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ABSTRACT

Engines are verified through production tests before delivering
them to customers. During those tests, numerous measures
are taken on different parts of the engine, considering multiple
physical parameters. Unexpected measures can be observed.
For this very reason, it is important to assess if these unusual
observations are statistically significant.

However, anomaly detection is a difficult problem in unsuper-
vised learning. The obvious reason is that, unlike supervised
classification, there is no ground truth against which we could
evaluate results. Therefore, we propose a methodology based
on two independent statistical algorithms to double check the
results. One approach is the Isolation Forest model which
is specific to anomaly detection and able to handle a large
number of variables. The goal of the algorithm is to find rare
items, events or observations which raise suspicions by dif-
fering significantly from the majority of the data and, at the
same time, it discriminates non-informative variables to im-
prove estimation. One main issue of Isolation Forest is its lack
of interpretability. Within this scope, we extend the Shapley
values, interpretation indicators, to the unsupervised context
to interpret the model outputs.

The second approach is the Self-Organizing Map (SOM)
model which has nice properties for data mining by providing
both clustering and visual representation. The performance
of the method and its interpretability depend on the chosen
subset of variables. In this respect, we first implement a sparse-
weighted K-means to reduce the input space, allowing the
SOM to give an interpretable discretized representation.

Alex Mourer et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

We apply both methodologies on aircraft engines data. Both
approaches show similar results which are easily interpretable
and exploitable by the experts.

1. INTRODUCTION
As an aircraft engines manufacturer, Safran verifies all indi-
vidual engines before delivering to the customer during pro-
duction tests. Those bench test operations generate lots of
measures for different parts of the engines, resulting in mul-
tiple physical parameters acquisitions. As we may encounter
unexpected measures, it is important to detect their causes and
relevance. We build statistical methods to reach this goal.

Variations between performances of engines are common.
Nevertheless, the production tests that verify essential engine
functions before delivering it to an airline company are done
in different bench test cells, under different ambient condi-
tions, etc. A thermodynamic model is applied to compensate
for context variations but there still exist some second level
residuals we may have to compensate to enhance the quality
of the measurements. They essentially depend on test bench
components like slave cowls, but also sites and suppliers.

Therefore, one of the objectives is to take into account test
bench components effects. Furthermore, there is no universally
admitted way to evaluate unsupervised anomaly detection
algorithms results. Hence, we proposed a new methodology
based on two different algorithms.

• Large number of variables (>50) make statistical estima-
tion challenging, especially w.r.t. the small number of en-
gines (591). Therefore, a specific algorithm for anomaly
detection, named Isolation Forest Liu et al. (2008), is
proposed. Isolation-based methods measures the prob-
ability to be isolated and anomalies are those that have
the highest probability. In randomly generated binary
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trees, where instances are recursively partitioned, the trees
produce noticeable shorter paths for anomalies. In fact,
regions occupied by anomalies are low density regions,
which result in a smaller number of partitions (shorter
paths). Furthermore anomalies have, by definition, dis-
tinct feature-values and thus they are more likely to be
separated early in the partitioning process.

• Then, another unsupervised algorithm named, Self-
Organizing Map (SOM) is applied Kohonen (1982). It
acts as an extension of the k-means algorithm that pre-
serves as much as possible the topological structure of the
data. Moreover, SOM has an intrinsic distance between
prototypes and their direct neighbours. This latter repre-
sentation can validate the estimation of Isolation Forest
if the results coincide. Finally, SOM gives a discretized
representation of the input space, which categorize anoma-
lies. The categorization helps to understand the origin of
the problem.

In addition to the rare events detection task, we need to provide
explanations of the different models. Moreover, important
parameters must be discovered at a local level to figure out
flaws in a single engine and at global level to discern origins
of unexpected variations and inherent bias.

2. DATA ANALYSIS
2.1. Structure of the Data

The characteristics of the test bench data used in the analysis
are as follows:

• 14 variables are chosen in an expert-manner by domain
experts of the performance team of Safran. They are not
generally interested in other variables and thus we limit
ourselves to this subset of variables. However, in future
works we will consider a larger set of variables.

• 591 engines are observed.
• 4 stabilized points are considered.

