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ABSTRACT

Accurate prediction of the remaining useful life (RUL) of in-
dustrial systems is critical to ensuring smooth operation and
safety. Various prognostic methods have been developed, but
significant challenges remain for field applications. While
many methods may achieve high accuracy, they often fall
short in quantifying the uncertainty of their predictions. With-
out uncertainty quantification, it is difficult to assess the con-
fidence level of the prognostic results. Therefore, it is es-
sential to transparently present the uncertainty levels in the
predicted results. This Ph.D. project aims to develop novel
uncertainty-aware methods for RUL prediction of complex
systems. The project will address the following situations
where it is more and more uncertain: (a) propose a gen-
eral framework for data-driven RUL methods to quantify un-
certainty and generate adaptive confidence intervals under a
single fault mode and a single operating condition; (b) con-
sider both epistemic and aleatoric uncertainties in scenarios
with multiple fault modes and multiple operating conditions
and then calibrate uncertainty to enhance their accuracy; (c)
explore how to predict RUL and quantify uncertainty when
there are no run-to-failure data and RUL labels in practice;
(d) handle uncertainty propagation from the component level
to the system level. Through this research, the project will
provide more reliable and comprehensive solutions for RUL
prediction in complex systems.

1. PROBLEM STATEMENT

The methods for predicting Remaining Useful Life (RUL)
can generally be divided into two main categories: model-
based approaches and data-driven approaches (Gebraeel et
al., 2023). Model-based methods rely on a deep understand-
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ing of degradation mechanisms and the governing principles
of the degradation process. However, practical challenges
arise due to the complexity of failure mechanisms and op-
erating environments, making it difficult to establish accurate
models, especially when there is uncertainty in system behav-
ior.

In contrast, data-driven methods are flexible and not confined
to a specific model structure, depending instead on the quan-
tity and quality of the available data. By employing machine
learning algorithms and statistical techniques, these methods
can identify patterns and relationships without needing ex-
plicit knowledge of the underlying degradation mechanisms,
making them adaptable to various systems. By learning di-
rectly from the data, they can capture complex relationships
and patterns, thereby addressing the limitations of traditional
model-based approaches. However, most data-driven meth-
ods generate single-point RUL estimates and often lack ro-
bustness in uncertainty quantification (Zio, 2022).

Deep learning, a prominent data-driven approach, is known
for its ability to handle complex nonlinear data structures,
achieving high RUL prediction accuracy. However, it of-
ten struggles in quantifying prediction uncertainty (Khan &
Yairi, 2018), especially in real-world scenarios with multiple
fault modes and multiple operating conditions, lack of run-
to-failure data and RUL labels, leading to heightened uncer-
tainty levels.

In RUL prediction, there are two primary types of uncer-
tainties: aleatoric uncertainty and epistemic uncertainty (Li,
Yang, Lee, Wang, & Rong, 2020). Quantifying these un-
certainties in various scenarios poses a significant challenge.
Due to inaccuracies stemming from model misspecification
and approximate inference, it’s imperative to calibrate ob-
tained uncertainties for accurate quantification (Kuleshov,
Fenner, & Ermon, 2018). For example, a 95% posteriori con-
fidence interval will typically not cover 95% of the true re-
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sults. Calibration is therefore essential to accurately quantify
uncertainty.

While many existing data-driven approaches focus on prog-
nostics for individual components, predicting RUL and asso-
ciated uncertainties for entire systems is crucial for devising
effective maintenance strategies. In the realm of big data,
systems are often treated as black boxes, overlooking com-
ponent interactions that unveil complexity. Handling uncer-
tainty propagation in RUL prediction from the component
level to the system level, while considering diverse structures
and interactions between components, remains a significant
challenge (Nguyen, Medjaher, & Gogu, 2022).

2. EXPECTED CONTRIBUTIONS

To address the aforementioned challenges, this Ph.D. project
has four research objectives:

1. Uncertainty quantification and calibration of RUL pre-
diction when it is single fault mode and single operat-
ing condition: explore methods that can quantify and
calibrate uncertainty providing deterministic predictions
with associated confidence intervals.

2. Uncertainty quantification and calibration of RUL pre-
diction when it is multiple fault modes and multiple op-
erating conditions: develop methods that are suitable for
real-world conditions, such as multiple fault modes and
multiple operating conditions, which present higher lev-
els of uncertainty.

