical parameters. Unexpected measures can be observed. For this very reason, it is important to assess if these unusual observations are statistically significant.
However, anomaly detection is a difficult problem in unsupervised learning. The obvious reason is that, unlike supervised classification, there is no ground truth against which we could evaluate results. Therefore, we propose a methodology based on two independent statistical algorithms to double check our results. One approach is the Isolation Forest (IF) model which is specific to anomaly detection and able to handle a large number of variables. The goal of the algorithm is to find rare items, events or observations which raise suspicions by differing significantly from the majority of the data and, at the same time, it discriminates non-informative variables to improve. One main issue of IF is its lack of interpretability. Within this scope, we extend the shapley values, interpretation indicators, to the unsupervised context to interpret the model outputs.
The second approach is the Self-Organizing Map (SOM) model which has nice properties for data mining by providing both clustering and visual representation. The performance of the method and its interpretability depends on the chosen subset of variables. In this respect, we first implement a sparse-weighted K-means to reduce the input space, allowing the SOM to give an interpretable discretized representation.
We apply the two methodologies on data on aircraft engines measurements. Both approaches show similar results which are easily interpretable and exploitable by the experts.
How to Cite
##plugins.themes.bootstrap3.article.details##
Anomaly Detection, Production tests, Statistical learning, Unsupervised learning, Model Selection, Interpretability, Clustering, Variable importance
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.