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ABSTRACT

Traditional remaining useful life (RUL) prediction methods
based on particle filter (PF) require the manual tuning of hy-
perparameters, such as process or measurement noise, which
poses challenges, particularly in real-life applications where
external and operating conditions may change, potentially lead-
ing to large errors in the predictions. We address this issue
by replacing the measurement equation of a PF with a mean
variance estimation neural network that estimates the mean
and the variance of the output distribution. As a result, the
measurement noise is automatically estimated by the neural
network and does not require manual setting. Through sim-
ulations and comparative analyses with state-of-the-art meth-
ods, the proposed mean variance estimation neural network
particle filter (MVENN-PF) is shown to provide more stable
and accurate RUL predictions, thereby potentially enhancing
the robustness of battery health management systems based
on it. Additionally, by eliminating the need to manually set a
model hyperparameter (the measurement noise) the proposed
method simplifies the modeling process, making it more ac-
cessible and adaptable to various battery systems.

1. INTRODUCTION

Predicting the remaining useful life of batteries allows op-
timizing maintenance schedules, and, therefore, reducing
downtime and avoiding unexpected failures (Tran et al.,
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2022). This is a fundamental step for ensuring the longevity
and optimal performance of batteries (Hu, Xu, Lin, & Pecht,
2020), which is a key element for the safety, cost effi-
ciency, and sustainability of several industrial systems, such
as electric vehicles and renewable energy storage (Chen et al.,
2021).

Traditional model-based methods for RUL prediction rely
heavily on physical models, which are not always available
or accurately reflective of real-world conditions (Zio, 2022).
Considering battery degradation, they may struggle to adapt
to the stochastic nature of the process, which is influenced
by numerous factors, including usage patterns, environmental
conditions, and manufacturing variations. Particle filters (PF)
(Kantas, Doucet, Singh, & Maciejowski, 2009) have been
widely used for state estimation in dynamic systems. They
suffer from issues such as particle degeneracy and the need of
setting the hyperparameters process and measurement noise.

Data-driven approaches based on machine learning tech-
niques use signal measurements to predict component present
and future state of health and RUL (Wu, Fu, & Guan, 2016).
They have been shown able to learn complex degradation pat-
terns from historical data (Wang et al., 2021). Also, they are
more adaptable and accurate in case of variation of external
and operating conditions. However, they typically require
large amounts of data to generalize effectively and struggle
to describe unseen situations.

Hybrid methods such as physics-informed neural networks
(PINNs) (Nascimento, Corbetta, Kulkarni, & Viana, 2021)
and the combination of filter algorithms with machine learn-
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ing approaches (Gu, Mahmoud, Arun, Liu, & Ma, 2023) have
been proposed to partially address these problems. They in-
tegrate surrogate models with physical information, reduc-
ing the need for both expensive numerical models and large
amounts of data. Specifically, data-driven particle filters com-
bining a PF with a neural network (NN) offer promising per-
spective in terms of adaptability and accuracy of the predic-
tions (Cadini, Sbarufatti, Cancelliere, & Giglio, 2019; Ma,
Karkus, Hsu, & Lee, 2020). However, concerns remain on
the robustness of these methods, whose performance are re-
markably influenced by the values of some hyperparameters,
difficult to manually set, especially for components working
in variable operating and external conditions.

The method proposed in this paper addresses these limitations
by enhancing a multi-layer perceptron particle filter (MLP-
PF) (Cancelliere, Girard, & Bourinet, 2024). The main nov-
elty is the replacement of the MLP with a mean variance
estimation neural network (MVENN), which estimates both
expected value and variance of the output (Nix & Weigend,
1994). Other works, such as (Nguyen, Medjaher, & Gogu,
2022), have utilized neural networks—specifically a long
short-term memory (LSTM) network—to estimate the mean
and variance of a lognormal distribution directly for RUL pre-
diction. In our approach, the estimated variance is leveraged
to model the measurement noise in the observation, rather
than directly estimating the RUL. This strategy eliminates
the need for manual tuning of measurement noise variance,
which is one of the key hyperparameter of the MLP-PF and
improving the robustness and accuracy of RUL predictions.

The key contributions of this paper include:

• Introducing an innovative data-driven particle filter
(MVENN-PF) that by dynamically estimating the obser-
vation measurement noise eliminates the need of manu-
ally tuning this hyperparameter.

