Artificial Intelligence Technologies for Aircraft Maintenance A Systematic Literature Review

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Dec 28, 2025
Dmitry Pavlyuk Iyad Alomar

Abstract

Effective aircraft maintenance is crucial in ensuring safety, reliability, and cost-effectiveness in the aviation industry. Recent research and industry developments in artificial intelligence (AI) raise the potential to transform various aspects of aircraft maintenance, including predictive maintenance, fault diagnosis, and aircraft health monitoring and management. This paper presents a systematic literature review of AI technologies such as Automated Reasoning and Deep Learning in aircraft maintenance, highlighting its challenges and prospects. An extensive literature search resulted in a final dataset of 696 publications, covering the 40-years period from 1984 till 2024 and describing AI applications in airworthiness management, aircraft health monitoring, and maintenance, repair, and overhaul operations. These publications were analyzed to identify key AI technologies and related aircraft maintenance processes, identifying trends, popular research venues, and underexplored areas. The review concludes with insights into AI adoption in aircraft maintenance and its potential implications for researchers, practitioners, educators, and other stakeholders.

Abstract 122 | PDF Downloads 83

##plugins.themes.bootstrap3.article.details##

Keywords

machine learning, deep learning, remaining useful life, predictive maintenance, fault diagnosis, health monitoring, health management

