Dynamical Variational Autoencoders for Estimating the Remaining Useful Life of Machinery
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Kristoffer McKee
Abstract
The purpose of this work is to show the effectiveness of using generative models, specifically Dynamical Variational Autoencoders (DVAEs) for Remaining Useful Life (RUL) estimation. Many deep learning methods simply output point estimates of the RUL, generative models have the benefit of being optimized to learn an underlying probability distribution, this allows for uncertainty quantification. This work showcases how to construct a conditional DVAE to learn how to sample from p(y1:T |x1:T ), where y1:T is a sequence of RUL estimates and x1:T are a sequence of sensor signals. It is shown why noncausal sensors are important when constructing this conditional model and how one can achieve state of the art results using DVAEs. Because the DVAE is a generative model and learns to sample from p(y1:T |x1:T ), one can also quantify the uncertainty of the RUL estimates directly with this model. This is tested on NASA’s CMAPSS turbofan engine dataset and an open dataset from a dust filter experimental setup and it is demonstrated it is able to achieve state of the art results.
##plugins.themes.bootstrap3.article.details##
Generative models, Deep Learning, Remaining Useful Life, Uncertainty Quantification, Machinery Prognostics
Basora, L., Viens, A., Chao, M. A., & Olive, X. (2025, 1). A benchmark on uncertainty quantification for deep learning prognostics. Reliability Engineering & System Safety, 253, 110513. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0951832024005854 doi: 10.1016/j.ress.2024.110513
Cao, L., Zhang, H., Meng, Z., & Wang, X. (2023). A parallel gru with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic rul prediction of wind turbine bearings. Reliability Engineering & System Safety, 235, 109197. Retrieved from https://www.sciencedirect.com/science/article/pii/S0951832023001126 doi: https://doi.org/10.1016/j.ress.2023.109197
Chang, Y., Zou, J., Fan, S., Peng, C., & Fang, H. (2022, 9). Remaining useful life prediction of degraded system with the capability of uncertainty management. Mechanical Systems and Signal Processing, 177, 109166. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0888327022003235 doi: 10.1016/j.ymssp.2022.109166
Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., & Li, X. (2021). Machine remaining useful life prediction via an attention-based deep learning approach. IEEE Transactions on Industrial Electronics, 68, 2521-2531. doi: 10.1109/TIE.2020.2972443
Corenflos, A., Thornton, J., Deligiannidis, G., & Doucet, A. (2021, 7). Differentiable particle filtering via entropy-regularized optimal transport. In M. Meila & T. Zhang (Eds.), Proceedings of the 38th international conference on machine learning (Vol. 139, pp. 2100–2111). PMLR. Retrieved from https://proceedings.mlr.press/v139/corenflos21a.html
Fraccaro, M., Kamronn, S., Paquet, U., &Winther, O. (2017). A disentangled recognition and nonlinear dynamics model for unsupervised learning. Advances in Neural Information Processing Systems 30, NIPS.
Fraccaro, M., Sø nderby, S. r. K., Paquet, U., & Winther, O. (2016). Sequential neural models with stochastic layers. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 29, p. 2207–2215). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
Fu, S., Zhong, S., Lin, L., & Zhao, M. (2022, 12). A novel time-series memory auto-encoder with sequentially updated reconstructions for remaining useful life prediction. IEEE Transactions on Neural Networks and Learning Systems, 33, 7114-7125. doi: 10.1109/TNNLS.2021.3084249
Gao, G., Que, Z., & Xu, Z. (2020). Predicting remaining useful life with uncertainty using recurrent neural process. Proceedings - Companion of the 2020 IEEE 20th International Conference on Software Quality, Reliability, and Security, QRS-C 2020, 291-296. doi: 10.1109/QRS-C51114.2020.00057
Gao, Y., Wen, Y., & Wu, J. (2021, 1). A neural network-based joint prognostic model for data fusion and remaining useful life prediction. IEEE Transactions on Neural Networks and Learning Systems, 32, 117-127. doi: 10.1109/TNNLS.2020.2977132
Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2021, 8). Dynamical Variational Autoencoders: A Comprehensive Review. Foundations and Trends® in Machine Learning, 15(1-2), 1–175. Retrieved from https://arxiv.org/abs/2008.12595http://www.nowpublishers.com/article/Details/MAL-089 doi:10.1561/2200000089
González-Muñiz, A., Díaz, I., Cuadrado, A. A., & García-Pérez, D. (2022, 8). Health indicator for machine condition monitoring built in the latent space of a deep autoencoder. Reliability Engineering & System Safety, 224, 108482. doi: 10.1016/J.RESS.2022.108482
Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98-109. Retrieved from http://dx.doi.org/10.1016/j.neucom.2017.02.045 doi: 10.1016/j.neucom.2017.02.045
Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J. (2019, 6). Learning latent dynamics for planning from pixels. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of the 36th international conference on machine learning (Vol. 97, pp. 2555–2565). PMLR. Retrieved from https://proceedings.mlr.press/v97/hafner19a.html
Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot, X., Botvinick, M. M., . . . Lerchner, A. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In Iclr (p. 1-22).