A stabilized point, is a fixed level of performance for which
all engines are tested and measurements acquired. They are
ordered from the lowest to the highest level of performance. In
the database, six are available but we do not consider the two
first because they are taken at low engine speeds where there
is a lot of variance in measures which makes them difficult to
analyze. The measures of interest are listed below. Nine of
them are numerical variables:

• FNIN1 : Thrust (FN: performance).
• XN12R : LP spool speed (N1: fan speed).
• XN25R : HP spool speed (N25: core speed).
• WF36 : Fuel flow.
• W2AR : Engine corrected air flow.
• P3 : HP compressor discharge pressure.
• T49C : LP turbine inlet temperature (EGT: exhausting

gas temp).

• T3: HP compressor discharge temperature.
• P18QSC: Pressure section 18 normalized by standard

conditions.

where HP and LP stand for High pressure and Low pressure
respectively. The variables listed above are described in Figure
1. Moreover, four variables are categorical and represents test
bench components:

• CELL : Bench.
• CNOZ : Primary nozzle.
• BMSN : Air nozzle.
• COWL : Nacelle.

Figure 1. Simplified diagram of a turbofan engine where the
different measured variables are specified.

2.2. Bias in Data
An analysis of the data shows that production tests data are
biased by test bench components. However, normalizing vari-
ables successively by each test bench component is an accept-
able method only if test bench components are independent
with each others. In this case we found out, using a pairwise t-
test, that this type of normalization does not remove the bias in
the data. Thus, it is preferred to keep the non-standardized data
and to include the bench components to our models, which
will be able to handle interactions between variables.

3. EXPERT KNOWLEDGE TO DEFINE ANOMALIES
Some pre-treatments are needed before detecting unusual case
in the data. As said before, it is normal to have variance in
production tests data. Those fluctuations do not necessarily
represent unexpected behavior. In practice, the behavior of
an engine is not defined with measurements taken indepen-
dently, but it is defined between pairs of measurements. Thus,
an engine has a normal level of functioning if it has a “con-
stant ratio” between some defined pairs of variables across the
stabilized points considered.

In other words we do not define an anomaly considering the
observed values but we construct a new data set from the
observed one where each variable is constructed considering
the dependence between pairs of measurements.
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In the new data set the dependence between the pairs of vari-
ables is of importance, and especially the evolution of these
dependencies across the different stabilized points. At each
stabilized point a physical equation describes the relationship
for each pair of variables and reveals the expected behavior of
engines.

Figure 2 shows an example of the physical equation (red line)
for the pair of variables (FNIN1, W2AR) and the observed
values for the set of engines at the fourth stabilized point.
The line gives one important information, that is the expected
relationship between the thrust (FNIN1) and the mass flow
rate (W2AR); which means that for a certain value of thrust
we expect a certain mass flow rate.

Figure 2. Representation of the functioning line for the pair
of variables (FNIN1, W2AR) on the stabilized point four.
The value of each engine is represented by the colors in the
orthogonal space estimated with the RPCA.

However, the equation of the functioning line (red line) is
unknown and its estimation can be done with the help of a
Robust-Principal component analysis (PCA) as detailed in
Candès et al. (2011). PCA is a statistical procedure that uses
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal components. This
transformation is defined in such a way that the first principal
component has the largest possible variance, and each suc-
ceeding component in turn has the highest variance possible
under the constraint that it is orthogonal to the preceding com-
ponents. Therefore, the first axe of the PCA will model the
functioning line, and the second axe will represent the space
where the new variable will lie. The Robust PCA (RPCA) is an
extension of PCA that is less sensible to extreme values, thus
the slope of the functioning line will not depend on outliers
and let them easier to detect.

3.1. Define Anomalies in Production Tests Data
For different stabilized points, we expect that an engine keeps
a constant ratio between pairs of variables, i.e. their relation-

ships do not change over the stabilized points. Therefore, we
consider the engines values projected on the second axis ob-
tained by the RPCA for each stabilized point. Then, we define
a normal engine behavior as follow: "An engine has a normal
behavior if it has similar projected values across the stabilized
points".