• Demonstrating the improved performance and robust-
ness of the proposed method by comparing it with state-
of-the-art methods on the NASA battery dataset (Saha &
Goebel, 2007).

The proposed method is shown to improve the accuracy of
RUL predictions for Li-Ion batteries and provide a robust
framework adaptable to other prognostic applications. The
paper is organized as follows: Section 2 provides a concise
overview of data-drive particle filters, followed by the in-
troduction of the novel MVENN-PF method. Section 3 de-
scribes the experimental data, introduces evaluation metrics,
and presents the obtained results. Finally, Section 4 draws
conclusions and discusses future applications of this method.

2. PROPOSED METHOD

Particle filters, also known as sequential Monte Carlo meth-
ods, are algorithms used to estimate the posterior probability
density function (PDF) of a hidden state xk at time step k,

given a series of noisy observations z0:k−1 (Doucet, Godsill,
& Andrieu, 2000). The evolution of the state-space is de-
scribed by the hidden Markov model:

xk = f(xk−1, ωk−1) (1)

zk = h(xk, ηk) (2)

where f and h represent the process and measurement equa-
tions, and ω and η denote process and measurement noise,
respectively.

To recursively estimate the posterior PDF p(xk|z0:k), the PF
follows a prediction-update cycle. First, a prior distribution
p(xk|z0:k−1) is computed by generating Ns state trajectories,
or particles, using the process equation. The distribution is
then updated by assigning an importance weight to each par-
ticle i considering the likelihood L = p(zk|xi

k). Assuming a
measurement equation with a Gaussian noise, the likelihood
is:

L(i)
k = ((2π)k+1|Ση|)−0.5

exp

{
−1

2

(
z0:k − g(xi

k, 0 : k)
)T

Σ−1
η

(
z0:k − g(xi

k, 0 : k)
)}
(3)

where Ση is the covariance matrix of the measurement noise.

Particle filters often face the degeneracy problem, where most
particles after few prediction-update cycles have negligible
weights. This can be mitigated by using ad-hoc techniques
such as the sampling importance resampling (SIR), which re-
samples particles based on their weights to maintain diver-
sity (Arulampalam, Maskell, Gordon, & Clapp, 2002). For
a comprehensive overview of particle filters, the interested
reader can refer to the seminal papers (Doucet et al., 2000;
Arulampalam et al., 2002; Kantas et al., 2009).

2.1. Data-Driven Particle Filter

In situations where physical models are unavailable, a surro-
gate model can be employed within a PF (de Freitas, Niran-
jan, Gee, & Doucet, 2000). This approach adapts the state-
space formulation to estimate the parameters x of a surrogate
model g(·) that replaces the measurement equation. Conse-
quently, the evolution of the state-space equations Eq. (1) and
Eq. (2) in the data-driven framework is redefined as:

xk = xk−1 + ωk−1 (4)

zk = g(xk, k) + ηk (5)

The process model is a random perturbation of the param-
eters, controlled by the Gaussian process noise ωk−1. In
Eq. (5), ηk is the measurement noise associated to the mea-
surement equation.

A possible implementation of data-driven PF uses a MLP as
surrogate model. Indeed, the data-driven PF effectively es-
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timates the MLP weights and biases when the underlying
physical processes are not well understood, leveraging data
to adaptively refine predictions. For example (Cancelliere,
Girard, Bourinet, & Broggi, 2023) and (Jules, Cancelliere,
Mattrand, & Bourinet, 2023) used simple MLP with one or
two hidden layers, pre-trained on historical degradation tra-
jectories, to predict the RUL of batteries and turbofans, re-
spectively.

In these implementations, xk contains the trained weights and
biases of the NN, which are perturbed following Eq. (4) and
resampled by applying Eq. (5) and Eq. (3). As a result, the
particles with degradation trends similar to the observations
are resampled while those far from the observations are dis-
carded. This ensures that the particles converge to the ob-
served degradation trend, adapting to changes in the external
and operating conditions (Cadini, Sbarufatti, Cancelliere, &
Giglio, 2019). A common problem of these applications is
the selection of the proper process and measurement noises
ωk and ηk, which significantly influence performance. An
approach to partially solve this issue is the use of a jitter-
ing variance (Jules et al., 2023) for the process noise ωk in
Eq. (4):

