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ABSTRACT

The purpose of this work is to show the effectiveness of using
generative models, specifically Dynamical Variational Au-
toencoders (DVAESs) for Remaining Useful Life (RUL) esti-
mation. Many deep learning methods simply output point es-
timates of the RUL, generative models have the benefit of be-
ing optimized to learn an underlying probability distribution,
this allows for uncertainty quantification. This work show-
cases how to construct a conditional DVAE to learn how to
sample from p(y1.7|x1.7), Where y1.7 is a sequence of RUL
estimates and x;.7 are a sequence of sensor signals. It is
shown why noncausal sensors are important when construct-
ing this conditional model and how one can achieve state of
the art results using DVAEs. Because the DVAE is a genera-
tive model and learns to sample from p(y;.7|X;1.7), one can
also quantify the uncertainty of the RUL estimates directly
with this model. This is tested on NASA’s CMAPSS turbofan
engine dataset and an open dataset from a dust filter experi-
mental setup and it is demonstrated it is able to achieve state
of the art results.

1. INTRODUCTION

Predictive maintenance techniques are used to help determine
when maintenance should be performed based on the state
of the machine. This helps one exploit the machine to its
full potential while also preventing unexpected failures and
downtime of equipment, giving economic and safety bene-
fits to the stakeholders. An important component of predic-
tive maintenance is machinery prognostics, often defined as
the estimation of a machine’s Remaining Useful Life (RUL).
Hence, finding a model that can accurately estimate the RUL

Marco Star et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.
https://doi.org/10.36001/IJPHM.2025.v16i2.4639

is important for the success of predictive maintenance as a
whole. Another important consideration is the ability of this
model to quantify the uncertainty. Uncertainty quantification
is a vital aspect of RUL estimation, as there are always multi-
ple sources of uncertainty that can affect the model and influ-
ence results; hence, estimating the uncertainty is an important
component of a prognostics method (Sankararaman, 2015).
Deep learning has shown a lot of promise in many different
fields for solving a variety of problems that have an abun-
dance of data, such as in image recognition, large language
models and even in machinery prognostics using deep neural
networks as models. While deep learning has shown the abil-
ity to achieve highly accurate RUL predictions, but it often
outputs point estimates without quantifying the uncertainty
(Peng et al., 2019) This work presents a model that shows it
is capable of state-of-the-art performance while quantifying
the uncertainty. It works using a generative model, which are
not normally used for direct RUL estimation; hence, this work
constructs a generative model for direct RUL estimation.

Currently, in the literature, various deep learning models are
used to predict the RUL of machinery. For example, sensor
signals can be transformed into a spectrogram image, and a
Convolutional Neural Network (CNN) can be used to process
these images and estimate the RUL (Zhu et al., 2019; X. Li
et al., 2018). Recurrent Neural Networks (RNNSs) are another
popular network architecture that can be used to estimate the
RUL from time-series sensor signals directly (Y. Zhang et al.,
2018; Chen et al., 2021). Recently, some works have worked
with attention mechanisms due to their success in other do-
mains involving time-series (D. Xu et al., 2022; Q. Zhang,
Yang, & Liu, 2024; Ragab et al., 2021; Q. Zhang, Liu, & Ye,
2024; K. Zhao et al., 2023). To include uncertainty quantifi-
cation into these neural network models, a popular strategy
is to use Monte Carlo (MC) Dropout (Peng et al., 2019; Cao
et al., 2023; Lee & Mitici, 2023; Mitici et al., 2023; Xia et
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al., 2023). MC dropout is popular because it is easy to imple-
ment by adding dropout to the network. However, a downside
is that while it accounts for epistemic (model/parameter) un-
certainty, it does not account for aleatoric uncertainty (such
as sensor noise) (Basora et al., 2025; Nemani et al., 2023).
Another way to quantify uncertainty is to train the neural net-
work to output the mean and variance estimates of the RUL.
This effectively approximates a Gaussian distribution to rep-
resent the RUL (Kim & Liu, 2020; Z. Zhao et al., 2020). Sim-
ilarly, parameters of other distributions like the log-normal
distribution can be the outputs of the neural network (Nguyen
et al., 2022). Another method models the inputs stochasti-
cally and then uses multiple samples as inputs to a neural net-
work, which outputs the RUL to account for measurement
uncertainty (Y. Gao et al., 2021). One can also estimate RUL
uncertainty by developing a Health Indicator (HI) and extrap-
olating to a known threshold. If these HI trajectories are pro-
jected to the threshold using MC simulations, one can esti-
mate a probability distribution of RULs (Xia et al., 2023).
Probabilistic curve fitting can also be applied to the HI ob-
servations to assess RUL uncertainty (Guo et al., 2017). Un-
scented Kalman Filters have also been used to refine neural
network predictions as new data is acquired (Chang et al.,
2022). Gaussian processes can also be fit to the RUL esti-
mate outputs of a neural network, which has been shown to
work well and is effective at uncertainty quantification (Z. Xu
et al., 2021; Nemani et al., 2023).

However, none of these explore using generative models to
capture the underlying RUL probability distribution directly,
i.e. using sensor signal inputs, directly output RUL samples.
Generative models can use neural networks to learn how to
sample from an underlying unknown probability distribution.
Hence, they are a good candidate for not only estimating the
RUL but finding the distribution p(y1.7|x1.T) i.e. the prob-
ability distribution of the sequence of RULs (y;.7) given the
sensors (X1.7).

Generative models are explored for some prognostics appli-
cations. But many of these are for HI construction. The Vari-
ational Autoencoder (VAE) encodes the input variables into
a lower-dimensional latent variable. This property can be
leveraged to create a HI from multiple sensor signals (Ping
et al., 2019; Qin et al., 2021; Wei et al., 2021; Yang et al.,
2020; Remadna et al., 2022). Generative Adversarial Net-
works (GANs) can also be used by training a discriminator
network to determine whether the sensor data comes from a
healthy machine or not and use the output as a health indicator
(Que et al., 2019). In a similar vein, generative models can be
used to reconstruct healthy data; therefore, when attempting
to reconstruct sensor data from a degrading machine, there is
a large error. Some have used this reconstruction error as a
HI (X. Li et al., 2020; Zhai et al., 2021; Gonzalez-Muiiiz et
al., 2022).

In this work the focus is on using a generative model to di-
rectly estimate the RUL probability distribution given the sen-
sor signals. To do this a class of models known as Dynami-
cal Variational Autoencoders (DVAEs) are used (Girin et al.,
2021). These classes of models have been used on other time-
series tasks such as audio generation or modelling dynami-
cal systems for control or reinforcement learning (Fraccaro
et al., 2016, 2017; Hafner et al., 2019). Here we are less fo-
cused on the latent dynamics part of the model and more on
constructing a model to estimate the conditional RUL distri-
bution p(y1.7|x1.T). However, as mentioned in Girin et al.
(2021), there are many ways of structuring a DVAE, and so
the question remains: how does one apply this class of model
to the prognostics problem? This is what this work addresses.