Jiangyan, Z., Ma, J., & Wu, J. (2024). A regularized constrained two-stream convolution augmented Transformer for aircraft engine remaining useful life prediction. Engineering Applications of Artificial Intelligence, 133, 108161. Retrieved from https://doi.org/10.1016/j.engappai.2024.108161 doi: 10.1016/j.engappai.2024.108161
Jonschkowski, R., Rastogi, D., & Brock, O. (2018, June). Differentiable particle filters: End-to-end learning with algorithmic priors. In Proceedings of robotics: Science and systems (pp. 1–9). Pittsburgh, Pennsylvania. doi: 10.15607/RSS.2018.XIV.001
Kim, M., & Liu, K. (2020). A bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics. IISE Transactions, 53, 326-340. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/24725854.2020.1766729 doi: 10.1080/24725854.2020.1766729
Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. CoRR, abs/1312.6114.
Lai, J., Domke, J., & Sheldon, D. (2021). Variational marginal particle filters. Proceedings of The International Conference on Artificial Intelligence and Statistics (AISTATS). Retrieved from https://par.nsf.gov/biblio/10359646
Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics. Reliability Engineering & System Safety, 230, 108908. Retrieved from https://www.sciencedirect.com/science/article/pii/S0951832022005233 doi: https://doi.org/10.1016/j.ress.2022.108908
Li, A. H., Wu, P., & Kennedy, M. (2021). Replay overshooting: Learning stochastic latent dynamics with the extended kalman filter. In 2021 ieee international conference on robotics and automation (icra) (p. 852-858). doi: 10.1109/ICRA48506.2021.9560811
Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 172(December 2017), 1–11. Retrieved from https://doi.org/10.1016/j.ress.2017.11.021 doi: 10.1016/j.ress.2017.11.021
Li, X., Wong, T.-K. L., Chen, R. T. Q., & Duvenaud, D. (2020, 1). Scalable Gradients for Stochastic Differential Equations. arxiv. Retrieved from http://arxiv.org/abs/2001.01328
Li, X., Zhang, W., Ma, H., Luo, Z., & Li, X. (2022, 10). Degradation alignment in remaining useful life prediction using deep cycle-consistent learning. IEEE Transactions on Neural Networks and Learning Systems, 33, 5480-5491.