3. Predict RUL and quantify uncertainty when there are
no run-to-failure data and RUL labels: available data is
used to generate RUL labels for data-driven methods,
Bayesian deep learning and stochastic process provide
feasible solutions to provide uncertainty in conjunction
with deterministic predictions.

4. Manage Uncertainty Propagation: address the propaga-
tion of uncertainty in RUL prediction from the compo-
nent level to the system level, taking into account differ-
ent structures and the interactions between components.

Figure 1 presents the four research objectives of the Ph.D.
project.

3. PROPOSED RESEARCH PLAN

Research Objective 1: Predicting RUL using data-driven
methods can be approached as a regression problem for time
series data. Conformal Prediction (CP) offers a technique to
create regression prediction intervals that encompass the tar-
get value with a specified confidence level. In Split Confor-
mal Prediction (SCP), the training data is divided into subsets:
one for training the regression model and the other for cali-
brating the prediction intervals during testing. The training
subset is used to develop the regression model, while the cal-
ibration subset is employed to assess and quantify prediction

Single fault mode and 
single operating 

condition

Without run-to-failure 
data and RUL labels

Component level to 
system level

Multiple fault modes 
and multiple operating 

conditions

More and more uncertain

Figure 1. Research objectives of the Ph.D. project.

uncertainty. SCP thus provides a robust framework for uncer-
tainty quantification in data-driven RUL prediction methods.
Moreover, incorporating prediction difficulty and time order
offers a more practical approach to calibrating RUL uncer-
tainty.

Research Objective 2: To address epistemic and aleatoric un-
certainties, Bayesian deep learning is leveraged to quantify
uncertainty in more uncertain scenarios, such as multiple fault
modes and multiple operating condtions. Specifically, the
Bayesian posterior over the weights captures epistemic uncer-
tainty, represented by a probabilistic distribution. Aleatoric
uncertainty is manifested through a probabilistic output fol-
lowing a Gaussian distribution parameterized by two neu-
rons in the output layer. The network is trained using Bayes
by Backprop, a variational inference method. The ensemble
method is adopted to integrate epistemic and aleatoric uncer-
tainties. To effectively calibrate both types of uncertainties,
scaling method is used.

Research Objective 3: Available data is firstly used to gen-
erate RUL labels for training. Bayesian deep learning and
stochastic processes offer viable solutions for integrating un-
certainty with deterministic predictions.

Research Objective 4: By integrating the probabilistic
model’s capacity to capture and quantify uncertainties with
the deep neural network’s capability to discern intricate pat-
terns and dependencies within the data, the predictive model
achieves a holistic understanding of the degradation pro-
cess. This synergy of methodologies not only enhances the
accuracy and reliability of RUL predictions for individual
components but also enables a broader perspective on the
health and longevity of the overall system.

3.1. Work Performed

Research Objective 1: We introduce a novel framework de-
signed to overcome the constraints of conventional confor-
mal prediction techniques. Figure 2 illustrates the compre-
hensive data-driven framework for RUL estimation with un-
certainty quantification, employing SCP. Our framework pri-
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Figure 2. The general data-driven framework for RUL esti-
mation with uncertainty quantification using split conformal
prediction.

especially in the progressive degradation process. Therefore,
we can expect to see narrower prediction intervals in the
stage of near to failure but wider prediction intervals in the
stage of progressive degradation process, which is the behavior
expected from our proposed framework.
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(b) CNN
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(c) GB

� �� �� �� �� ���
��!"�#��"�%�"����� ��!�������

�

��

���

���

���

���

��
�

��
��

��
�#

!�
�#

���
���


��	����"� $��!
� �#��" #"�����!
�����������"������ ����"���!

(d) DNN
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(e) SVR
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(f) LSTM

Fig. 2: Sorted RUL single-point estimation with predicted
intervals from NSCPN by different estimators.
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(b) CNN

Fig. 3: RF and CNN applied with SCP and SCPN.