In this work we aim to show how to construct a DVAE for
RUL estimation given sensor signals related to degradation.
It is shown that state-of-the-art results can be achieved if one
structures the DVAE so that the conditional sensor signals
are noncausal. Here this is achieved using a sequence-to-
sequence model based on a sliding time window i.e. given a
time window of sensor signals, the model returns a sequence
of RUL outputs for that time window. This construction is
shown to achieve state-of-the-art results on both the CMAPSS
turbofan engine dataset Saxena & Goebel (2008) and a dust
filter dataset from the Reliability Engineering & Prognostics
and Health Management group at Esslingen University (Mau-
the et al., 2021).

2. BACKGROUND
2.1. Variational Autoencoders

Variational Autoencoders (VAEs) are a generative deep learn-
ing method that aims to sample from the original data distri-
bution p(Y’), where Y is the input data. However, p(Y) is
generally unknown. To get around this, generative models
represent the probability distribution p(Y, Z) where Z is a la-
tent variable. This works by factoring the generative model,
p(Y,Z) = p(Y|Z)p(Z), hence, sampling the latent variable
Z® ~ p(Z) then “decoding” using Y ~ p(Y'|Z(*)) would
indirectly sample from the original data distribution p(Y").
This leads to the following integral,

o) = [sv.20i2 = [oV120p(2002. )

If we want to use deep learning to train a VAE, we need to
turn this into a loss function, which is often done by taking
the negative logarithm of p(Y") and minimising it,

~log p(Y) = ~log [ p(YIZ2)p(2)dZ. @)

However, the integral (Eq. 2) often has no analytical solution
and cannot be solved directly. To solve this integral, the VAE
uses importance sampling and defines an importance distri-
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bution, ¢(Z]Y). ¢(Z]Y) is often called the inference model
or the encoder, as it encodes the input variables (Y') into the
latent space. The encoder is used to derive a loss function re-
lated to Eq. 2 known as the Evidence Lower BOund (ELBO).
The ELBO indirectly optimises the original criterion and is
stated as (Kingma & Welling, 2014),

’C(ayv 023 ¢a Y) = _Eq¢(Z\Y) [log pey (Y|Z)]
+ Drcr (a6(Z]Y)|lpo.(Z2)) . (3)

Where Dy, is the KL-divergence operator that provides a
metric of how “close” the distributions ¢, (Z|Y") and pg_ (Z2)
are, and we have introduced the parameters ¢, 6,, and 6,
which represent the model parameters (weights and biases of
the neural networks). Mathematically, the KL-divergence op-
erator can be stated as,

Dicr @2n(2) = [a2poeS Dz @
p(%)
Note minimising —log p(Y) is the same as maximising the
likelihood that the VAE samples Y from p(Y’), which is the
goal of generative models. Hence, minimising the ELBO is
an indirect way of solving the integral in Eq. 1 allowing the
VAE to sample from p(Y").

From the theory so far, it can be seen that there are three main
components to the ELBO,

Decoder network: pg, (Y'|2)

2. Prior: pg_(Z), for a VAE, this is usually defined as a
standard normal distribution N (0, I)

3. Encoder network: ¢4(Z|Y)

These are optimized using the ELBO loss function (Eq. 3).
After training one can generate new samples Y by sampling
from the prior Z() ~ py_(Z) and then using the decoder
Y ~ pp (Y|ZW). Note that the encoder is not needed to
generate the samples after training. The workings of the VAE
training and generative model are shown more intuitively us-
ing the sketch shown in Figure 1.

2.2. Dynamical Variational Autoencoders
2.2.1. From VAE to DVAE

The VAE is generally used to generate static data Y, e.g.
generating new images similar to the input images used to
train the VAE. To generate sequential data that involve some
underlying dynamics, Dynamical Variational Autoencoders
(DVAES) can be used instead to capture the underlying dy-
namic structure and is better suited to generate sequential data
(Girin et al., 2021). DVAESs essentially replace the static in-
put and latent variables (Y and Z) of the VAE with sequences,
Y = y1.7 and Z = z1.p, where here they are denoted as se-
quences starting at time ¢ = 1 and ending at some arbitrary
time ¢ = T'. Hence, using the same structure as the VAE, the

94(Z|Y)

o, (Y1Z)

v o Z~ g21Y)

Figure 1. The VAE during training can be used to encode
to a section of the prior distribution, during testing, the prior
distribution can be sampled from (i.e. sample from the entire
latent space) and this approximates a local Gaussian distri-
bution in the input space p(Y"), which can be sampled from.
Sampling from a larger area of p(Y") can be done by sampling
multiple latent variables via Z ~ p(Z) and decoding them all
to form local Gaussian approximations covering the distribu-
tion p(Y).

generative and inference models would be,

Generative model: py(Y, Z) = pg(y1.7, 21.7) &)
Inference model: ¢4 (Z|Y") = go(21.7|y1.7)- (6)

This can be broken down further to describe the evolution of
the variables along the time axis. Hence, Eqgs. 5 and 6 can be
broken down as,

Generative model: pg(y1.7, 21.77) =

T
H o, (Yt|y1:t—1, 21:6)po. (2¢|Y1:0—1, 21:4-1) (7N
t=1

T
Inference model: ¢y (z1.7|y1:7) = H qs(zt|21:0-1, y1:7)-

t=1
®)

Notice, from the generative model, the decoder and prior are
found in the product (decoder: pg, (y¢|y1:¢—1, 21:¢), prior:

Do (zt|y1:4-1, 21:t—1))- Analogous to the VAE, where the in-
ference model is optimised to encode inputs Y to a latent
space p(Z), the DVAE inference model encodes the inputs to
match some latent transition dynamics pg, (2¢|y1:4—1, 21:6—1)-
An important note is that the inference model is dependent
on y.7 for all previous times, ¢, as the model cannot be fac-
torised further to remove this dependency. Hence, even if the
generative model is causal (current time values are only de-
pendent on previous time values), the inference model is non-
causal (future values are needed to estimate the current time
values). Since the inference model is only used during train-
ing, this is not a problem as the entire training data sequence
is available; therefore, the future values are available.