ωk = (σ0e
− k

σ1 + σ2) · ESS
− 1

3

k (6)

where σ0e
− k

σ1 +σ2 is a decreasing variance, commonly used
in PF (Sbarufatti, Corbetta, Giglio, & Cadini, 2018; Ca-
dini, Sbarufatti, Corbetta, Cancelliere, & Giglio, 2019), and
σ = [σ0, σ1, σ2] is a vector of hyperparameters to be tuned.
However, the importance of tuning σ is decreased by the in-
troduction of the effective size sample (ESS) term (Flury &
Shephard, 2009):

ESS =
1

Ns∑
i=1

(ŵk
i )

2

(7)

ESS is an evaluation of the degeneracy of the particles.
When all particles have similar weights, ESS approaches Ns,
whereas if most particles have weights close to zero and only
a few have significant weights, ESS will be small. According
to Eq. (6), a small ESS increases the jittering variance, lead-
ing to a larger exploration of the state space, while a large
ESS decreases this capability of exploration.

In (Sbarufatti et al., 2018; Cancelliere et al., 2023), the mea-
surement noise ηk is assumed zero-mean, Gaussian with vari-
ance σ2

η . The tuning of ση is based on a ”rule of thumb”,
and it is assumed independent from k. However, the impact
of this term on the performance of the algorithm is remark-
able, as it is used to compute the likelihood in Eq. (3). For
example, Fig. 1 shows the result of three simulations which
used the same data and different values of ση . It can be ob-
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Figure 1. Predictions of the evolution of the component
degradation (qMax (Cancelliere et al., 2023)) performed at
cycle 120 by MLP-PF with different measurement noises.
The blue circles represent the ground truth degradation val-
ues, the shaded areas correspond to the 95th percentile confi-
dence intervals of the predictions, while the solid lines repre-
sent the prediction expected value.

served that when a small ση value is employed (orange lines)
the particles are not able to effectively follow the degradation
trend. This is primarily due to the inability of the likelihood
function to differentiate between accurate and inaccurate pre-
dictions, resulting in similar weights assigned to all particles.
Consequently, this scenario resembles a random perturbation
of the NN parameters xk, leading to unreasonable predictions
of the degradation evolution. When ση is large (green lines),
it leads to broad likelihood distributions. This implies that
large likelihoods are associated to many particles. Conse-
quently, the filter predicts large confidence intervals, which
can confuse the maintenance decision-maker. Finding a good
intermediate value of ση can be a case-dependent challenging
task. Also, in case of modification of the operating and envi-
ronmental conditions, a new setting of the parameter may be
required.

2.2. Neural Network for variance estimation

Aiming to increase the robustness of the algorithm and avoid
the issue of tuning ση , we propose a NN architecture that
directly estimates the variance of its output, and, therefore,
allows automatically estimating the measurement noise. The
architecture is based on the work by (Nix & Weigend, 1994),
which introduced a method to estimate both the mean and
the variance of a target probability distribution. Fig. 2 shows
the traditional NN architecture and the architecture in (Nix &
Weigend, 1994), where a new auxiliary output unit is added
to estimate the uncertainty of the prediction. Specifically,
the added output neuron estimates the variance of the output
PDF. Considering a set of Nt input-output training patterns
(k, zk)k=1,.,Nt , the loss function used to train the NN is the
negative log-likelihood:

NLL =
1

2

(
log(ŝ2(k)) +

(zk − ĝ(k))2

ŝ2(k)

)
(8)
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Figure 2. Comparison of the neural network architectures of
the MLP-PF (Cancelliere et al., 2023) (blue) and of the pro-
posed MVENN-PF with the added output neuron (green).

where ĝ(k) is the prediction of the expected value of the out-
put and ŝ2(k) is the corresponding estimated variance. It is
interesting to note that by embedding this NN in the MLP-PF
the method allows estimating a measurement noise of vari-
ance ŝ2(k) that can change with time. This is because the NN
provides as output a value of ŝ2 for each input k.