doi: 10.1109/TNNLS.2021.3070840
Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi, M., Mnih, A., . . . Teh, Y. (2017). Filtering variational objectives. In I. Guyon et al. (Eds.), Advances in neural information processing systems (Vol. 30, p. 1-11). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/fa84632d742f2729dc32ce8cb5d49733-Paper.pdf
Mauthe, F., Hagmeyer, S., & Zeiler, P. (2021). Creation of publicly available data sets for prognostics and diagnostics addressing data scenarios relevant to industrial applications. International Journal of Prognostics and Health Management. Retrieved from https://api.semanticscholar.org/CorpusID:244036445
Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive maintenance for multiple components using data-driven probabilistic rul prognostics: The case of turbofan engines. Reliability Engineering & System Safety, 234, 109199. Retrieved from https://www.sciencedirect.com/science/article/pii/S095183202300114X doi: https://doi.org/10.1016/j.ress.2023.109199
Naesseth, C., Linderman, S., Ranganath, R., & Blei, D. (2018, 4). Variational sequential monte carlo. In A. Storkey & F. Perez-Cruz (Eds.), Proceedings of the twenty-first international conference on artificial intelligence and statistics (Vol. 84, pp. 968–977). PMLR. Retrieved from https://proceedings.mlr.press/v84/naesseth18a.html
Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., . . . Hu, C. (2023). Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial. Mechanical Systems and Signal Processing, 205, 888-3270. Retrieved from https://doi.org/10.1016/j.ymssp.2023.110796 doi: 10.1016/j.ymssp.2023.110796
Nguyen, K. T., Medjaher, K., & Gogu, C. (2022, 6). Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems. Reliability Engineering and System Safety, 222. doi: 10.1016/j.ress.2022.108383
Pasa, G., Medeiros, I., & Yoneyama, T. (2019). Operating Condition-Invariant Neural Network-based Prognostics Methods applied on Turbofan Aircraft Engines. In Annual conference of the phm society (Vol. 11, pp. 1–10). doi: https://doi.org/10.36001/phmconf.2019.v11i1.786
Peng, W., Ye, Z.-S., & Chen, N. (2019). Bayesian Deep Learning based Health Prognostics Towards Prognostics Uncertainty. IEEE Transactions on Industrial Electronics, 1–1. Retrieved from https://ieeexplore.ieee.org/document/8681720/ doi: 10.1109/TIE.2019.2907440
Ping, G., Chen, J., Pan, T., & Pan, J. (2019). Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational autoencoder. Computers in Industry, 109, 72–82. doi: 10.1016/j.compind.2019.04.013
Qin, Y., Cai, N., Gao, C., Zhang, Y., Cheng, Y., & Chen, X. (2022, 2). Remaining useful life prediction using temporal deep degradation network for complex machinery with attention-based feature extraction. ArXiv. Retrieved from http://arxiv.org/abs/2202.10916 doi: 10.48550/arxiv.2202.10916
Qin, Y., Zhou, J., & Chen, D. (2021). Unsupervised health Indicator construction by a novel degradation-trend constrained variational autoencoder and its applications. IEEE/ASME Transactions on Mechatronics. doi: 10.1109/TMECH.2021.3098737
Que, Z. J., Xiong, Y., & Xu, Z. G. (2019, 12). A semi-supervised approach for steam turbine health prognostics based on gan and pf. IEEE International Conference on Industrial Engineering and Engineering Management, 1476-1480. doi: 10.1109/IEEM44572.2019.8978717
Ragab, M., Chen, Z., Wu, M., Kwoh, C.-K., Yan, R., & Li, X. (2021, 11). Attention-based sequence to sequence model for machine remaining useful life prediction. Neurocomputing, 466, 58-68. Retrieved from https://linkinghub.elsevier .com/retrieve/pii/S0925231221013801 doi: 10.1016/j.neucom.2021.09.022
Remadna, I., Terrissa, L. S., Masry, Z. A., & Zerhouni, N. (2022). Rul prediction using a fusion of attention-based convolutional variational autoencoder and ensemble learning classifier. IEEE Transactions on Reliability. doi: 10.1109/TR.2022.3190639
Ren, L., Liu, Y., Huang, D., Member, S., Huang, K., & Yang, C. (2023). Mctan: A novel multichannel temporal attention-based network for industrial health indicator prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 34. Retrieved from https://doi.org/10.1109/TNNLS.2021.3136768. (Uses attention mechanisms to weight differnet sensors in each channel based on how much the contribute to degradation. The attention also act temporally to deal with long sequence lengths.) doi: 10.1109/TNNLS.2021.3136768
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536. Retrieved from https://www.nature.com/articles/323533a0 doi: https://doi.org/10.1038/323533a0
Sankararaman, S. (2015). Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction. Mechanical Systems and Signal Processing, 52-53, 228-247. Retrieved from https://www.sciencedirect.com/science/article/pii/S0888327014002052 doi: https://doi.org/10.1016/j.ymssp.2014.05.029
Saxena, A., & Goebel, K. (2008). Turbofan Engine Degradation Simulation Data Set. NASA Ames Research Center. Retrieved from https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008, 10). Damage propagation modeling for aircraft engine run-to-failure simulation. In 2008 international conference on prognostics and health management (Vol. 41, pp. 1–9). IEEE. Retrieved from http://www.embase.com/search/results?subaction=viewrecord{&}from=export{&}id=L71115746{%}5Cnhttp://dx.doi.org/10.1515/jpm-2013-2003{%}5Cn http://sfx.aub.aau.dk/sfxaub?sid=EMBASE{&}issn=03005577{&}id=doi:10.1515{%}2Fjpm-2013-2003{&}atitle=Growth+factors+in+pregnancies+comp doi: 10.1109/PHM.2008.4711414
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st international conference on neural information processing systems (p. 6000–6010). Red Hook, NY, USA: Curran Associates Inc.
