Mean Variance Estimation Neural Network Particle Filter for Predicting Battery Remaining Useful Life

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 5, 2024
Francesco Cancelliere
Sylvain Girard Jean-Marc Bourinet
Piero Baraldi
Enrico Zio

Abstract

Traditional remaining useful life (RUL) prediction methods based on particle filter (PF) require the manual tuning of hyperparameters, such as process or measurement noise, which poses challenges, particularly in real-life applications where external and operating conditions may change, potentially leading to large errors in the predictions. We address this issue by replacing the measurement equation of a PF with a mean variance estimation neural network that estimates the mean and the variance of the output distribution. As a result, the measurement noise is automatically estimated by the neural network and does not require manual setting. Through simulations and comparative analyses with state-of-the-art methods, the proposed mean variance estimation neural network particle filter (MVENN-PF) is shown to provide more stable and accurate RUL predictions, thereby potentially enhancing the robustness of battery health management systems based on it. Additionally, by eliminating the need to manually set a model hyperparameter (the measurement noise) the proposed method simplifies the modeling process, making it more accessible and adaptable to various battery systems.

How to Cite

Cancelliere, F., Girard, S., Bourinet, J.-M., Baraldi, P., & Zio, E. (2024). Mean Variance Estimation Neural Network Particle Filter for Predicting Battery Remaining Useful Life. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.4078
Abstract 139 | PDF Downloads 137

##plugins.themes.bootstrap3.article.details##

Keywords

Particle Filter, Mean Variance Estimation Neural Network, Batteries, Remaining Useful Life, Prognostic and Health Management

References
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/nongaussian bayesian tracking. IEEE Transaction on Signal Processing, 50(2), 174–188. doi: 10.1109/9780470544198.ch73

Cadini, F., Sbarufatti, C., Cancelliere, F., & Giglio, M. (2019). State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Applied Energy, 235(June 2018), 661–672. doi: 10.1016/j.apenergy.2018.10.095

Cadini, F., Sbarufatti, C., Corbetta, M., Cancelliere, F., & Giglio, M. (2019). Particle filtering-based adaptive training of neural networks for real-time structural damage diagnosis and prognosis. Structural Control and Health Monitoring, 26(12), 1–19. doi: 10.1002/stc.2451

Cancelliere, F., Girard, S., & Bourinet, J.-M. (2024). Data-Driven Prognostics with Multi-Layer Perceptron Particle Filter: a Cross-Industry Exploration. PHM Society European Conference, 8(1), 8. doi: 10.36001/phme.2024.v8i1.4034

Cancelliere, F., Girard, S., Bourinet, J.-M., & Broggi, M. (2023). Grey-box Approach for the Prognostic and Health Management of Lithium-Ion Batteries. Annual Conference of the PHM Society, 15(1), 1–8. doi: 10.36001/phmconf.2023.v15i1.3506

Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., . . . Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy
Chemistry, 59, 83–99. doi: 10.1016/j.jechem.2020.10.017

de Freitas, J. F., Niranjan, M., Gee, A. H., & Doucet, A. (2000). Sequential Monte Carlo methods to train neural network models. Neural computation, 12, 955–993.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208. doi: 10.1023/A:1008935410038

Flury, T., & Shephard, N. (2009). Learning and filtering via simulation : smoothly jittered particle filters. Re- CALL(2001), 1–27.

Gu, H., Mahmoud, H., Arun, R. L., Liu, J., & Ma, X. (2023). Particle Filter and Its Variants for Degradation State Estimation and Remaining Useful Life Prediction. Proceedings - 2023 Prognostics and Health Management Conference - Paris, PHM-Paris 2023, 256–263. doi: 10.1109/PHM58589.2023.00055

Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery Lifetime Prognostics. Joule, 4(2), 310–346. doi: 10.1016/j.joule.2019.11.018

Jules, E., Cancelliere, F., Mattrand, C., & Bourinet, J.-M. (2023). Remaining useful life prediction of turbofans with virtual health indicator: A comparison of particle filter-based approaches. , 75-82. doi: 10.1109/ICSRS59833.2023.10381439

Kantas, N., Doucet, A., Singh, S., & Maciejowski, J. (2009). An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models. In Ifac symposium on system identification (pp. 774–785). IFAC. doi: 10.3182/20090706-3-FR- 2004.00129

Lall, P., Lowe, R., & Goebel, K. (2010). Prognostics using Kalman-Filter models and metrics for risk assessment in BGAs under shock and vibration loads. Proceedings - Electronic Components and Technology Conference( 1), 889–901. doi: 10.1109/ECTC.2010.5490691

Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020). Particle filter recurrent neural networks. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, 5101–5108. doi: 10.1609/aaai.v34i04.5952

Nascimento, R. G., Corbetta, M., Kulkarni, C. S., & Viana, F. A. (2021). Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis. Journal of Power Sources, 513(August), 230526. doi: 10.1016/j.jpowsour.2021.230526

Nguyen, K. T., Medjaher, K., & Gogu, C. (2022). Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multicomponent systems. Reliability Engineering and System Safety, 222(February), 108383. Retrieved from https://doi.org/10.1016/j.ress.2022.108383 doi: 10.1016/j.ress.2022.108383

Nix, D. A., & Weigend, A. S. (1994). Estimating the Mean and Variance of the Target Probability Distribution. In Proceedings of 1994 ieee international conference on neural networks (icnn’94) (pp. 55–60). Orlando, FL. doi: 10.1109/ICNN.1994.374138

Saha, B., & Goebel, K. (2007). Battery Data Set. NASA Ames Prognostics Data Repository.

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, M. (2008). Metrics for evaluating performance of prognostic techniques. 2008 International Conference on Prognostics and Health Management, PHM 2008(October). doi: 10.1109/PHM.2008.4711436

Sbarufatti, C., Corbetta, M., Giglio, M., & Cadini, F. (2018). Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks. Journal of Power Sources, 344, 128–140. doi: 10.1016/j.jpowsour.2017.01.105

Tran, M. K., Mevawalla, A., Aziz, A., Panchal, S., Xie, Y., & Fowler, M. (2022). A Review of Lithium-Ion Battery Thermal Runaway Modeling and Diagnosis Approaches. Processes, 10(6). doi: 10.3390/pr10061192

Wang, S., Jin, S., Bai, D., Fan, Y., Shi, H., & Fernandez, C. (2021). A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Reports, 7, 5562–5574. doi: 10.1016/j.egyr.2021.08.182

Wu, L., Fu, X., & Guan, Y. (2016). Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies. Applied Sciences, 6(6), 166. doi: 10.3390/app6060166

Zio, E. (2022). Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliability Engineering and System Safety, 218(PA), 108119. doi: 10.1016/j.ress.2021.108119
Section
Technical Research Papers