The integration of the proposed neural network architecture
into the data-driven PF requires to address two practical is-
sues. Firstly, the shallow architecture with 3 neurons in a sin-
gle hidden layer suggested in (Cancelliere et al., 2023) for the
data-driven PF has been shown not able to capture the degra-
dation dynamics and the associated noise. For this reason, in
this study we opted for a more complex architecture formed
by a single layer with 20 hidden neurons. The increased com-
plexity of the NN architecture translates into a larger number
of weights and biases to be packed in xk and to be recur-
sively estimated as new observations become available. To
counterbalance the larger number of parameters, the variance
of the noise ωk of the process equation (Eq. (4)) is reduced
to maintain stability. Essentially, when the number of model
parameters increases, the same process noise ω causes larger
variations of weights and biases of the NN output, which can
lead to difficulty in the convergence of the PF algorithm.

Lastly, in the computation of the likelihood L, a notable dif-
ference emerges with respect to the covariance matrix Ση .
Differently from the approach in (Cancelliere et al., 2023),
where the covariance matrix Ση contains the same value ωη

on the main diagonal (the same noise is applied to all par-
ticles at each time k), the proposed formulation uses a dif-
ferent matrix Σi

η for each ith particle, with the kth term on
the main diagonal being σi

η,k, equal to the NN output value
s2(xi

k) where xi
k is the state of particle i at time step k.

3. EXPERIMENTAL SETUP AND RESULT

To test the robustness and validity of the proposed method
we apply it to the well-known NASA battery dataset (Saha
& Goebel, 2007). The dataset contains data about the degra-
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Figure 3. Evolution of the capacity during the lifetime of
two batteries. The data collected from battery 7 are used for
model training, whereas the data from battery 5 are used for
testing the algorithm.

dation of batteries during their life cycles. We consider the
capacity measures, which are computed at each battery dis-
charge cycle, and represent the amount of electricity (A/h)
the battery is able to provide when a load is applied, and can
be considered as a degradation indicator. In particular, we use
battery 7 data for the initial training of the network and we use
battery 5 data to evaluate the performance of the proposed
method in terms of RUL prediction (Fig. 3). It can be ob-
served that the two batteries, despite being subjected to iden-
tical and controlled laboratory conditions (including constant
load and external temperature), show different degradation
patterns. Indeed, the difference in the remaining capacity af-
ter 175 cycles is significant, with battery 7 which maintained
a capacity over 1.4 Ah, whereas battery 5 capacity dropped
below 1.3 Ah. This difference in end-of-life capacities under-
scores the variable nature of Li-Ion battery degradation, even
under uniform external conditions, and highlights the im-
portance of developing prognostic methods able to promptly
adapt to the incoming real-time observations. Unlike tradi-
tional neural network approaches that require large datasets
for effective training, in this work, we used a single degrada-
tion trajectory to train the neural network, as it serves merely
for initialization purposes. This significantly reduces data
requirements and is advantageous compared to conventional
methods where performance is highly dependent on data vol-
ume.

The proposed MLP network architecture, illustrated in Fig. 2,
takes as input the time step value k, and has 2 output neu-
rons: the corresponding capacity and the estimated measure-
ment noise variance s2. The hidden layer is composed of 20
neurons, using tanh as activation function. This architecture
consists of 82 weights and biases to be recursively estimated
by the particle filter. The three variances of the process noise
in Eq. (6) have been selected: σ0 = 5× 10−5, σ1 = 102 and
σ2 = 10−6.

As comparison method we use the same network architecture
and hyperparameters of (Cancelliere et al., 2023), which con-
sists of a MLP with a single hidden layer of 3 nodes, resulting

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Prognostic Evaluation Metrics.

MLP-PF MVENN-PF
β 0.388 0.578
β 25 0.236 0.286
CRA 0.667 0.758
CRA 25 0.419 0.560
CIC 0.494 0.650
CIC 25 0.780 0.951

in 10 weights and biases. The variances of the process noise
(Eq. (6)) have been set equal to σ0 = 5×10−3, σ1 = 102 and
σ2 = 10−4, which are considerably larger than those used in
the proposed method. The measurement noise variance has
been assumed ση = 10−1. For consistency, for both cases we
used the same number of particles Ns = 500.

3.1. Prognostic Metrics

The performances are evaluated using the α-λ plot and the
β metric (Lall, Lowe, & Goebel, 2010), the cumulative rela-
tive accuracy (CRA) (Saxena et al., 2008) and the confidence
interval coverage (CIC) (Jules et al., 2023).