Formally, let us consider an engine i ∈ {1, . . . , n}, a pair
of variables j ∈ {1, . . . , J} and a stabilized points p ∈
{1, . . . P}. Let yji,p be the projection of the engine i on the
second axis of the RPCA for the pair of variables j at the
stabilized point p. Then, the mean value over the stabilized
points for an engine is

mj
i =

1

P

P∑
p=1

yji,p. (1)

The difference of an engine from its mean value for a stabi-
lized point p is

xji,p = yji,p −m
j
i . (2)

Thus given j, ∀p a new variable Xj
p = (xj1,p, . . . , x

j
n,p)

T

is created. The variable xji,p represents the deviation of the
engine i at a specific point p compared to its mean value mj

i

to the pair j. Thus, small values of xji,p imply small devia-
tions thus normal behavior, meanwhile large values lead to
anomalies.

Nine pairs of measurements are defined in an expert manner
are: (FNIN1, W2AR), (XN12R, W2AR), (P18QSC, W2AR)
are the thrust, the LP spool speed and the pressure at section 18
given the engine corrected air flow. (FNIN1, WF36), (T49C,
WF36) are the thrust and the exhausting gaz temperature given
the fuel flow. The core speed given the fan speed, the pressure
and the temperature at section 3 (HP) are also considered
(XN25R, XN12R), (XN25R,T3), (XN25R, P3). Finally, the
thrust function of the exhausting gaz is taken into consideration
(FNIN1, T49C).

Each pair of variables is observed over four stabilized points,
which give 36 new variables. In addition, the four test bench
components, CELL, CNOZ, COWL and BMSN are kept in
the set of variables that will be used in the model because
the pre-treatment was not able to make the data independent
from those ones. Finally, the models in following sections are
applied on this set of 40 variables.

Note that, to keep an understanding of the new variables ob-
tained from a pair, they are named as follow: "first variable
name ___ second variable name ___ stabilized point ". For
example, the variable created from T49C and FNIN1 on the
fourth stabilized point will be called T49C_FNIN1_6 (the 4
stabilized point level are listed from 3 to 6).
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4. ANOMALY DETECTION
4.1. Definition of the Method
Engines, in most of the cases, have solid and adequate mea-
sures. Thus, checking for unusual values can be seen as a
statistical problem of outlier detection. For our purpose, a
statistical method that is both efficient and interpretable is
required. Density-based techniques are the most competitives
and among these, Isolation Forest in Liu et al. (2008) showed
best results on various studies Goix (2016). We employ this
method on the new data to detect anomalies.

Isolation Forest is similar in principle to Random Forest
Breiman (2001) and is built on the basis of decision trees.
It identifies anomalies or outliers rather than profiling normal
data points. Isolation Forest isolates observations by randomly
selecting a feature and then randomly selecting a split value
between the maximum and minimum values of that selected
feature. Then, if an observation lies in a high-density region,
the probability to isolate it is small because the values of the
splits must be very close. On the other hand, if an observa-
tion lies in a low-density region, then many values of splits
can isolate it, thus it has a higher probability to be isolated
by a random split. Random partitioning produces noticeably
shorter paths for anomalies. When a forest of random trees col-
lectively produces shorter path lengths for particular samples,
they are highly likely to be anomalies.

Let ht(x) the path length of x in the tree t and h(x) =∑T
t=1 ht(x) the average value of h(x) over the trees with

T is the total number of trees in the forest. The number of
splits required to isolate an observation is influenced by the
number of samples n in the data. To account for this a normal-
ized anomaly score, relying on a property of Binary Search
Trees (BST)) Liu et al. (2008), is defined as

f(x, n) = 2

−h(x)
c(n) , (3)

with c(n) defined as

c(n) =


2H(n− 1)− 2n− 1

n
for n > 2,

1 for n = 2,
0 otherwise,

(4)

where n is the size of data set and H is the harmonic number.
The value of c(n) above represents the average of h(x) given
n, so we can use it to normalise h(x) and get an estimation of
the anomaly score for a given instance x. Note that f ∈ [0; 1]
with value closer to 1 indicates that the observation is more
likely to be an anomaly.

Once the Isolation Forest has been applied to the data, an
anomaly score is estimated for each engine. This anomaly
score is pointless if it cannot be completely understood by
domain experts.