References
Allen, D. R. (1990). Failure probability algorithm for test systems to reduce false alarms. 648–656.
Bedoya, C. A., & Keller, K. J. (1984). Artificial Intelligence Applied to the Inertial Navigation System Performance and Maintenance Improvement. 55–61.
Bemani, A., & Björsell, N. (2022). Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance. Sensors, 22(16), 6252. https://doi.org/10.3390/s22166252
Bisanti, G. M., Mainetti, L., Montanaro, T., Patrono, L., & Sergi, I. (2023). Digital twins for aircraft maintenance and operation: A systematic literature review and an IoT-enabled modular architecture. Internet of Things, 24, 100991. https://doi.org/10.1016/j.iot.2023.100991
Bouarfa, S., Doğru, A., Arizar, R., Aydoğan, R., & Serafico, J. (2020). Towards automated aircraft maintenance inspection. A use case of detecting aircraft dents using mask r-cnn. 1 PartF. https://doi.org/10.2514/6.2020-0389
Böyük, M., Duvar, R., & Urhan, O. (2021). A Review on Visual Inspection Methods for Aircraft Maintenance.
Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021). High-Performance Large-Scale Image Recognition Without Normalization (No. arXiv:2102.06171). arXiv. http://arxiv.org/abs/2102.06171
Cha, Y.-J., Ali, R., Lewis, J., & Büyükӧztürk, O. (2024). Deep learning-based structural health monitoring. Automation in Construction, 161, 105328. https://doi.org/10.1016/j.autcon.2024.105328
Dangut, M. D., Skaf, Z., & Jennions, I. K. (2021). An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA Transactions, 113, 127–139. https://doi.org/10.1016/j.isatra.2020.05.001
del Olmo, M., & Domingo, R. (2022). A Review of Smart Resource Planning in Maintenance, Repair and Overhaul. 2022-July, 885–896.
Dibsdale, C. E. (2020). Aerospace Predictive Maintenance (1st ed). SAE International.
Doğru, A., Bouarfa, S., Arizar, R., & Aydoğan, R. (2020). Using convolutional neural networks to automate aircraft maintenance visual inspection. Aerospace, 7(12), 1–22. https://doi.org/10.3390/aerospace7120171
Ducoffe, M., Haloui, I., & Gupta, J. S. (2019). Anomaly Detection on Time Series with Wasserstein GAN applied to PHM. International Journal of Prognostics and Health Management, 10(4). https://doi.org/10.36001/ijphm.2019.V10I4.2610
EASA. (2023). Artificial Intelligence Roadmap 2.0 Human-centric approach to AI in aviation.
European Commission. (2021). Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts.
European Commission. (2024). EU Artificial Intelligence Act.
Ezhilarasu, C. M., Skaf, Z., & Jennions, I. K. (2019). The application of reasoning to aerospace Integrated Vehicle Health Management (IVHM): Challenges and opportunities. Progress in Aerospace Sciences, 105, 60–73. https://doi.org/10.1016/j.paerosci.2019.01.001
Feng, Y.-W., Chen, J.-Y., Lu, C., & Zhu, S.-P. (2021). Civil Aircraft Spare Parts Prediction and Configuration Management Techniques: Review and Prospect. Advances in Mechanical Engineering, 13(6). https://doi.org/10.1177/16878140211026173
Gong, Y., Shao, H., Luo, J., & Li, Z. (2020). A deep transfer learning model for inclusion defect detection of aeronautics composite materials. Composite Structures, 252. https://doi.org/10.1016/j.compstruct.2020.112681
Hu, J., Zhao, G., Xiao, W., & Li, R. (2023). AR-based deep learning for real-time inspection of cable brackets in aircraft. Robotics and Computer-Integrated Manufacturing, 83. https://doi.org/10.1016/j.rcim.2023.102574
IATA. (2022). From Aircraft Health Monitoring to Aircraft Health Management. https://www.iata.org/contentassets/fafa409c883d41198aeb87628c848851/ahm-wp-1sted-2022.pdf
Jiang, A., & Liu, J. (2020). Pipeline Flange Defect Detection based on Deep Learning. 296–300. https://doi.org/10.1145/3434581.3434672
Jiang, F., Jia, B., Wang, J., & Zheng, G. (2024). Research on Failure Cause Analysis Method Based on Aircraft Maintenance Records. 374–388. https://doi.org/10.1007/978-981-99-8864-8_36
Khalid, S., Song, J., Azad, M. M., Elahi, M. U., Lee, J., Jo, S.-H., & Kim, H. S. (2023). A Comprehensive Review of Emerging Trends in Aircraft Structural Prognostics and Health Management. Mathematics, 11(18), 3837. https://doi.org/10.3390/math11183837
Khan, K., Sohaib, M., Rashid, A., Ali, S., Akbar, H., Basit, A., & Ahmad, T. (2021). Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(8). https://doi.org/10.1007/s40430-021-03121-2
Kwakye, A. D., Jennions, I. K., & Ezhilarasu, C. M. (2024). Platform health management for aircraft maintenance – a review. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 09544100231219736. https://doi.org/10.1177/09544100231219736
Le Clainche, S., Ferrer, E., Gibson, S., Cross, E., Parente, A., & Vinuesa, R. (2023). Improving aircraft performance using machine learning: A review. Aerospace Science and Technology, 138, 108354. https://doi.org/10.1016/j.ast.2023.108354
Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics. Reliability Engineering and System Safety, 230. https://doi.org/10.1016/j.ress.2022.108908
Li, D., Cui, L., Wang, S., & Qu, X. (2023). Research on Aviation Maintenance Quality Control Technology Based on Intelligent Glasses. 241–245. https://doi.org/10.1109/RAIIC59453.2023.10280901
Li, J., King, S., & Jennions, I. (2023). Intelligent Fault Diagnosis of an Aircraft Fuel System Using Machine Learning—A Literature Review. Machines, 11(4). https://doi.org/10.3390/machines11040481
Li, Y.-F., Wang, H., & Sun, M. (2024). ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps. Reliability Engineering and System Safety, 243. https://doi.org/10.1016/j.ress.2023.109850
Liao, M., Renaud, G., & Bombardier, Y. (2020). Airframe digital twin technology adaptability assessment and technology demonstration. Engineering Fracture Mechanics, 225. https://doi.org/10.1016/j.engfracmech.2019.106793