The α-λ plot compares the accuracy of the prediction with
respect to the ground truth remaining useful life (RULGT).
λ represents the normalized time and is defined as λ =
(k/Tfail), where k is the time step and Tfail is the time step
associated to the end of life. Hence, λ = 1 corresponds to the
end of life of the battery. The α-bounds, calculated at each
time step k as RUL± α, represent a goal region for the pre-
diction to be considered as successful. In this work we use
α = 0.2. The β metric is computed starting from the α-λ
plot, and is defined as the area under the predicted RUL pdf
that falls within the α bounds:

β =
1

Tfail

Tfail∑
k=0

∫ RULk+α

RULk−α

PDF(R̂UL) dRUL (9)

This metric allows to discriminate between predictions with
different levels of associated uncertainty: a high β metric in-
dicates a superior RUL prediction.

The CRA represents the distance of the prediction to the
ground truth EOL, evaluated at each time step. It is defined
as:

CRA =
1

Tfail

Tfail∑
k=0

(
1−

∣∣∣∣∣RULGT
k − RULpred

k

RULGT
k

∣∣∣∣∣
)

(10)

A perfect prediction has a value of 1. This metric emphasizes
errors closer to the failure of the battery, highlighting the im-
portance of making good predictions close to the EOL.

Finally, the CIC is used to assess the prediction considering

the confidence interval:

CIC =
1

Tfail

Tfail∑
k=0

1RULGT∈ĈIk
(11)

where 1
RULGT

k ∈ĈIk
is the indicator function, which is equal

to 1 if the ground truth RUL lies within the predicted con-
fidence interval and 0 otherwise. If the prediction interval
includes the RULGT at each time step, the CIC is 1, while
is 0 if the ground truth RUL is always outside the confidence
interval.

3.2. Results

Fig. 4 compares the predictions of the capacity evolution pro-
vided by the proposed method (MVENN-PF) with those of
the MLP-PF in (Cancelliere et al., 2023), performed at differ-
ent time steps. As expected, the initial prediction of battery
5 capacity provided by the two methods are very similar, and
characterized by a capacity significant overestimation, since
both NNs are trained using the same data taken from battery
7, which has a longer lifetime than the battery 5. Nonethe-
less, already at cycle 50 (λ = 0.31) both methods adapt the
predictions to the incoming measurements and are making
more accurate predictions. Fig. 5 shows the RUL predictions
provided by the two methods. Note that MLP-PF updates
its predictions earlier than the proposed method due to the
larger initial value of ωk. In contrast, the MVENN-PF algo-
rithm exhibits more stable behavior, adapting more cautiously
due to its capability of dynamically estimating the measure-
ment noise. The average variance of the measurement noise
estimated by the NN is larger than the hyperparameter ση

used by MLP-PF, indicating that the proposed method antic-
ipates noisier observations and therefore adjusts more gently
the predictions.

This behavior is more evident when comparing the simulation
between cycle 50 (Fig. 4b) and cycle 80 (Fig. 4c). During
this phase, battery 5 shows a pronounced degradation trajec-
tory. The MLP-PF algorithm is overly reactive to this trend,
resulting in an underestimated prediction of the EOL. The
MVENN-PF algorithm, on the other hand, remains stable,
providing a consistent prediction and accurately estimating
the RUL.

The metrics, summarized in Table 1, confirm the superior
prognostic performance of the proposed method. These met-
rics are calculated over the entire battery life and specifi-
cally for the last quarter, which is the most critical phase
for prognostics. The results demonstrate that the proposed
method outperforms MLP-PF, providing more accurate and
stable predictions of the RUL. This improved performance is
crucial for effective battery management and underscores the
reliability of the new method.
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Figure 4. Predictions of the evolution of battery 5 capacity performed at cycles 1 (a), 50 (b), 80 (c) and 120 (d) by the proposed
method (MVENN-PF) and the comparison method (MLP-PF). The shaded areas correspond to the 95th percentile confidence
intervals of the predictions, while the solid lines represent the prediction expected value.
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Figure 5. Comparison of results in terms of RUL

4. CONCLUSION

In this paper, we have presented a novel method for enhanc-
ing the prediction of battery remaining useful life by com-
bining a data-driven particle filter with a neural network with
variance estimation (MVENN-PF). The experimental results
indicate that the MVENN-PF algorithm outperforms a tradi-
tional MLP-PF in terms of key prognostic metrics, including
confidence interval coverage (CIC), cumulative relative accu-
racy (CRA), and β metric.

