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ABSTRACT 

Effective aircraft maintenance is crucial in ensuring safety, 

reliability, and cost-effectiveness in the aviation industry. 

Recent research and industry developments in artificial 

intelligence (AI) raise the potential to transform various 

aspects of aircraft maintenance, including predictive 

maintenance, fault diagnosis, and aircraft health monitoring 

and management. This paper presents a systematic literature 

review of AI technologies such as Automated Reasoning and 

Deep Learning in aircraft maintenance, highlighting its 

challenges and prospects. An extensive literature search 

resulted in a final dataset of 696 publications, covering the 

40-years period from 1984 till 2024 and describing AI 

applications in airworthiness management, aircraft health 

monitoring, and maintenance, repair, and overhaul 

operations. These publications were analyzed to identify key 

AI technologies and related aircraft maintenance processes, 

identifying trends, popular research venues, and 

underexplored areas. The review concludes with insights into 

AI adoption in aircraft maintenance and its potential 

implications for researchers, practitioners, educators, and 

other stakeholders. 

1. INTRODUCTION 

Strong and strict safety regulations, high operational costs, 

and the crucial importance of timely maintenance are the 

essential features of Aircraft Maintenance (AM) processes. 

Regular AM practices often rely on scheduled inspections, 

which are planned in operator-approved maintenance 

programs and maintenance planning documents and are 

frequently based on the reactive repair strategy. This strategy 

can lead to inefficiencies, downtime, and increased 

operational costs. However, with the emergence of artificial 

intelligence (AI) technologies, there is a potential shift 

towards predictive and proactive maintenance strategies, 

aimed at minimizing downtime, reducing maintenance 

operation costs, and enhancing safety. AM is experiencing a 

revolutionary transformation with the adoption of AI for 

predictive maintenance (PdM). PdM utilizes advanced 

technologies, such as data analytics, machine learning, and 

sensor-based monitoring, to predict potential equipment 

failures before they occur (Dibsdale, 2020). The vast amount 

of data generated by numerous sensors embedded in aircraft 

components has made predictive maintenance one of the 

most advanced strategies. Analysis of this data using modern 

AI techniques such as machine learning algorithms has 

significantly enhanced maintenance reliability and improved 

its cost efficiency (Mallioris et al., 2024).  Although the 

predictive strategy and health management are widely 

considered beneficial, their efficiency highly relies on data 

analysis techniques. Thus, AI advances such as deep learning 

models and computer vision algorithms have a huge potential 

for aircraft maintenance (Ranasinghe et al., 2022). 

Due to the high research attention to the application of AI in 

aircraft maintenance, the number of related publications has 

significantly grown.  At the same time, a comprehensive 

understanding of AI applications across AM processes and 

challenges remains lacking. Existing reviews are often 

limited in scope, focusing on specific AI technologies, 

subdomains, or methodologies without providing a holistic 

view of the field. This creates a critical need for systematic 

literature reviews that consolidate knowledge, identify 

emerging trends, and highlight research gaps to guide future 

studies. This review addresses these needs by analyzing AI 

technologies applied in AM. By examining a large 

systematically selected representative set of publications, this 

study aims to answer the following research questions: 

• RQ1: What are the emerging AI technologies currently 

being explored in AM research and practice? 

• RQ2: How has the application of AI in AM evolved 

historically from industrial operations and technological 

progress prospectives, and what are the current trends? 

• RQ3: In which specific AM processes have AI 

technologies been successfully applied? 

_____________________ 
Dmitry Pavlyuk et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

https://doi.org/10.36001/IJPHM.2026.v17i1.4567 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

We provide a structured synthesis of AI applications in AM, 

offering insights into the historical evolution, current state, 

and future directions of AI technologies’ adoption for 

ensuring aviation safety and reliability. 

2. RESEARCH SCOPE AND RATIONALE  

2.1. Aircraft Maintenance Scope 

Aircraft maintenance is a complex and highly regulated 

technical activity that includes servicing, inspection, testing, 

repair, and overhaul or modification activities on every 

aircraft in service. AM processes are affected by the 

maintenance strategies that evolved from reactive to 

proactive and predictive. Table 1 represents the evolution of 

maintenance strategies from reactive to predictive 

maintenance (Kabashkin et al., 2025). 

Strategy Principle Training and 

competence 

Investment 

Reactive Waiting for 

failure, then 

repair 

Required a 

lower level of 

competence 

and smaller 

training 

No specific 

investment is 

required 

Proactive Looking for 

faults and 

removing them 

to improve 

performance 

Required 

specific 

knowledge and 

a good 

understanding 

An average 

level of 

investment is 

required 

Predictive  Using sensor 

data and data 

analysis 

techniques to 

forecast the 

aircraft 

reliability 

Required deep 

understanding 

and a higher 

level of 

competence 

A high level 

of 

investment is 

required 

Table 1. Comparison of the AM strategies 

The strategy employed by operators significantly influences 

the number of failures and the maintenance cost (Fig. 1). The 

cost optimization challenge has driven the aviation industry’s 

increasing interest in AI-powered predictive maintenance 

solutions. Applying AI-based algorithms to analyze sensor 

data, maintenance logs, and operational parameters, airlines 

can transition from traditional calendar-based maintenance 

schedules to condition-based and predictive maintenance 

strategies. This shift not only reduces maintenance costs but 

also improves aircraft availability, enhances safety outcomes, 

and supports regulatory compliance – factors that explain the 

exponential growth in AI research for aviation maintenance 

applications observed in recent years. Going deeper into the 

AM processes, the three main strategies mentioned above are 

based on different maintenance philosophies (IATA, 2022): 

Hard Time (HT), On-Condition (OC), and Condition 

Monitoring (CM). Table 2 summarizes these philosophies 

(Kinnison & Siddiqui, 2013). 