Wei, Y., Wu, D., & Terpenny, J. (2021, 12). Learning the health index of complex systems using dynamic conditional variational autoencoders. Reliability Engineering & System Safety, 216, 108004. doi: 10.1016/J.RESS.2021.108004
Wu, X., Liu, Z., & Wang, L. (2025, 4). Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction. Reliability Engineering and System Safety, 256. doi: 10.1016/j.ress.2024.110770
Xia, Y., Yao, W., Zheng, X., & Gong, Z. (2023, 3). Reliability analysis of heat source layout temperature field prediction considering uncertainty in deep neural network surrogate models. Quality and Reliability Engineering International. Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1002/qre.3313https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.3313 https://onlinelibrary .wiley.com/doi/10.1002/qre.3313 doi: 10.1002/QRE.3313
Xu, D., Qiu, H., Gao, L., Yang, Z., & Wang, D. (2022, 6). A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems. Reliability Engineering & System Safety, 222, 108444. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0951832022001090 doi: 10.1016/j.ress.2022.108444
Xu, Z., Guo, Y., & Saleh, J. (2021). Accurate Remaining Useful Life Prediction With Uncertainty Quantification: A Deep Learning and Nonstationary Gaussian Process Approach. IEEE Transactions on Reliability. doi: 10.1109/TR.2021.3124944
Yang, T., Wang, J., Chen, L., Cui, Z., Qi, J., & Wang, R. (2020). Machinery health prognostics of dust removal fan data through deep neural networks. In H. Ning & F. Shi (Eds.), Cyberspace data and intelligence, and cyber-living, syndrome, and health (pp. 27–37). Singapore: Springer Singapore. doi: https://doi.org/10.1007/978-981-33-4336-8\ 3
Zhai, S., Gehring, B., & Reinhart, G. (2021, 3). Enabling predictive maintenance integrated production scheduling by operation-specific health prognostics with generative deep learning. Journal of Manufacturing Systems. doi: 10.1016/J.JMSY.2021.02.006
Zhang, Q., Liu, Q., & Ye, Q. (2024). An attention-based temporal convolutional network method for predicting remaining useful life of aero-engine. Engineering Applications of Artificial Intelligence, 127, 952-1976. Retrieved from https://doi.org/10.1016/j.engappai.2023.107241 doi: 10.1016/j.engappai.2023.107241
Zhang, Q., Yang, P., & Liu, Q. (2024, 10). A dual-stream spatio-temporal fusion network with multi-sensor signals for remaining useful life prediction. Journal of Manufacturing Systems, 76, 43-58. doi: 10.1016/j.jmsy.2024.07.004
Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 67(7), 5695–5705. doi: 10.1109/TVT.2018.2805189
Zhao, K., Jia, Z., Jia, F., & Shao, H. (2023). Multiscale integrated deep self-attention network for predicting remaining useful life of aero-engine. Engineering Applications of Artificial Intelligence, 120, 105860. Retrieved from https://doi.org/10.1016/j.engappai.2023.105860 doi: 10.1016/j.engappai.2023.105860
Zhao, Z.,Wu, J.,Wong, D., Sun, C., & Yan, R. (2020). Probabilistic remaining useful life prediction based on deep convolutional neural network. SSRN Electronic Journal. Retrieved from https://www.ssrn.com/abstract=3717738 doi: 10.2139/ssrn.3717738
Zhu, J., Chen, N., & Peng, W. (2019, 4). Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network. IEEE Transactions on Industrial Electronics, 66(4), 3208–3216. doi: 10.1109/TIE.2018.2844856