The proposed method offers two main contributions:

• Elimination of ση hyperparameter tuning: One of the
significant advantages of the MVENN-PF method is that
it removes the need to manually tune the variance of the
measurement noise ση , which greatly affects the perfor-
mance of the classical algorithms. This self-adjusting
feature simplifies the implementation process and en-
hances the algorithm adaptability to different datasets
and operational conditions.

• Improved robustness to measurement noise: The in-
herent robustness of the MVENN-PF algorithm is an-
other key contribution. By providing an estimate of the
measurement noise variance through the NN, the algo-
rithm dynamically adjusts to varying noise levels, lead-
ing to more stable and reliable RUL predictions. This
capability ensures that the algorithm maintains high per-
formance even in the presence of noisy data, which is
crucial for real-world applications.

These advancements enhance the reliability of particle filter-
based prognostic algorithms, which often suffer from robust-
ness issues, and contribute to the development of more ro-
bust and adaptive health management solutions for battery-
operated systems. Moreover, the real-time capability of this
algorithm is ensured by its computational efficiency: with the
proposed MVENN-PF architecture, the execution time per

6
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cycle on a standard commercial laptop never exceeds 0.1 sec-
onds.

Future work will focus on further refining the NN architec-
ture and exploring the integration of additional data sources
to enhance the robustness and accuracy of RUL predictions.
Additionally, the robustness of the algorithm will be tested
in scenarios involving biased or broken sensors to verify if
the estimation of the measurement noise can cope with these
extreme situations.

ACKNOWLEDGMENT

The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation program under the Marie Skłodowska-Curie grant
agreement No 955393

The work of Piero Baraldi is supported by FAIR (Future Arti-
ficial Intelligence Research) project, funded by the NextGen-
erationEU program within the PNRR-PE-AI scheme (M4C2,
Investment 1.3, Line on Artificial Intelligence).

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp,
T. (2002). A tutorial on particle filters for online
nonlinear/nongaussian bayesian tracking. IEEE Trans-
action on Signal Processing, 50(2), 174–188. doi:
10.1109/9780470544198.ch73

Cadini, F., Sbarufatti, C., Cancelliere, F., & Giglio, M.
(2019). State-of-life prognosis and diagnosis of
lithium-ion batteries by data-driven particle filters.
Applied Energy, 235(June 2018), 661–672. doi:
10.1016/j.apenergy.2018.10.095

Cadini, F., Sbarufatti, C., Corbetta, M., Cancelliere, F., &
Giglio, M. (2019). Particle filtering-based adap-
tive training of neural networks for real-time struc-
tural damage diagnosis and prognosis. Structural
Control and Health Monitoring, 26(12), 1–19. doi:
10.1002/stc.2451

Cancelliere, F., Girard, S., & Bourinet, J.-M. (2024).
Data-Driven Prognostics with Multi-Layer Percep-
tron Particle Filter: a Cross-Industry Exploration.
PHM Society European Conference, 8(1), 8. doi:
10.36001/phme.2024.v8i1.4034

Cancelliere, F., Girard, S., Bourinet, J.-M., & Broggi, M.
(2023). Grey-box Approach for the Prognostic and
Health Management of Lithium-Ion Batteries. An-
nual Conference of the PHM Society, 15(1), 1–8. doi:
10.36001/phmconf.2023.v15i1.3506

Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y.,
. . . Li, B. (2021). A review of lithium-ion battery
safety concerns: The issues, strategies, and testing
standards. Journal of Energy Chemistry, 59, 83–99.

doi: 10.1016/j.jechem.2020.10.017
de Freitas, J. F., Niranjan, M., Gee, A. H., & Doucet, A.

(2000). Sequential Monte Carlo methods to train neural
network models. Neural computation, 12, 955–993.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequen-
tial Monte Carlo sampling methods for Bayesian fil-
tering. Statistics and Computing, 10, 197–208. doi:
10.1023/A:1008935410038

Flury, T., & Shephard, N. (2009). Learning and filtering
via simulation : smoothly jittered particle filters. Re-
CALL(2001), 1–27.