Liu, X., Chen, Y., Xiong, L., Wang, J., Luo, C., Zhang, L., & Wang, K. (2024). Intelligent fault diagnosis methods toward gas turbine: A review. Chinese Journal of Aeronautics, 37(4), 93–120. https://doi.org/10.1016/j.cja.2023.09.024
Magaldi, R. V. (1994). CBR for troubleshooting aircraft on the flightline. 57, 6/1-6/9.
Mallioris, P., Aivazidou, E., & Bechtsis, D. (2024). Predictive maintenance in Industry 4.0: A systematic multi-sector mapping. CIRP Journal of Manufacturing Science and Technology, 50, 80–103. https://doi.org/10.1016/j.cirpj.2024.02.003
Meng, X., Jing, B., Wang, S., Pan, J., Huang, Y., & Jiao, X. (2024). Fault Knowledge Graph Construction and Platform Development for Aircraft PHM. Sensors, 24(1). https://doi.org/10.3390/s24010231
Nyulászi, L., Andoga, R., Butka, P., Főző, L., Kovacs, R., & Moravec, T. (2018). Fault detection and isolation of an aircraft turbojet engine using a multi-sensor network and multiple model approach. Acta Polytechnica Hungarica, 15(2), 189–209. https://doi.org/10.12700/APH.15.1.2018.2.10
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Palmarini, R., Erkoyuncu, J. A., Roy, R., & Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49, 215–228. https://doi.org/10.1016/j.rcim.2017.06.002
Peng, K., Jiao, R., Dong, J., & Pi, Y. (2019). A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter. Neurocomputing, 361, 19–28. https://doi.org/10.1016/j.neucom.2019.07.075
Rajagopalan, S., Purohit, A., & Singh, J. (2024). Genetically optimised SMOTE-based adversarial discriminative domain adaptation for rotor fault diagnosis at variable operating conditions. Measurement Science and Technology, 35(10). https://doi.org/10.1088/1361-6501/ad5b7d
Ranasinghe, K., Sabatini, R., Gardi, A., Bijjahalli, S., Kapoor, R., Fahey, T., & Thangavel, K. (2022). Advances in Integrated System Health Management for mission-essential and safety-critical aerospace applications. Progress in Aerospace Sciences, 128. https://doi.org/10.1016/j.paerosci.2021.100758
Raoofi, T., & Yasar, S. (2023). Analysis of frontier digital technologies in continuing airworthiness management frameworks and applications. Aircraft Engineering and Aerospace Technology, 95(10), 1669–1677. https://doi.org/10.1108/AEAT-06-2022-0166
Rodríguez, D. A., Lozano Tafur, C., Melo Daza, P. F., Villalba Vidales, J. A., & Daza Rincón, J. C. (2024). Inspection of aircrafts and airports using UAS: A review. Results in Engineering, 22, 102330. https://doi.org/10.1016/j.rineng.2024.102330
Selvarajan, S., Manoharan, H., Shankar, A., Khadidos, A. O., Khadidos, A. O., & galletta, A. (2024). PUDT: Plummeting uncertainties in digital twins for aerospace applications using deep learning algorithms. Future Generation Computer Systems, 153, 575–586. https://doi.org/10.1016/j.future.2023.11.034
Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification. Reliability Engineering and System Safety, 115, 124–135.
Tamilselvan, P., Wang, Y., & Wang, P. (2012). Deep belief network based state classification for structural health diagnosis. IEEE Aerospace Conference Proceedings. https://doi.org/10.1109/AERO.2012.6187366
Tang, X., Chi, G., Cui, L., Ip, A. W. H., Yung, K. L., & Xie, X. (2023). Exploring Research on the Construction and Application of Knowledge Graphs for Aircraft Fault Diagnosis. Sensors, 23(11). https://doi.org/10.3390/s23115295
Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T., & Ekemb, G. (2014). Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges. Energies, 7(4), 2595–2630. https://doi.org/10.3390/en7042595
Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., Lucic, M., & Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP Architecture for Vision (No. arXiv:2105.01601). arXiv. http://arxiv.org/abs/2105.01601
Wei, Z., Zhao, Z., Zhou, Z., Ren, J., Tang, Y., & Yan, R. (2024). A deep reinforcement learning-driven multi-objective optimization and its applications on aero-engine maintenance strategy. Journal of Manufacturing Systems, 74, 316–328. https://doi.org/10.1016/j.jmsy.2024.04.003
Wooldridge, M. J. (2021). A brief history of artificial intelligence: What it is, where we are, and where we are going (First U.S. edition). Flatiron Books.
Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 275, 167–179. https://doi.org/10.1016/j.neucom.2017.05.063
Xu, T., Han, G., & Zhu, H. (2023). Aero Engine Remaining Useful Life Prediction: A Survey. 2023 Global Reliability and Prognostics and Health Management Conference, PHM-Hangzhou 2023. https://doi.org/10.1109/PHM-HANGZHOU58797.2023.10482659
Yang, H., LaBella, A., & Desell, T. (2022). Predictive Maintenance for General Aviation Using Convolutional Transformers. 36, 12636–12642.
Yasuda, Y. D. V., Cappabianco, F. A. M., Martins, L. E. G., & Gripp, J. A. B. (2022). Aircraft visual inspection: A systematic literature review. Computers in Industry, 141, 103695. https://doi.org/10.1016/j.compind.2022.103695
Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. 135–140. https://doi.org/10.1109/AUS.2016.7748035
Zhang, D., Zeng, N., & Lin, L. (2020). Detection of Blades Damages in Aero Engine. 6129–6134. https://doi.org/10.1109/CAC51589.2020.9327202
Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4), e14534. https://doi.org/10.1016/j.heliyon.2023.e14534
Zhou, X., & Dong, L. (2024). Digital Twin–Driven Damage Diagnosis and Prognosis of Complex Aircraft Structures. In Handbook of Digital Twins (pp. 746–766). https://doi.org/10.1201/9781003425724-51
Zuo, H., Rong, X., Bai, F., & Ren, S. (2012). An overview for prognostics based maintenance (PBM) of new and used aero-engines in china: Theory and methods. International Journal of COMADEM, 15(1), 59–71.
Section
Technical Papers