To train the DVAE, the new generative and inference models
can be substituted into Eq 3, which results in the new loss
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(Girin et al., 2021),

’C(ayv 027 ¢a yl:T)
T

== Z EQ¢(21;t|y1;T) [lOg Po, (yt‘ylzt—la Zl:t)]
t=1

T
+ Z EQd)(zl:t—l‘ylzT)[

=1
D1 (qp(2e|z1:6—1, y1:10)| [P, (2e|y1:e—1, 216-1))]. (9)

2.2.2. Conditional DVAE

In this paper, a conditional DVAE will be used. Hence, a
sequence of conditional variables, x1.7, will be introduced.
Recall that generative models aim to sample from the orig-
inal data distribution, i.e. p(Y) for the VAE and p(yi1.1)
for the DVAE; hence, a conditional DVAE is trained to sam-
ple from p(y1.7|z1.7). For machinery prognostics the condi-
tional variables would be the sensor signals that indicate the
state of the machine.

Adding, x1.7, to the models in the DVAE gives,

Generative model: pg(y1.7, 21.7|T1.7) =
T

Hpey (yt|y1;t-17 Z1:ty $1:T)p02 (ztlz1:4-1, Y1201, T17)
t=1

(10)
Inference model: gy (z1.7|y1:7, T1.7) =
T
qus(ztlzlcm,ym, T1.7) (11)
t=1

Notice all the models are now noncausal if no further assump-
tions are made. Like with the VAE we can define a Decoder,
Prior and Encoder. However, unlike the VAE the prior for the
DVAE is modelled by a neural network.

Decoder: py, (Yelyr:e—1, 21:0, T17) (12)
Prior: po,_ (2¢|21:4—1, Y1:6—1, T1.7) (13)
Encoder: Q¢(Zt|2'1:tfl>y1:Ta$1:T) 14

The ELBO loss function becomes,

T
L=- ZEQ¢(21;t|y1;T,I1;T) [log Do, (yt|y1:t—1a Z1:t, xl:T)]
t=1
T
+ ZEQ¢(Zl:t—l‘y1:T7ml:T)[

t=1

Drr (96(2t| 2161, y1:1, 1.7) | |Po. (2¢|21:6—15 Y1:6—1, T1:7)))-

3. METHODOLOGY

The goal of machinery prognostics is to estimate the RUL
given some sensor signals from that machine or component.
Mathematically, this can be stated as trying to find a model,
p(y1.7|z1.7), 1. finding the probability of RUL sequences,
y1.7, given sensor signals z;.7. From Section 2.2.2, it can
be seen the conditional DVAE is capable of sampling from
a conditional distribution such as this one, i.e. p(y1.7|z1.7).
Hence, to construct a probabilistic RUL estimation model,
the input variables of the conditional DVAE can be set to the
RUL sequences, y;.7, and the conditional variables can be
set to the sensor sequences x1.7. The goal is to then train
the networks from Eqgs. 12, 13 and 14. In the following sec-
tions we discuss what network architectures are used, what
assumptions are made and how a sequence such as .7 is
represented so it can be an input for a neural network. Note
while the RUL is one dimensional, the latent and conditional
variables are potentially multivariate so from now on they will
be written using the bold notation to represent vectors, i.e. z;
and x;.

3.1. Constructing the Networks

One of the main problems here is the noncausal inputs, so at
a current time ¢ € [1,7] one must still find a way to repre-
sent x1.7 This is less of a problem for the Encoder as it is only
used during the training stage, and the entire sequence of data
is available during. However, both the Decoder and Prior are
still used after training and they need to represent xi.7. A
bidirectional RNN can be used to represent entire sequences
as a single representative variable, h; := x;.r (Girin et
al., 2021). Hence, to implement the DVAE, a sequence-to-
sequence model will be used, where the bidirectional RNN
will be used on a time window 7' of sensor data to represent
X1.7, and this can be used in the Decoder and Prior for gen-
erating sequences z;.7 and y;.7, where 7' now represents a
hyperparameter selecting the size of a time-window.

When testing various assumptions for the DVAE it was found
that removing the dependency on y;.,—; from the Prior and
Decoder improved the performance. For ease of implementa-
tion, the Markov assumption is made for the latent variables
in the generative model. The final models used can be stated
as,

* Decoder: py, (yt|z¢, X1.7)
* Prior: py_(2¢|Z¢—1,X1.7)

* Encoder: ¢y (2¢|21:4—1, Y1.7, X1.7)

(15) Both y1.7 and x;.7 are represented using a bidirectional RNN

This is derived in Appendix A.

for simplicity; specifically, a Gated Recurrent Unit (GRU) is
used as the RNN cell. Future work could look at using other
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network architectures to encode these sequences.

Egz) = BidirectionalRNN(x;.7)
%Ey) = BidirectionalRNN(y1.7)

(16)
a7

The Encoder can also be modelled using an RNN (again, a
GRU is used), and its hidden variables are inputs to a Multi-
layered Perceptron (MLP) Network that is used to output the
mean and log-variance of z;.

iu,,Togd, | = MLP(GRUCelI (b, 1, [0 ), b (™)),
(18)
where GRUCell(h;_, [ﬁ,ﬁy), (H,E”]) outputs h; using the pre-
vious hidden variable h;_; that represents z;.,_; and
[%gy), HI)] are the inputs to the GRUCell ([ng)7 Kiz)] de-
note a concatenation of the two variables). The outputs are
ftz, and log&ﬁt, are the mean and log-variance of a Gaussian
distribution ¢4(2z¢|21:¢—1, y1.7, X1.7). Both the Decoder and
Prior are modelled using MLP networks.

(4, 10go2,] = MLP ([ZH, K@]) , (19)

[t4y,,logor2, | = MLP ([zt, ﬁﬁy)]) . (20)

Again, the inputs for the networks are concatenated so the
network has a single input variable, and the outputs are the
mean and log-variance of a Gaussian distribution representing
the Prior and Decoder models. Hence, the models can now be
stated as,

21
(22)
Encoder: ¢y (2¢|z1.4—1, Y1.1, X1:7) = N (f1z,,62,)  (23)

Decoder: py, (y¢|2z¢, X1.7) = N(uyt,ajt)

Prior: pg_ (zt|2zi—1,%x1.7) = N(uzt,ai)

where N (p, 0?) denotes a Gaussian distribution with mean
w and variance o2 (diagonal matrix of variances in the mul-
tidimensional case). A graphical representation of the infer-
ence and generative models are shown in Figure 2.

3.2. Applying the Model

To train the conditional DVAE model, recall the ELBO from
the background section (Eq. 15), which is stated here using
the new model assumptions,

T
L=- ZE‘]d)(Zl:tlyl:Taxl:T) DOg pe, (yt‘zt?xliT)]
t=1

T
+ Z E‘](f)(zl:t—l‘ylzTyxl:T)[
t=1
D1 (9¢(z¢|Z1:0—1, y1.7, X1.7)||Po. (2| Ze—1, X1:7))]. (24)
Notice that there are two main terms in this loss,

1. Negative Log-Likelihood (NLL):

T
- Zt:l Elw(zlzf, |y1:7,X1:7) [lOg Do, (yt|y1:t717 Z:t, xl:T)}

2. KL-Divergence: Y, E

q¢ (Z1:¢—1|Yy1.7.X1.T) [

Dk, (Q¢(Zt|Z1:t—1, Y11, X1:T)Hpez (Zt\Zl:t—l, Yi:t—1, X1:T))]

Hence, during training, the goal is to calculate these two terms
and find the ELBO loss so that the deep learning software can
optimise the model parameters based on the calculated loss.
Figure 3 is a visual diagram that shows a high-level overview
of the ELBO calculation when training the DVAE for RUL
estimation. Note that after the ELBO is calculated, standard
backpropagation-based training is used to optimise the net-
work (Rumelhart et al., 1986).