Gu, H., Mahmoud, H., Arun, R. L., Liu, J., & Ma, X. (2023).
Particle Filter and Its Variants for Degradation State Es-
timation and Remaining Useful Life Prediction. Pro-
ceedings - 2023 Prognostics and Health Management
Conference - Paris, PHM-Paris 2023, 256–263. doi:
10.1109/PHM58589.2023.00055

Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery
Lifetime Prognostics. Joule, 4(2), 310–346. doi:
10.1016/j.joule.2019.11.018

Jules, E., Cancelliere, F., Mattrand, C., & Bourinet, J.-M.
(2023). Remaining useful life prediction of turbofans
with virtual health indicator: A comparison of parti-
cle filter-based approaches. , 75-82. doi: 10.1109/IC-
SRS59833.2023.10381439

Kantas, N., Doucet, A., Singh, S., & Maciejowski, J. (2009).
An Overview of Sequential Monte Carlo Methods for
Parameter Estimation in General State-Space Mod-
els. In Ifac symposium on system identification (pp.
774–785). IFAC. doi: 10.3182/20090706-3-FR-
2004.00129

Lall, P., Lowe, R., & Goebel, K. (2010). Prognostics using
Kalman-Filter models and metrics for risk assessment
in BGAs under shock and vibration loads. Proceed-
ings - Electronic Components and Technology Confer-
ence(1), 889–901. doi: 10.1109/ECTC.2010.5490691

Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020). Particle fil-
ter recurrent neural networks. AAAI 2020 - 34th AAAI
Conference on Artificial Intelligence, 5101–5108. doi:
10.1609/aaai.v34i04.5952

Nascimento, R. G., Corbetta, M., Kulkarni, C. S., & Viana,
F. A. (2021). Hybrid physics-informed neural net-
works for lithium-ion battery modeling and prognosis.
Journal of Power Sources, 513(August), 230526. doi:
10.1016/j.jpowsour.2021.230526

Nguyen, K. T., Medjaher, K., & Gogu, C. (2022). Prob-
abilistic deep learning methodology for uncertainty
quantification of remaining useful lifetime of multi-
component systems. Reliability Engineering and
System Safety, 222(February), 108383. Retrieved from
https://doi.org/10.1016/j.ress.2022.108383
doi: 10.1016/j.ress.2022.108383

Nix, D. A., & Weigend, A. S. (1994). Estimating the Mean
and Variance of the Target Probability Distribution. In

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Proceedings of 1994 ieee international conference on
neural networks (icnn’94) (pp. 55–60). Orlando, FL.
doi: 10.1109/ICNN.1994.374138

Saha, B., & Goebel, K. (2007). Battery Data Set. NASA Ames
Prognostics Data Repository.

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha,
B., Saha, S., & Schwabacher, M. (2008). Met-
rics for evaluating performance of prognostic tech-
niques. 2008 International Conference on Prognostics
and Health Management, PHM 2008(October). doi:
10.1109/PHM.2008.4711436

Sbarufatti, C., Corbetta, M., Giglio, M., & Cadini, F. (2018).
Adaptive prognosis of lithium-ion batteries based on
the combination of particle filters and radial basis func-
tion neural networks. Journal of Power Sources, 344,
128–140. doi: 10.1016/j.jpowsour.2017.01.105

Tran, M. K., Mevawalla, A., Aziz, A., Panchal, S., Xie, Y.,
& Fowler, M. (2022). A Review of Lithium-Ion Bat-

tery Thermal Runaway Modeling and Diagnosis Ap-
proaches. Processes, 10(6). doi: 10.3390/pr10061192

Wang, S., Jin, S., Bai, D., Fan, Y., Shi, H., & Fernandez,
C. (2021). A critical review of improved deep learn-
ing methods for the remaining useful life prediction of
lithium-ion batteries. Energy Reports, 7, 5562–5574.
doi: 10.1016/j.egyr.2021.08.182

Wu, L., Fu, X., & Guan, Y. (2016). Review of the Remaining
Useful Life Prognostics of Vehicle Lithium-Ion Bat-
teries Using Data-Driven Methodologies. Applied Sci-
ences, 6(6), 166. doi: 10.3390/app6060166

Zio, E. (2022). Prognostics and Health Management
(PHM): Where are we and where do we (need to)
go in theory and practice. Reliability Engineer-
ing and System Safety, 218(PA), 108119. doi:
10.1016/j.ress.2021.108119

8