We also apply the SCPN, NSCP and NSCPN frameworks to
each estimator and compare it with SCP. After experimenting
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(b) CNN

Fig. 4: RF and CNN applied with SCP and NSCP.
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(b) CNN

Fig. 5: RF and CNN applied with SCP and NSCPN.

with six estimators, we find the same pattern. Due to space
constraints, we solely present and discuss the results of RF
and CNN in this paper. Figure 3 illustrates that, for those
areas where the prediction results are accurate, SCPN gives
a narrower prediction interval, proving that we have strong
confidence in the prediction results. Data points closer to the
failure time are relatively easier to predict compared to those
with larger actual RUL values. Therefore, we see narrower
prediction intervals for these data points, which aligns with
the behavior expected from score normalization. In Figure 4,
it is evident that for those areas where the prediction results
are not accurate, especially those peaks which are far away
from real values, NSCP gives a wider prediction interval,
proving that we have weak confidence in the prediction
results. This observation indicates that converting time order
to weight employs similarity to keep the similar shape as
original SCP. Figure 5 shows that both score normalization and
nonexchangeability improve the split conformal prediction.
They give more adaptive and flexible prediction intervals that
can better capture the varying levels of prediction difficulty
or uncertainty in different regions of the data space. This
performance characteristic is very useful in safety-critical
scenarios for decision-making evaluation.

Considering the four metrics mentioned earlier, we run the
experiments randomly ten times. Table I and Table II show
the function score, root mean square error, average coverage
and average width of one random time and the average of ten
random times, respectively.

Based on the randomized experiment presented in Table I, it
is evident that while the accuracy of the estimators may differ,
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Figure 3. Sorted RUL single-point estimation with predicted
intervals from NSCPN by RF and CNN.

oritizes the generation of prediction intervals for single-point
estimators, thus facilitating robust uncertainty quantification.
This approach addresses the limitations of interval adaptivity
and surpasses the assumption of data exchangeability inher-
ent in previous methodologies. To assess the efficacy of our
framework, we conducted experiments using the extensively
utilized Commercial Modular Aero-Propulsion System Sim-
ulation (CMAPSS) datasets.

We conformalize six estimators using Nonexchangeable Split
Conformal Prediction with a normalized nonconformity mea-
sure (NSCPN). The NSCPN framework can provide predic-
tion intervals for both conventional machine learning estima-
tors and modern deep learning estimators, establishing it as
a general data-driven RUL estimation framework with uncer-
tainty quantification. Figure 3 shows single-point estimation
with predicted intervals from proposed framework by Ran-
dom Forest (RF) and Convolutional Neural Networks (CNN).
Furthermore, we apply the NSCPN framework to each esti-
mator and compare it with Split Conformal Prediction (SCP)
and Nonexchangeable Split Conformal Prediction (NSCP).
Across all six estimators, we observe a consistent pattern:

especially in the progressive degradation process. Therefore,
we can expect to see narrower prediction intervals in the
stage of near to failure but wider prediction intervals in the
stage of progressive degradation process, which is the behavior
expected from our proposed framework.
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(b) CNN
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(e) SVR

� �� �� �� �� ���
��!"�#��"�%�"����� ��!�������

�

��

���

���

���

���

��
�

��
��

��
�#

!�
�#

���
���

������	����"� $��!

 �#��" #"�����!
�����������"������ ����"���!

(f) LSTM

Fig. 2: Sorted RUL single-point estimation with predicted
intervals from NSCPN by different estimators.
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Fig. 3: RF and CNN applied with SCP and SCPN.

We also apply the SCPN, NSCP and NSCPN frameworks to
each estimator and compare it with SCP. After experimenting
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(b) CNN

Fig. 4: RF and CNN applied with SCP and NSCP.
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(b) CNN

Fig. 5: RF and CNN applied with SCP and NSCPN.

with six estimators, we find the same pattern. Due to space
constraints, we solely present and discuss the results of RF
and CNN in this paper. Figure 3 illustrates that, for those
areas where the prediction results are accurate, SCPN gives
a narrower prediction interval, proving that we have strong
confidence in the prediction results. Data points closer to the
failure time are relatively easier to predict compared to those
with larger actual RUL values. Therefore, we see narrower
prediction intervals for these data points, which aligns with
the behavior expected from score normalization. In Figure 4,
it is evident that for those areas where the prediction results
are not accurate, especially those peaks which are far away
from real values, NSCP gives a wider prediction interval,
proving that we have weak confidence in the prediction
results. This observation indicates that converting time order
to weight employs similarity to keep the similar shape as
original SCP. Figure 5 shows that both score normalization and
nonexchangeability improve the split conformal prediction.
They give more adaptive and flexible prediction intervals that
can better capture the varying levels of prediction difficulty
or uncertainty in different regions of the data space. This
performance characteristic is very useful in safety-critical
scenarios for decision-making evaluation.