The steps for applying the model after training are simpler as
they involve applying the generative model and do not require
the inference model,

1. Encode the sensor signal, x;.7, with the bidirectional
RNN.

2. Initialise a latent variable zg e.g. zo = 0 (a tensor of
zeros in this case)

3. Use the prior model to generate the next latent variable,
po. (z¢|Ze—1,%1.7) = N(Hg,,05,). ie. starting from
zo generate the distribution for z;, sample z; from that
distribution and use that to generate z5 and so on.

4. From the last step, we end up with a sequence of sampled
latent variables z;.7; use the samples at each time point
in the decoder model, py, (y¢|z¢, x1.7) = N (pty,, 0y,)
to generate the distributions of the RUL estimates.

5. RUL estimates can sampled from the distribution, y; ~
pe, (yelze, x1.7)

6. Monte Carlo simulation can be done through repeating
steps 3-5 N times for some “large” value IV (although
all N calculations are done in parallel in this work).

The generative model is trained to sample from the distribu-
tion p(y1.7|x1.7). Hence, by using Monte Carlo simulation
and repeatedly applying the generative model and sampling
N amount of z;.7 and y;.7 sequences, the y1.7 sequences
represent samples that belong to p(y;.7|x1.7) as the genera-
tive model has been trained to sample from this conditional
distribution. With these samples p(y1.7|X1.7) can be approx-
imately represented and with larger N we can more accu-
rately represent this distribution that captures what RUL se-
quences are most likely, given the observed sensor sequences.

Finally, to aid the training and help prevent overfitting, a 3-
DVAE is used. This is inspired by the 3-VAE (Higgins et al.,
2017), which multiplies the KL-divergence term of the ELBO
loss by a constant 3. The new altered loss is shown in Eq. 25.
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Yt Yt+1

(a) Generative model

. Zt—1 2t 2t+1 -
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O

(b) Inference model

Figure 2. A graphical representation of the conditional DVAE for RUL estimation, 2a is the generative model described by Egs.
21 & 22 while 2b is the inference model described by Eq. 23. Note the variables inside circles are stochastic variables while

the rectangles are deterministic

T
L=— Z Eq¢(z1:t|y1:T,x1:T) Dog pey (yt ‘zt7 xl:T)]

t=1

T
+ 6 Z E(M(Zl;f,—l |y1.:7,%1.7) [
t=1

Drr, (9¢(2¢|Z1:0—1, 1.7, X0.7) | |Po, (Z¢|Ze—1, %1:7))]. (25)

Hence, if S is above 1, the KL-divergence term has a larger
weight than the negative log-likelihood term, which can help
regularise the model. This was done as the model was prone
to have accurate RUL estimates but struggled to quantify the
uncertainty well.

To summarize, the DVAE approach is using a conditional-
VAE that uses networks with a temporal component so vari-
ables are propagated through time. It is important for per-
formance that the conditional variables are treated like non-

causal variables as this will correspond to optimizing the marginal

likelihood p(y1.7|x1.7). Due to the VAE approach one can
sample from the prior and use the decoder network to sam-
ple many y;.7 estimates, thereby estimating the RUL and the
certainty through the samples.

4. EXPERIMENTS

In this section, the data and experiment details are discussed.
The code is also available on GitHub!.

4.1. Data
4.1.1. CMAPSS

One of the datasets used for this experiment is NASA’s Com-

mercial Modular Aero-Propulsion System Simulation (CMAPSS)

dataset (Saxena & Goebel, 2008). CMAPSS is used as one of
the datasets due to its popularity. It can, therefore, be easily
compared to other similar methods to assess the performance
of the DVAE. This dataset comprises simulated sensor read-
ings from different turbofan engines that are run to failure
for the training data and randomly stopped some time before
failure for the testing data (with known RUL values so test-
ing performance can be measured). There are four datasets
included (each with training and testing data). Each dataset
is meant to increase the difficulty of RUL estimation. Ta-
ble 1 shows the different datasets and how they differ. The
main differences that impact RUL estimation difficulty be-
tween the datasets are the number of operating conditions and
fault/failure modes.

There are 26 total columns of data for each unit. The infor-
mation contained in each column is shown in Table 2.

Ihttps://github.com/StarMarco/DVAE_torch
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T
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po(2t|ze-1, Z1.1)

= MLP(Zt_l, ht )

{log o2, }i1

Figure 3. The block diagram for calculating the ELBO when training the DVAE for RUL estimation tasks. Shows how the data
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Table 1. Different datasets found in CMAPSS: these state
how many different engines are simulated, the number of op-
erating conditions and the number of possible failure condi-
tions they can experience (Fault Modes)

Operating Conditions  Fault Modes

Dataset  Train Trajectories  Test Trajectories
00

FDOOI I
FD002 260 259 6 1
FD003 100 100 1 2
FD004 248 249 6 2

Table 2. Information contained in each column for the train-
ing and testing datasets

Columns Data Contained

1 unit number

2 time (cycles)

3 operational setting 1

4 operational setting 2

5 operational setting 3

6-26 sensor measurements (1-21)

More detailed information on the CMAPSS dataset can be
found in (Saxena et al., 2008).

4.1.2. Dust Filter Dataset with Varying Quality

The dust filter dataset published by the Reliability Engineer-
ing & Prognostics and Health Management group at Esslin-
gen University is used as a second case study (Mauthe et al.,
2021). The dataset is published as “Prognosis based on Vary-
ing Data Quality” on the website Kaggle?. It consists of data
from multiple dust filters that are run to failure. Unlike the
simulated CMAPSS dataset, this dataset was developed ex-
perimentally from a test rig. Hence, this helps show how the
DVAE performs on data taken from a real-world setting and
further validates the model. The training set contains the en-
tire trajectories from start to end of life, while the test set
is censored to stop at a random time before failure, much
like CMAPSS. Sensors on the filters have a sampling rate of
10Hz and record the flow rate, particle feed and differential
pressure across the filter. Failure was said to have occurred
once the differential pressure first exceeded 600Pa. Hence,
the main health indicator variable for the filter is the differen-
tial pressure, while the flow rate and the particle feed denote
operating conditions. The documentation states that the two
operating modes are based on 5/3-way and 3/2-way valves.
All the data was gathered on the same filter test bench using
the same sensors. The documentation also mentions that the
measurement data was manipulated to simulate varying data
quality that might arise due to different types of sensors be-
ing used or different sensor placement positions. Different
signal-to-noise ratios were used for each differential pressure
trajectory, and four different biases were introduced to sim-
ulate different sensor placements. Each differential pressure
trajectory, therefore, has additional noise added, a different

2Link to the dataset,
prognosticshse/datasets

https://www.kaggle.com/

signal-to-noise ratio and is shifted by one of the four possi-
ble bias values. Hence, this dataset is suitable for testing a
method like the DVAE, which seeks to quantify uncertainty.

