Contending Remaining Useful Life Algorithms
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Operational readiness, reliability and safety are all enhanced through condition monitoring. That said, for many assets, there is still a need for a prognostic capability to calculate remaining useful life (RUL). RUL allows operation and maintenance personnel to better schedule assets, and logisticians to order long lead time part to help improve balance of plant/asset availability. While a number of RUL techniques have been reported, we have focused on fatigue crack growth models (as opposed to physics or deep learning of based models). This paper compares the performance of stress intensity models (linear elastic model, e.g. Paris’ Law), to Head’s theory (geomatical similarity hypothesis) and to Dislocation/Energy theories of crack growth. It will be shown that these models differ mainly in the crack growth exponent, and that this leads to large differences in the estimation of RUL during early state fault propagation, though the results of all three models converge as the RUL is shorted.
How to Cite
##plugins.themes.bootstrap3.article.details##
RUL, Diagnstics, Condition Based Maintenance, HUMS
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.