A Comprehensive Analysis of the Performance of Gear Fault Detection Algorithms
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Modern gear fault detection analysis began with algorithms based on the time synchronous average. Over the course of decades, many gear analyses have been proposed, but with no evidence that the analysis was significantly more powerful in terms of fault detection than existing algorithms. This study focuses on a comprehensive comparison of gear fault detection algorithms to evaluate their performance. Using a large, statistically significant set of data from three nominal machines and a damaged machine, the CI responses of 88 different analysis are compared in terms of their statistical significance to detect a cracked tooth. The comparison includes residual, energy operator (and its variants), the narrowband analysis (with a comparison of bandwidth requirements), the amplitude and frequency modulation analysis, an analysis of variance of the "factor” analysis: crest, shape, impulse, and margin, and other standard gear fault CIs. Further, the effect of CI selection in the establishment of gear component health is evaluated, where given a set of CIs, a gear health indicator is built, showing that CIs with high statistically separability and low correlation have improved fault detection power. This is validated on a third, dissimilar gear fault propagation test.
How to Cite
##plugins.themes.bootstrap3.article.details##
PHM, Gear Analysis, Condition Monitoring
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.