Considering the four metrics mentioned earlier, we run the
experiments randomly ten times. Table I and Table II show
the function score, root mean square error, average coverage
and average width of one random time and the average of ten
random times, respectively.

Based on the randomized experiment presented in Table I, it
is evident that while the accuracy of the estimators may differ,
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Figure 4. RF and CNN applied with SCP an NSCPN.

both score normalization and nonexchangeability improve the
split conformal prediction. They give more adaptive and flex-
ible prediction intervals that can better capture the varying
levels of prediction difficulty or uncertainty in different re-
gions of the data space. As data points approach failure
times, single-point predictions of RUL become more accu-
rate, particularly when RUL is near zero. This observation
indicates that data points closer to failure times are relatively
easier to predict compared to those with larger actual RUL
values. Therefore, we anticipate narrower prediction intervals
for these data points, which means we have strong confidence
in the prediction results. It is evident that for those areas
where the prediction results are not accurate, especially those
peaks which are far away from real values, NSCPN gives a
wider prediction interval, proving that we have weak confi-
dence in the prediction results. It is thus demonstrated that
NSCPN is more adaptive, a crucial performance characteris-
tic for decision-making in safety-critical scenarios. The vali-
dation of our framework underscores its potential for practical
application in uncertain prediction tasks.

Research Objective 2: We propose a Bayesian Deep Learning
framework for RUL prediction that considers both aleatoric
and epistemic uncertainties across multiple operating condi-
tions and fault modes, which is presented in Figure 5. In such
high-level uncertain scenarios, our framework demonstrates
a significant ability for uncertainty quantification. Not only
does our proposed framework provide prediction intervals
when compared with frequentist deep learning, but it also ex-
hibits superior capability for uncertainty quantification com-
pared to traditional Monte Carlo Dropout-based Deep Learn-
ing methods. Deterministic predictions with confidence in-
tervals are presented in Figure 6.

To comprehensively address both epistemic and aleatoric un-
certainties, our proposed Bayesian deep learning framework
represents weights as probability distributions rather than de-
terministic values. The corresponding mean and standard de-
viation are estimated from the two-dimensional output layer,
enabling the learning of mean and noise observations from
input data. In contrast to traditional Monte Carlo Dropout ap-
proaches, we utilize Bayes by Backprop to approximate the
posterior distribution through variational inference. Finally,
the mean and standard deviation of output results are obtained
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Figure 5. Bayesian Deep Learning framwork for RUL.

by multiple forward passes of the network. RUL predictions
with two uncertainties are illustrated in Figure 7.

Figure 6. Predicted RUL with confidence interval.
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Figure 7. RUL predictions with two uncertainties.

This framework has been validated using the CMAPSS
datasets. Particularly in uncertain scenarios involving mul-
tiple operating conditions and fault modes, our proposed
framework demonstrates significant improvements in predic-
tion accuracy and uncertainty quantification.

3.2. Remaining Work

Research Objective 3: The available data is initially used to
generate RUL labels for training. Bayesian deep learning and

stochastic processes then provide effective methods for incor-
porating uncertainty alongside deterministic predictions.

Research Objective 4: The integration of a probabilistic
model and deep neural network facilitates the prediction of
component-level RUL distributions. Leveraging insights into
the system’s architecture enables the prediction of system-
level RUL, enhancing the overall prognostic capability.

4. CONCLUSION

This research aims to develop uncertainty-aware methods
for predicting RUL of complex systems. The first pro-
posed framework is a general approach enabling data-driven
methods for RUL estimation with uncertainty quantification,
utilizing split conformal prediction. The second proposed
framework utilizes Bayesian deep learning to address both
aleatoric and epistemic uncertainties across multiple fault
modes and working conditions. Future work will explore
methods to predict RUL and quantify uncertainty in scenar-
ios where run-to-failure andd RUL labels are unavailable and
how uncertainties propagate from component level to system
level.
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