Uncertainty-Aware Prediction of Remaining Useful Life in Complex Systems
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Accurate prediction of the remaining useful life (RUL) of industrial systems is critical to ensuring smooth operation and safety. Various prognostic methods have been developed, but significant challenges remain for field applications. While many methods may achieve high accuracy, they often fall short in quantifying the uncertainty of their predictions. Without uncertainty quantification, it is difficult to assess the confidence level of the prognostic results. Therefore, it is essential to transparently present the uncertainty levels in the predicted results. This Ph.D. project aims to develop novel uncertainty-aware methods for RUL prediction of complex systems. The project will address the following situations where it is more and more uncertain: (a) propose a general framework for data-driven RUL methods to quantify uncertainty and generate adaptive confidence intervals under a single fault mode and a single operating condition; (b) consider both epistemic and aleatoric uncertainties in scenarios with multiple fault modes and multiple operating conditions and then calibrate uncertainty to enhance their accuracy; (c) explore how to predict RUL and quantify uncertainty when there are no run-to-failure data and RUL labels in practice; (d) handle uncertainty propagation from the component level to the system level. Through this research, the project will provide more reliable and comprehensive solutions for RUL prediction in complex systems.
How to Cite
##plugins.themes.bootstrap3.article.details##
Uncertainty-Aware, Remaining Useful Life Prediction
Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241–265.
Kuleshov, V., Fenner, N., & Ermon, S. (2018). Accurate uncertainties for deep learning using calibrated regression. In International conference on machine learning (pp. 2796–2804).
Li, G., Yang, L., Lee, C.-G.,Wang, X., & Rong, M. (2020). A bayesian deep learning rul framework integrating epistemic and aleatoric uncertainties. IEEE Transactions on Industrial Electronics, 68(9), 8829–8841.
Nguyen, K. T., Medjaher, K., & Gogu, C. (2022). Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems. Reliability Engineering & System Safety, 222, 108383.
Zio, E. (2022). Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218, 108119.
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.