For complex models, such as ensemble methods, deep net-
works or Isolation Forest, we cannot use the original model as
its own best explanation because it is not easily understand-
able. Instead, we must use a simpler explanation model, which
we define as any interpretable approximation of the original
model. We would like to have an average explanation of the
model as well as explanation of single prediction and this is
called as local explainability Guidotti et al. (2018) which is
also known as “post-hoc” explainability. In, Doshi-Velez &
Kim (2017) they assert that a useful local explanation should
answer the following questions: What were the main factors
in the decision? Would changing a certain factor have changed
the decision? Why did two similar-looking cases get different
decisions, or vice versa? More precisely, we would like to
understand how variables contributed to the score of a single
engine as well as how variables contributed in average. In
addition, understand whether the contribution of a variable
have a positive impact or a negative impact on the score, or in
other words if a variable helps making an observation more
normal or more abnormal. In this aim, Shapley values will be
used.

4.2. Model Interpretability with Shapley Values
Shapley values have attracted a great deal of attention in recent
years in the field of interpretability, which has been originally
discussed in game theory Shapley (1953) and recently applied
to statistics Štrumbelj & Kononenko (2014); Owen & Prieur
(2017); Iooss & Prieur (2017); Lundberg & Lee (2017). More-
over, in the context of anomaly detection, few results have
already been reported Antwarg et al. (2019); Giurgiu & Schu-
mann (2019); Takeishi (2019); Takeishi & Kawahara (2020).
These results have confirmed the usefullness of the Shapley
value for anomaly interpretation. As described in their works,
we will adopt general techniques in defining and computing
the Shapley values derived from supervised learning.

Shapley values measure features importance for models in
the presence of interaction between variables. This method
requires retraining the model on all feature subsets S ⊆ F ,
where F is the set of all features. As described in Lundberg &
Lee (2017), it assigns an importance value to each feature that
represents the effect on the model prediction of including that
feature. To compute this effect, a model fS∪j is trained with
that feature present, and another model fS is trained with the
feature excluded. Then, predictions from the two models are
compared on the current input fS∪j(xS∪j)− fS(xS), where
xS represents the values of the input features in the set S.
Since the effect of withholding a feature depends on other
features in the model, the preceding differences are computed
for all possible subsets S ⊆ F\j. The Shapley values are
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then computed and used as feature attributions. They are a
weighted average of all possible differences:

φj =
∑

S⊆F\j

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪j(xS∪j)− fS(xS)

]
,

(5)

At first glance, the above equation seems ridiculously com-
plicated, but it can be easily explained in one sentence: "The
contribution of a feature j is the mean difference between a
model trained on a subset of variables S with j and a model
trained on the same subset S without j, and this is done for all
the possible subsets of variables". All possible sets of feature
values have to be evaluated with and without the j-th feature
to calculate the exact Shapley value. For more than a few fea-
tures, the exact solution to this problem becomes problematic
as the number of possible coalitions exponentially increases
as more features are added. In Štrumbelj & Kononenko (2014)
an approximation with Monte-Carlo sampling is proposed

φ̂j =
1

M

M∑
m=1

(
f̂(xm+j)− f̂(xm−j)

)
, (6)

where f̂(xm+j) is the prediction for x, but with a random num-
ber of feature values replaced by feature values from a random
data point z, except for the respective value of feature j. The
x-vector xm−j is almost identical to xm+j , but the value xmj is
also taken from the sampled z. Each of these M new instances
is an "artificial object" assembled from two instances. In our
case, f̂(x) is the anomaly score predicted by the Isolation
Forest. If φ̂j is positive the value of the feature j increase the
anomaly score, and it decreases if φ̂j is negative.

5. RESULTS ON THE DATA
5.1. Average Shapley Values

The Table 1 gives the average Shapley values by variable on
all observations. It provides a nice interpretation of the effect
of each variable on the anomaly score. A variable j with a φj
value close to 0 will not affect the output of the model and thus
the variable is not important to detect anomalies. A high abso-
lute φj value points out that the variable plays an important
role in model estimates. The sign of the contribution gives an
additional information on the effect of the variable. A positive
contribution denotes that the variable helped to increase the
estimated anomaly score w.r.t. the average anomaly score
whereas a negative contribution decreases it. Therefore, if in
average a variable has a negative φj , it means that it does not
globally contribute to make an engine significantly different
from others.