4.2. Preparing the Data

The sensor sequences for CMAPSS were used as the condi-
tional input variables for the DVAE. To prepare these sensors
for the DVAE model, firstly, the sensors that remain constant
throughout the machine’s lifetime were removed. Then the
sequences were normalised based on what operating condi-
tion the sensors variables were in (Pasa et al., 2019). Eq. 26
shows how normalisation based on the operating condition is
applied.

S5y om0 =l

% :ZéC@T. (26)

=0 P

where x is the sensor signal, n is the unit number, d is the sen-
sor number, X is the normalised sensor signal, ¢ is the operat-
ing condition, N, is the total amount of operating conditions,
0. = 1 when the data is operating under operating condi-
tion ¢ and §. = 0 otherwise, and finally ® is element-wise
multiplication. The operating conditions were identified us-
ing K-means clustering on the operational setting variables in
the training dataset. Note that for FDOO1 and FD003, which
only have a single operating condition, this equation reduces
to standard normalisation that creates signals with zero mean
and unit variance.

For the Dust Filter dataset, the input variables are the differen-
tial pressure, flow rate, dust feed, and the current time value.
Here, the K-means clustering did not identify any meaningful
operating conditions; hence, for simplicity, the sensors were
normalised by scaling the values so the minimum value was 0
and the maximum value was 1. The formula for this is shown
in Eq. 27.

NO x(™ — min(x(™))
~ max(x(")) — min(x(")’

27)

where max() and min() return the maximum and minimum
values of an input sequence.

After these steps, both CMAPSS and the dust filter dataset are
prepared in the same way to be compatible with the DVAE
model. The model takes x;.7 and y;.7 as noncausal inputs.
To do this, a sequence-to-sequence approach was taken where
the data was broken down into time-windowed portions us-
ing a sliding time window of size 7. This sliding time win-
dow applied to the sensor data is illustrated in Figure 4. The
different time-windowed slices of data were combined into
batches when training the model; the size of the input tensors
was (batch size, T, number of sensors). Hence, the model
requires a time window of data points, x;.7, before it can
estimate a time window of RUL estimates y;.7. During the
testing phase, the model is required to evaluate the entire se-
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Figure 4. An illustration of a sliding time window applied to
the sensor signals of a single unit in the CMAPSS dataset

quence of sensors for each testing unit, each of which may
have a variable sequence length. To apply the sequence-to-
sequence model in this setting, a sliding time window goes
over the test units sensor sequence and uses the generative
model on each time window to find a sequence of RUL es-
timates for each time window. These estimates are then put
back together into a single sequence, and this is compared to
the known target RUL values. Since the time windows have
overlapping time points, the values with common time points
are averaged when converting back into a sequence.

4.3. Hyperparameters

The hyperparameters that are chosen to train and evaluate the
model can drastically affect the performance. Hence, it is
important to optimise these hyperparameters to maximise the
performance of the DVAE. Bayesian Optimisation (BO) was
used for hyperparameter optimisation as it is more efficient
than methods such as grid search. BO trains models on differ-
ent input hyperparameter configurations and uses the valida-
tion loss as an output. Here the Python package Ax was used
to perform BO and optimize the hyperparameters and it uses
the package BoTorch as a backend (Balandat et al., 2020).
The best hyperparameters are chosen based on the Negative
Log-Likelihood and Mean Squared Error (MSE) metrics. The
hyperparameters chosen from this process and the bounds of
the search space for each hyperparameter are stated in Ap-
pendix B. Some baseline networks are trained for the Dust
Filter dataset to compare their results with the DVAE. These
networks also undergo the same hyperparameter optimisa-
tion process for fair comparison. The baseline network hy-
perparameters are also stated in the appendix. Section 5.2
gives more details about the baseline networks. Each net-
work is trained for 200 epochs for both CMAPSS and Dust
filter dataset experiments. Early stopping is used to choose
the network configuration at the epoch with the best valida-
tion loss.

5. RESULTS
5.1. CMAPSS

This work compares the DVAE with other state-of-the-art RUL
estimation methods for the CMAPSS dataset. Table 3 states

the RMSE performance of the DVAE along with the other

methods described previously. RMSE is defined as,

1 N
RMSE = |+ >

n=1

n yn)27 (28)

where NV is the total amount of samples in the dataset over all
the different time points in each testing unit, ¢, is the RUL
estimate and y,, is the corresponding true RUL value.

One of the main benefits of the DVAE is that it not only per-
forms well in terms of RMSE accuracy but it can also quan-
tify the RUL uncertainty. To assess this the a-coverage and
a-mean metrics were used (Mitici et al., 2023). These can be
stated as,

a-coverage = ZI AO 5—0. 5(1 AO 540.5c )’ (29)

a-mean = §o-5-0-50 (30)

Z ~0.5+0.5a __

Where Z(-) is equal to 1 if the target RUL falls within the
confidence interval defined by [§0->70-5% §0-570-5¢| and is
equal to 0 otherwise. §%-°70-5% refers to the lower value of
the RUL confidence interval (CI) and §9-570-5% refers to the
higher value. Hence, if @ = 0.95 then |y0 5-0-5a /0.5+0.5a
defines the 95% CI and 0-570-5> — §0-5-0-5@ jg the length
of that CI. a-coverage is therefore an average of the points
within the CI. This means we expect for any CI described
by «, we should have the same proportion of RUL estimates
within that CI. For example, if « = 0.9, then a-coverage
should ideally equate to 0.9, meaning 90% of the RUL esti-
mates fall within the 90% CI. The a-mean gives an idea of
how tight the CIs are. Note that c-coverage is equivalent to
another metric sometimes used to evaluate uncertainty quan-
tification methods known as the Predication Interval Cover-
age Percentage (PICP). However, the o term here makes it
more clear what the upper and lower bounds of the CI are,
and many works that use PICP only consider higher CIs such
as 95% (Nguyen et al., 2022; G. Gao et al., 2020). These re-
sults are shown in Table 4 and compared to the Monte Carlo
Dropout method used in (Mitici et al., 2023),