Table 1. Average Shapley value by variables. Positive φj
values indicate that the variable tends to increase the anomaly
score while negative one indicates the opposite.

variable φ

WF36_FNIN1_4 1.7839
WF36_T49C_4 1.4149
P3_XN25R_3 1.3275
T49C_FNIN1_6 1.0992
XN12R_XN25R_5 0.8475
WF36_T49C_3 0.7794
WF36_FNIN1_3 0.7782
P3_XN25R_6 0.7207
W2AR_XN12R_3 0.5513
WF36_T49C_6 0.4814
W2AR_XN12R_4 0.4696
XN12R_XN25R_6 0.4378
XN12R_XN25R_4 0.3720
WF36_T49C_5 0.2933
P3_XN25R_5 0.2284
W2AR_XN12R_6 0.1843
WF36_FNIN1_6 0.1367
CNOZ 0.1318
T3_XN25R_4 0.0514
CELL 0.0487
T49C_FNIN1_4 0.0212
WF36_FNIN1_5 -0.0029
W2AR_XN12R_5 -0.0201
XN12R_XN25R_3 -0.0446
P3_XN25R_4 -0.0780
W2AR_FNIN1_6 -0.1006
T49C_FNIN1_5 -0.1676
W2AR_FNIN1_4 -0.2927
COWL -0.4981
W2AR_P18QSC_5 -0.5035
BMSN -0.5225
W2AR_P18QSC_3 -0.6202
W2AR_P18QSC_4 -0.6486
W2AR_FNIN1_3 -0.7632
W2AR_FNIN1_5 -0.7816
W2AR_P18QSC_6 -0.7929
T3_XN25R_5 -0.7946
T3_XN25R_6 -0.8460
T49C_FNIN1_3 -1.0517
T3_XN25R_3 -1.1104

5.2. Single Prediction Explanation
Averaged explanation are useful and give insights but they are
not sufficient. When an engine has a high estimated anomaly
score, domain experts would like to understand which vari-
ables are responsible for this score. As an example, the engine
41 is observed. Shapley values are applied to explain how
variables contributed to the score. On Figure 3, the average
score of anomaly for engines is 0.40 and the engine 41 has
an anomaly score of 0.47, which is significantly larger. This
difference is decomposed variable by variable. The x-axis, φ,
gives the weight of the contribution. On the y-axis, the engine
values for each variable are displayed, ordered by decreas-
ing importance. A value of 0 on the x-axis indicates that the
variable does not play any role in the estimation of the score.
Note that, most important variables for this engine correspond
to the highest deviations xj41,p obtained by RPCA. However,
due to the possible high-order interaction between variables, a
complex model was needed to assess a good estimation of the
anomaly score.

Domain experts have access to the contribution of the variables
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Figure 3. Shapley plot of the engine 41. 0.40 is the average
anomaly score and 0.47 is the predicted score of the engine
41. Feature value with positive φ increase the score from 0.40
to 0.47, and negative value of φ decrease the anomaly score of
the engine.

and they can control the validity of the results. Figure 4 shows
the densities of variables with the highest (WF36_T49C_5)
and the lowest (T3_XN25R_5) φ detected for engine 41. As
expected, the value xj41,5 for j =WF36_T49C, is far from 0
and isolated in a low density area, which means that it has a
really different behavior over the four stabilized points. On
the other hand, for j =T3_XN25R, xj41,5 is close to 0 and the
engine has a consistent behavior.

Figure 4. The density of the variable WF36_T49C_5. Engine
41 is isolated in a low density area which explains why this
variable have a high contribution to increase the anomaly
score.

A diagram that explains the process of engines tests validation

Figure 5. The density of the variable T3_XN25R_5. Engine
41 lies in a high density area which explains why this variable
contributes to decrease the anomaly score.

using the statistical methodology is presented in Figure 6. Iso-
lation Forest helps domain experts to identify few engines and
Shapley values help them to focus on some specific measures.
Then a complete inspection of the engine can be done before
validating the production test.

Figure 6. Diagram of the process of production tests validation
using Isolation Forest and Shapley values. The statistical
methodology helps to highlight specific engines and measures
where further analyses are needed.

6. ANOMALY CATEGORIZATION USING SELF-
ORGANIZING MAP

6.1. Definition of the Method
A SOM is a type of artificial neural network that is trained
using unsupervised learning to produce a low-dimensional
(typically two-dimensional) discretized representation of the
input space of the training samples, called a map. Each unit
of the map corresponds to a prototype vector in the original
high-dimensional space, and new data points are projected on
the map by finding the closest prototype vector w.r.t. euclidean
distance Kohonen (1982); Olteanu & Villa-Vialaneix (2015).
Self-organizing maps have been used for aircraft engine fleet
monitoring in Cottrell et al. (2009); Côme et al. (2010b,a);
Forest et al. (2018) and to classify transient flight phases Faure
et al. (2017). No specific study has been yet conducted on
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using SOM to validate and categorize anomalies and especially
on production tests data.

SOM has both intrinsic distances between clusters and nice
two-dimensional visualization, which make it a good candi-
date. Nonetheless, clusters are still in high-dimensions and
methods such as Shapley value are not tractable in this sit-
uation. Therefore, in the next section, before modelling a
SOM, specific clustering algorithm for variable selection will
be used.

6.2. Choose a Subset of Variables with the Help of Group-
Sparse Weighted K-means

Group-sparse weighted K-means generalizes the sparse
weighted K-means algorithm for numerical variables in Wit-
ten & Tibshirani (2010), by using the group regularization
framework. Suppose that the numerical matrix of data X is
described by p features that are divided into L priorly known
distinct groups, such that X =

[
X1|...|XL

]
, with X` ∈ Rn×p` ,

p` being the size of group `, and p1 + ...+ pL = p.

In presence of group data, we would like to discriminate
groups of variables X` by using a specific L1-group penalty,
which has been already used in the regression framework Yuan
& Lin (2006). This allows us to select variables by group, forc-
ing the model to select or discriminate the entire group. As
described in Chavent et al. (2020), the between-class variance
of each variable is multiplied by a weight and a parameter λ
penalizes the weights. The latter discriminates the groups of
variables with the lowest between-class variance. There is a
clustering solution (groups weights and clusters) for each fixed
λ. The regularization path (clustering solution given lambda)
is computed at a grid of values for the penalty factor λ, cover-
ing the entire range, from a model with all the groups included
to a model with only one group. The optimization procedure
is quite straightforward. The algorithm is optimized in an
iterative fashion: first the K-means algorithm is performed
on the weighted space of features, then the partition is held
fixed and the weights are updated. This iterative procedure is
continued until a (local) minimum is reached.

In this context, groups are clearly formed by the variables
over the stabilized points. For example, T3_XN25R_3, T3_-
XN25R_4, T3_XN25R_5 and T3_XN25R_6 belong to the
same group. Hence, there is 9 groups of variables, and we
would like to know which are the most discriminative for clus-
tering. Moreover, Table 1 shows that test bench components
were not significant to detect unusual behavior. Shapley val-
ues attribute them in average a negative contribution, which
implies that they are not useful to model unexpected behavior.
Thus, these variables are not considered in the analysis. Fur-
thermore, the number of clusters is set to five and was found
with the Silhouette method Rousseeuw (1987).

In Figure 7 we provide the path of groups’ weights against the
λ sequence. Weights of groups, on the y-axis, are represented

for each λ. The most important groups are 7, 4 and 5 which
are respectively the groups P3_XN25R, T49C_FNIN1 and
WF36_FNIN1.

Figure 7. Groups weights for each value of λ. The vertical line
represents the selected clustering solution where three groups
of variables have non-zero weights.