Figure 5 shows the plots of 100 sampled RUL trajectories,
the mean RUL estimate, and the True RUL values over time.
Units 12 and 41 of the FD0O1 dataset represent the units that
stayed healthy for the longest and shortest amount of time
respectively, while units 21 and 87 are randomly selected to
illustrate the DVAE RUL estimation results.
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Table 3. RMSE performance on each of the testing CMAPSS datasets

Method FDOOT FDO002 FDO003 FDO04
DVAE (This work) 689 823 699 778
DL-NSGPR (Z. Xu et al., 2021) 7.4 1.8 75 8.3
CNN (X. Li et al., 2018) 1261 2236 1264 2331
TDDN (Qin et al., 2022) 947 1093 917  11.16
DS-SANN (D. Xu et al., 2022) 11.64 1334 1228  14.98
SUR-TSMAE (Fu et al., 2022) 1446  21.1  17.16 2261
MCTAN (Ren et al., 2023) 11.69 1641 1072  17.36
DCCL (X. Li et al., 2022) 7.4 16 71 11.6
ST-GS4D (Wu et al., 2025) 11.18 1437 1138  14.04
DS-STFN (Q. Zhang, Yang, & Liu, 2024) 1092 1377 101 1553
TCAT (Jiangyan et al., 2024) 1112 1340 1102 17.56
CNN MC dropout with RL (Lee & Mitici, 2023) 11.81 1449 11.69  17.73
CNN MC dropout (Mitici et al., 2023) 1242 1372 12.16  15.95

Table 4. The a-coverage and a-means for @ = 0.95,0.9,0.5, i.e. 95%, 90% and 50% confidence intervals, using a maximum
RUL of 130. Note the closer the a-coverage is to its corresponding « value the better while the c-mean gives an idea of the
average Cl size

o Metric FDOO1 FDO002 FDO003 FDO004
Ours Dropout Ours Dropout Ours Dropout Ours Dropout
095 (-coverage 094 095 092 0.89 094 097 092 09

a-mean 17.5 464 16.9 424 142 476 132 473
0.9 a-coverage 091 0091 0.89 0.85 092 0.92 0.89 0.85
’ a-mean 149 39.2 143  36.1 12.0 403 11.2  40.1
0.5 a-coverage 048 0.54 0.64 0.51 0.63 0.57 0.64 0.52
’ «-mean 6.20 163 597 152 498 16.7 466 16.8
160 —— mean RUL estimate 140
—————— true RUL
140
%; 120
<100
35
@ 80
60 [ —— mean RUL estimate
40 true RUL
0 50 100 150 200 0 20 40 60 80 100 120 140
Time (cycles) Time (cycles)
(a) RUL estimates vs lifetime of unit 12 (b) RUL estimates vs lifetime of unit 21
150
—— mean RUL estimate —— mean RUL estimate
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— e —~140
B 100 B vt Y
S S 120 PN AE sl
L 75 o
3 = 100
X 5o o
80
25 60
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(c) RUL estimates vs lifetime of unit 41 (d) RUL estimates vs lifetime of unit 87

Figure 5. The RUL estimates over the known lifetime of the testing units for a selected subset of units in the FDOO1 test dataset.
100 trajectories are sampled to show the possible trajectories the DVAE can generate and give an idea of the distribution of the
output RUL region and if the true RUL falls within this region.
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To further illustrate how well the model captures the uncer-
tainty, the final time RUL estimates for each of the units in
the FDOOLI test dataset are plotted along with their 95% con-
fidence intervals. This can give an indication of how well the
model captured the uncertainty. It can also be seen that the
testing units with high final RUL targets (the machines are
still relatively healthy) have higher uncertainty bounds com-
pared to the units closer to failure which have smaller bounds.
The plot confirms what one might intuitively expect; as the
machine gets closer to failure, the uncertainty is smaller, and
the model grows more certain a failure will occur soon.

5.2. Dust Filter Dataset

A similar analysis of the DVAE is done for the Dust Filter
dataset. However, to the author’s knowledge, there are cur-
rently not many published works that have used this dataset.
Therefore, in this section, the DVAE’s performance will be
compared to other popular networks to see how well the DVAE
performs in comparison. This experiment is also a good san-
ity check to see how well the DVAE performs on another
dataset and one that is not simulated like CMAPSS. The base-
line networks used here are the bidirectional GRU, bidirec-
tional Long Short Term Memory (LSTM) network and a stan-
dard feedforward MLP network. The bidirectional networks
are useful comparisons as the DVAE uses bidirectional RNNs
to encode the sensor signals. Here, the DVAE used a bidirec-
tional LSTM encoder as the baseline LSTM performed the
best on this dataset. Hence, it would make a good comparison
to see how the bidirectional LSTM’s performance changes
when incorporated into the DVAE structure. Table 5 shows
the RMSE results on the dust filter dataset.

Table 5. RMSE performance on the Dust Filter Dataset

Method Dust Filter RMSE
DVAE (This work) 8.99
GRU 10.1
LSTM 9.14
MLP 11.0

The a-coverage and a-means for o = 0.95,0.9,0.5 for the
DVAE on the Dust Filter dataset are shown in Table 6 below.

Table 6. The a-coverage and a-means for a = 0.95,0.9, 0.5,
i.e. 95%,90% and 50% confidence intervals. Note the closer
the a-coverage is to its corresponding « value the better and
the a-mean gives an idea of the average CI size.

« Metric DVAE score
a-coverage 0.92
0.95 Qa-mean 33.8
0.9  Q-coverage 0.88
) a-mean 28.7
05  Q-coverage 0.53
’ «a-mean 11.9

Some sample plots of the RUL estimates over time are also
shown in Figure 7. The plot with the highest and lowest final
RUL value in the test set are plotted along with two randomly
chosen dust filters in the test set. Unit 20 has the highest final
RUL (38.2) and is the farthest from failure while unit 19 has
the shortest (17.1) and is closest to failure.

The final RUL estimate 95% confidence intervals are also
plotted in Figure 8. For this test set, the final RULs are all
similar, so we expect less of a range of confidence interval
lengths compared to CMAPSS shown in Figure 6. In the
CMAPSS case, there were some units far from failure and
some very close to failure; hence, the units far from fail-
ure typically have large confidence intervals, while the ones
closer to failure become more certain, as reflected by the
smaller confidence interval.

6. DISCUSSION

Looking at the RMSE performance in Tables 3 and 5, the
DVAE achieved state-of-the-art performance for CMAPSS
and outperformed the baseline models for the Dust Filter dataset.
Another method that performed well on CMAPSS while ac-
counting for uncertainty was DL-NSGPR. The advantage of
the DL-NSGPR method is that it only uses a relatively simple
MLP network trained on the data for RUL estimation, and it
uses Non-Stationary Gaussian Process Regression (NSGPR)
on the MLP output RUL estimates to account for uncertainty.
However, DVAEs are also not restricted to Gaussian distribu-
tions to represent the RUL estimates like DL-NSGPR is. The
DVAEs generative model can be used to sample multiple y;.7
estimates and represent any arbitrary probability distribution
using those samples. Since Gaussian distributions are not al-
ways a valid assumption in RUL estimation tasks (Sankarara-
man, 2015), this property of DVAEs is beneficial.

Another strength of this DVAE model is that it provides a
clear underlying theoretical framework. Looking at the the-
ory behind DVAEs, others can use the same theory while
finding different ways to achieve the underlying mathemat-
ical structure of the model. For example, instead of using
a bidirectional RNN to encode x;.r into a hidden variable,
another network architecture could be used, such as a Trans-
former (Vaswani et al., 2017). Or perhaps use different as-
sumptions than the ones used here, e.g. use transition model
Do, (Z¢|Z1.4—1,%1.7) instead of py_(z¢|z:—1,%1.7). A useful
aspect of using these sequential conditional generative mod-
elling techniques, such as DVAEs, is that there can be some
flexibility in how each model is constructed (e.g. what net-
work architectures are used) while still guided by the overar-
ching framework. One can see from the model breakdowns
in Eqs. 10 and 11 that the DVAE makes it clear how im-
portant it is to have noncausal input variables. The utiliza-
tion of this knowledge allowed for the effective sampling of
the underlying distribution, p(y1.7|X1.7), and the prediction
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Figure 6. The final RUL mean estimates and True RUL values plotted as a scatter plot vs the unit index for each of the units in
the FDOO1 test dataset. The 95% confidence intervals are also shown for the final RUL estimate.
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Figure 7. The RUL estimates over the known lifetime of the testing units for a selected subset of units in the dust filter test
dataset.

predictions compared to the ground truth values. The actual

of the RUL. The experiments showed that this allowed the
network architectures stated here are less important and were

DVAE to achieve excellent results on the RMSE for the RUL
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Figure 8. The final RUL mean estimates and True RUL values
plotted as a scatter plot vs the index representing each dust
filter in the test set. The 95% confidence intervals are also
shown for the final RUL estimate.

mainly chosen to test the model’s effectiveness using rela-
tively simple network architectures used in other DVAE mod-
els (Girin et al., 2021). Hence, the adoption of the DVAE
here shows an alternate way of quantifying the uncertainty
and utilising existing network architectures for RUL estima-
tion.

Figures 5a and Sc illustrated some edge cases in the FD0O1
test dataset. Unit 12 stays in the healthy region the longest,
but the model’s mean RUL estimates start the degradation
process earlier than the true RUL shows. This may be due
to the assumption that the machine starts to degrade around
RUL = 130. While on average, this assumption may be true,
for the edge cases such as units 12 and 41 where the machine
stays healthier or starts degrading sooner than the other units,
this assumption may fall apart. The max RUL of 130 essen-
tially assumes degradation starts at 130 cycles for each unit,
with constant RUL values representing a healthy machine.
This may not be the case for all engines; however, more so-
phisticated methods of first detecting the degradation stage
and then utilizing the RUL prediction algorithm is outside the
scope of this work. Other methods also utilize this maximum
RUL method and so to keep analysis fair this is utilized here
as well. Hence, while the maximum RUL assumption may be
wrong for some units and cause these inaccuracies as shown
in Figures 5c and 5a, the maximum RUL is still kept for fair
comparison to other methods in the literature.

Tables 4 and 6 indicate the DVAE’s performance regarding
uncertainty quantification. For the CMAPSS dataset, while
the network performed well for « = 0.95 and o = 0.9, it
overestimated the values for a = 0.5 (except for the FD0O01
dataset). A possible explanation for the poorer performance
on that metric may be that the marginal likelihood is not di-
rectly used but estimated through the ELBO criterion. This
means the model is not directly being optimised using the
marginal likelihood, p(y1.7|x1.7). Hence, the final model
does not accurately represent the marginal distribution. For
example, A. H. Li et al. (2021) used an Extended Kalman fil-

ter to find a more direct estimate of the marginal likelihood,
resulting in smoother trajectories. A potential way to test this
is to use a particle filter framework to work directly with the
marginal likelihood as DVAEs essentially use the particle fil-
tering framework already (Naesseth et al., 2018; Maddison
et al., 2017). However, this has its own issues, such as the
particle filter requiring a resampling step, which is typically
not differentiable. Hence, we cannot train the deep learning
model using backpropagation if a step is not differentiable.
Some works attempt to address this through a differential re-
sampling step, but they also have their trade-offs (Corenflos
et al., 2021; Jonschkowski et al., 2018; Lai et al., 2021). To
keep this initial work simple, we used the ELBO formulation
of the model, but this particle filtering approach could be ex-
plored in future works to test this hypothesis.

Finally, it is worth comparing the DVAE to some popular un-
certainty methods, such as MC dropout. MC dropout only
models the uncertainty of the model itself, otherwise known
as epistemic uncertainty (Kim & Liu, 2020; Z. Zhao et al.,
2020). The other type of uncertainty to consider is the aleatoric
uncertainty, which can be defined as the inherent uncertainty
of the experiment itself. In this setting, the aleatoric uncer-
tainty would be the uncertainty of the measurements/sensors
and operating conditions. The DVAE model learns how to
sample from the distribution p(y;.7|x1.7) by breaking the
problem down into latent/state dynamics and a measurement/
observation model. As mentioned in the previous paragraph,
this is mathematically equivalent to a particle filtering setup.
Note, in a particle filter, the latent dynamics and observa-
tion model are often modelled as distributions or with ad-
ditive noise representing the model and measurement uncer-
tainty respectively. Hence, it can be seen that by following
this framework, one ends up modelling epistemic uncertainty
through the uncertainty in state dynamics (latent state dynam-
ics in our case) and aleatoric uncertainty through the obser-
vation model. However, in this work the sensors where not
the observations, instead they were the conditional variables
that were deterministically encoded using an RNN. Better ac-
counting for the sensor noise could be another avenue of fu-
ture work that could be done to improve this model.

7. CONCLUSIONS

This paper has showcased the effectiveness of deep generative
models in machinery prognostics for RUL estimation. By us-
ing these noncausal models in the DVAE framework, we were
able to train a model that could sample from the underlying
data distribution p(y1.7|x1.7) and come up with probabilistic
RUL estimates. The DVAE achieved state-of-the-art perfor-
mance on CMAPSS and performed better than the baseline
models on the Dust Filter dataset. On the Dust Filter dataset
and FDOO1 dataset in CMAPSS, the model was able to quan-
tify the uncertainty well, as shown by the a-coverage results.
However, it struggled for some of the & = 0.5 on the other
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CMAPSS datasets. We have outlined some potential reasons
as to why this could be the case, such as the indirect optimi-
sation of the marginal likelihood or not explicitly modelling
the uncertainty of the sensor signals. However, this work
shows that the DVAE could be a fruitful avenue to explore
due to these preliminary results, which show they are capable
of state-of-the-art performance.