In Figure 8 we see a big gap in terms of explained variance
before λ = 0.6 If one give a closer look, the analysis points
out that a subset of variables (3 groups) will give similar
clustering, in terms of explained variance, to the one with
all the variables included (see Figure 7 and Figure 8). We
choose the clustering obtained for value of λ represented by
the vertical line. This value of λ allows to select 3 groups
with high explained variance. Higher value of λ lead to have
a more similar solution to the one after the gap in Figure 8 in
terms of weights, which seems to be a bad clustering solution.
Therefore, the chosen value of λ seems to be a good trade-
off between interpretability and performance. The weights
obtained by groups are wT49C_FNIN1 = 0.67, wWF36_FNIN1 =
0.62 and wP3_XN25R = 0.42. This subspace of 12 variables
will be used to represent the data with the help of the SOM
algorithm.

Figure 8. The ratio of between-sum of squares over the total
sum of squares (BSS/TSS: explained variance) for each value
of λ. The vertical line represents the selected clustering solu-
tion which has an explained variance that is close to the one
with the full set of variables.
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6.3. Data Representation with SOM
The SOM allows us to have access to several different visu-
alizations. First, we plot the distances between prototypes
(Figure 9), which gives a representation of the grid where the
colors represents the mean distance to the neighbor prototypes.
The color scale goes from blue to purple, where purple in-
dicates a large distance. In Figure 10 the repartition of the
engines on the map is provided. Finally the Figure 11 is the

Figure 9. Smooth distances between prototypes. The back-
ground colors indicate the distances between neighboring pro-
totypes where pink corresponds to larges distances.

Figure 10. Repartition of the engines on the map.

SOM map where colors indicate the mean anomaly score of
engines estimated with the Isolation Forest by clusters. The
color scale goes from yellow to red, where red indicates a
higher anomaly score. It is interesting to note that the engines
with high anomaly score are distributed on the border of the
map. The representation is very similar to the one given by
the smooth distances between prototypes on Figure 9 which
shows that the two methods agree. In addition, the map allows
a categorization of the anomalies. In Figure 11, Super-clusters
are identified thanks to the mean anomaly score of the proto-
types and their proximities on the SOM map. Two map edges
are thus identified as super-clusters. The comparison of these
clusters of anomalies with the rest of the population will allow
us to understand the discriminative variables.

The ANOVA method is applied to test significant difference
between clusters (Figure 12). ANOVA provides a statistical

Figure 11. SOM map of engines where the colors represents
the anomaly score estimated with Isolation Forest averaged
by clusters. Color scale goes from yellow to red, where red
corresponds to a higher score.

test of whether two or more population means are equal. The
results show that, for cluster 2, the group of variables P3_-
XN25R seems to be important. On the other hand, for cluster
1, the group of variables WF36_FNIN1 may explain their un-
usual behavior. The ANOVA shows that the set of explaining
variables has been reduced to only one group. For the sake of
readability, we show the ANOVA test for only two variables at
the stabilized point 3, but for the other stabilized points results
are similar since they are all linked by construction. Moreover,
the other groups of variables are not significantly different
over the three clusters.

7. CONCLUSIONS
In this work, statistical methods in the context of rare event
detection in production tests data demonstrated high degree
of efficiency and interpretability in either local (one specific
engine) or global level (groups of engines). We propose a
multi-scale model, giving a hierarchy in the information al-
lowing the experts to better understand flaws on a particular
engine but also allowing them to detect more general problems.
We apply two different methods: i) Isolation Forest to esti-
mate anomaliy score and Shapley values to interpretate them;
ii) SOM on a subset of variables obtained by group-sparse
weighted K-means. Both methods provide similar results: the
engines detected as anomalies with the Isolation Forest coin-
cide to the engines that have the largest distances estimated
with SOM.

Moreover, an other contribution of this work is the use of SOM
to validate anomalies detection methods. On the contrary of
Isolation Forest, SOM provides visualizations and categoriza-
tions of the anomalies which gives additional information to
better understand and verify the estimated anomalies.

Explainability in unsupervised learning is a new field that
needs to be explored, and this work is a step forward in this
direction. Some further investigations are needed in both
theoretical and applied domains. In future works, we plan to
explore those points and also we will develop a method to
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Figure 12. Boxplot of ANOVA test comparing two different
area of the map Figure 9. For the two variables considered,
only one cluster (the pink one) is truly different from the
overall population of engines, implying that the two clusters
of anomalies can be explained by different subsets of variables.

transform the anomaly score in a binary score which will help
to domain experts in their decisions.
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