A useful property of the DVAE is that through the repeated
sampling of y;.7, the distribution p(y;.7|x1.7) can be ex-
pressed without needing to assume a specific probability dis-
tribution. For example, DL-NSGPR uses Gaussian Process
Regression to quantify the uncertainty of the RUL estimates;
however, this would restrict the distribution to a Gaussian
distribution. Another interesting aspect about DVAE:s is that
from 7, it can be seen the DVAE can be interpreted as a Se-
quential Importance Sampling approach. Hence, future work
could look at how the performance and uncertainty estimates
could be improved if this approach is used when training the
model.

The work presented here could potentially be improved or
expanded upon by focusing on some topics such as,

» Different encoders for sequences (such as x1.7): For ex-
ample, Attention Mechanisms could be used instead of
the RNN or bidirectional RNN.

* Marginal Log-Likelihood loss via. Particle Filtering: Par-
ticle Filtering algorithms could potentially be adapted to
directly estimate the marginal likelihood during training
instead of indirectly optimising the network parameters
using ELBO. The main problem with this is most Particle
Filters require a resampling stage which is not differen-
tiable (so it cannot be optimised using backpropagation
in the deep learning software). Still, some work has been
done to remedy this, which can be explored (Corenflos et
al., 2021; Lai et al., 2021).

» Different models: The Prior and Decoder were simple
MLP networks in this work. Other network architectures
could be used to try to improve the performance of the
DVAE.

* Improved latent dynamics: One could focus on trying to
improve the latent dynamics of this method. This could
potentially be used to improve the interpretability of the
model through the use of the latent dynamics as a HI.

* Semi-supervised methods: The DVAE could be trained
on the sensor values in an unsupervised manner. This
could help pre-train networks for a supervised DVAE like
the one used in this paper or help account for the uncer-
tainties in the sensor values. This would be beneficial
for reducing the amount of run-to-failure data needed to
train an effective deep learning model.
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APPENDIX

A. DERIVING DVAE ELBO

For this derivation, the ELBO loss function is derived for a
conditional DVAE that estimates the RUL sequences, y1.7,
given the sensor sequences, x1.7, as conditional variables. To
get the new ELBO loss for the conditional distribution, we
can start with the negative log-likelihood of p(y1.7|x1.7). If
this criterion is minimised, then it would be the same as max-
imising the likelihood samples y1.7 belong to p(y1.7|z1.7),
which is the aim of a generative model in the first place.
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Note, z1.7 is an arbitrary latent sequence we introduced to
construct the generative model. One way to derive the ELBO
is to use an importance distribution gy (z1.7|y1.7, T1.7) =
HL qe(#t|21:4—1, Y1:7, ®1.7) and use the same techniques
found in importance sampling to approximate the more com-
plicated distribution p(y1.7|x1.7). Normally,

44 (2t|#1:¢—1, y1.7, 1.7) would be a simple distribution such
as a Gaussian distribution.
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At this point, the expression is still too difficult to evaluate;
normally, when deriving the ELBO for a VAE at this step,
Jensen’s inequality is used, f(E[X]) < E[f(X)], where f is

expectations can cascade (Girin et al., 2021) i.e.,
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which, therefore, gives the final expression for the DVAE
ELBO loss function,

T
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where Eq. 33 is the same as the ELBO stated in Eq. 15 in
section 2.2.2.

B. HYPERPARAMETERS

The hyperparameters used to train the networks for each of
the datasets are shown in Table 7 and Table 8 shows the hy-
perparameters for the baseline networks used in the Dust Fil-
ter experiment. When applying the Bayesian Optimisation
scheme, the hyperparameter search was constricted to certain
bounds for each hyperparameter. The bounds are stated for
each hyperparameter in Table 9.

C. MODEL ARCHITECTURE

Table 10 shows how the Decoder, Encoder and Prior models
are constructed for the DVAE model i.e. what layers are used
and the input and output feature sizes used when specifying
them in code.
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Table 7. Hyperparameters chosen to train the DVAESs for each of the datasets in CMAPSS and the Dust Filter dataset

Hyperparameter FDO001 FD002 FDO003 FD004 Dust Filter
learning rate 3.97x 1071 320x10"% 510x10"% 6.65 x 10-% 4.92x 1073
Weight (L2) regularizer 5.80 x 107 1.60 x 1076 1.10 x 1075 1.25 x 107% 4.00 x 1076
Batch size 393 246 215 196 467

Time Window (T) 49 44 34 48 20

Stride 1 2 1 2 1

Hidden dimension size ~ 393 286 91 257 189

B 6.16 11.2 10.9 1.00 1.00

Table 8. Hyperparameters chosen to train the Baseline network models for the dust filter dataset. Note S is not applicable here
as ELBO is not used for these relatively simple networks.

Hyperparameter MLP LSTM GRU
learning rate 5.00 x 1073 1.10 x 1073 2.34 x 1073
Weight (L2) regularizer 2.15 x 1076 3.87 x 1076 9.97 x 1076
Batch size 150 228 273

Time Window (T) 38 39 41

Stride 5 1 1

Hidden dimension size 329 336 284

Table 9. Hyperparameter search bounds used during Bayesian Optimisation

Hyperparameter Lower Bound Upper Bound
learning rate 1x 1077 5x 1073
Weight (L2) regularizer 1 x 1076 1x1074
Batch size 150 550

Time Window (T) 20 50

Stride 1 5

Hidden dimension size 50 500

Ié] 1.0 20.0

20



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 10. Defines the networks based on sizes of outputs (ydim), inputs (xdim), latent variables (zdim) and the hidden variables
to construct the hidden layers of the networks (hdim). Note the inputs to the network have hdim because of the encoded
sequences X1.7 and y1.7. For example, the Encoder network has hdimx 2 as the input size because it takes both x1.7 and y.7
as inputs and these are encoded with the RNN encoder so their embedded representation has dimension hdim.

Layer Input feature size Output feature size
Decoder
Linear hdim+zdim hdim
tanh hdim hdim
Linear hdim hdim
tanh hdim hdim
Linear hdim ydimx2
Prior
Linear hdim+zdim hdim
tanh hdim hdim
Linear hdim hdim
tanh hdim hdim
Linear hdim zdimx 2
Encoder
GRU hdimx 2 hdim
Linear hdim hdim
tanh hdim hdim
Linear hdim hdim
tanh hdim hdim
Linear hdim zdimx 2
x1.7 or y1.7 Encoder

GRU xdim or ydim hdim
GRU hdim+(xdim or ydim) hdim
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