 

 

Fig. 1. Comparison of AM strategies (Tchakoua et al., 2014) 

Philosophy Description Example 

components 

Hard Time A preventative process 

whereby the maintenance 

actions carried out at time-

related periods limit the 

known deterioration of an 

item to an acceptable level. 

The prescribed action 

normally includes servicing, 

overhaul, and replacement. 

Landing gear, 

emergency 

equipment 

On-

Condition 

A preventative process, but 

the inspection actions are 

carried out at specified 

periods to determine whether 

it can continue in service. The 

fundamental purpose of the 

process is to remove an item 

before it fails in service. 

Lubrication 

and oil 

samples, 

magnetic chip 

detector 

debris 

Condition 

Monitoring 

A proactive/predictive 

process where data collection 

and analysis allow the 

portrayal of information upon 

which judgments relating to 

the safe condition of the 

airplane can be made. It is a 

statistically controlled 

process. 

Engine Health 

Monitoring 

(EHM) and 

Structural 

Health 

Monitoring 

(SHM) 

Table 2. Comparison of AM philosophies 

The following key players implement the maintenance 

strategies and philosophies: 

• Continuing Airworthiness Management Organizations 

(CAWM): CAWM’s main function is to maintain the 

airworthiness of the aircraft by monitoring the technical 

records, reliability reports, results of OC analysis, 

prognostic trend analysis, and control of remaining 

useful life (RUL). 
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• Maintenance Repair and Overhaul / Operations 

Organizations (MRO): MRO holds the ultimate 

responsibility for the diagnostic, detection, and analysis 

of the failures. In certain unusual cases, MRO can 

request assistance from CAWM to complete the 

assessment.  

• Health Monitoring/Management: EHM and SHM are 

engine and structural condition control, using a variety 

of advanced sensor technology and flight data 

parameters control to reduce/avoid accidental failure of 

the aircraft and its systems. 

The AM process classification used in this review is based on 

the involved players and related AM processes. 

2.2. Artificial Intelligence Scope 

Recently, the European Aviation Safety Agency (EASA) 

proposed a roadmap for addressing the challenges and 

opportunities of AI in aviation and highlighted the growing 

importance of AI for aircraft maintenance processes. The 

scope of AI technologies, covered by the EASA roadmap, is 

presented in Fig. 2 and includes logic- and knowledge-based 

(LKB) techniques, statistical approaches, and machine 

learning (ML) and deep learning (DL) algorithms.  

 

Fig. 2. Technologies enclosed by EASA AI Road map (EASA, 2023) 

The presented EASA roadmap classifies the AI technologies 

following the proposal for the EU AI Act (European 

Commission, 2021), which differs from the final version of 

the EU AI Act entered into force in 2024 (European 

Commission, 2024). The EU AI Act only distinguishes 

ML/DL and LKB approaches, and this review will follow the 

latest Act’s AI scope definition. 

2.3. Research Rationale 

For identifying the rationale of the systematic literature 

review (SLR) on AI in aircraft maintenance, the authors 

conducted a preliminary literature search for review papers, 

focused on artificial intelligence in aircraft engineering. The 

initial selection from Scopus, ScienceDirect, and IEEE 

Xplore was manually reviewed and filtered, resulting in a 

sample of 26 review papers. These papers were published 

from 2012 to 2024 (7 of them – in 2024), covering different 

aspects of AI in aircraft maintenance. The review papers were 

classified by: 

• Subarea of aircraft maintenance – PdM, visual 

inspection, SHM, etc. 

• Review domain – AM-focused or multi-domain. 

• Review focus – methods, applications, etc. 

• Type – systematic, SLR (e.g., conducted under PRISMA 

statement (Page et al., 2021)) or not. 

The classification of existing literature reviews is presented 

in Table 3. Seven of the 25 existing reviews (e.g., (Kwakye 

et al., 2024; Rodríguez et al., 2024)) mention AI in the recent 

trends and provide a limited overview of related 

technologies. Another subset of the reviews provides 

information about AI technologies as a part of method 

descriptions in different subareas – predictive maintenance 

(Xu et al., 2023; Zuo et al., 2012), visual inspection (Böyük 

et al., 2021; Yasuda et al., 2022), spare parts logistics (Feng 
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et al., 2021), resource planning (del Olmo & Domingo, 

2022), and fault diagnosis (Liu et al., 2024). Four reviews are 

directly focused on specific AI branches – machine learning 

(Le Clainche et al., 2023; J. Li et al., 2023) and deep learning 

(Cha et al., 2024; Y.-F. Li et al., 2024). Also, it is worth 

noting that only 5 reviews can be classified as systematic. 

Review paper AM Subarea Review domain Review focus SLR 

AM subarea: PdM 

Zuo et al. (2012) PdM AM-focused Methods No 

Khan et al. (2021) PdM AM-focused Recent trends No 

Karaoğlu et al. (2022) PdM AM-focused Methods Yes 

Bisanti et al. (2023) PdM AM-focused Digital twins   Yes 

Xu et al. (2023) PdM AM-focused Methods No 

Zhong et al. (2023) PdM Multi-domain Recent trends No 

Mallioris et al. (2024) PdM Multi-domain Applications Yes 

AM subarea: Visual Inspection 

Böyük et al. (2021) Visual inspection  AM-focused Methods No 

Yasuda et al. (2022) Visual inspection  AM-focused Methods Yes 

Rodríguez et al. (2024) Visual inspection  Multi-domain Recent trends No 

AM subarea: Fault Diagnosis 

Li et al. (2023) Fault diagnosis AM-focused Machine learning No 

Tang et al. (2023) Fault diagnosis  AM-focused Knowledge graphs  No 

Liu et al. (2024) Fault diagnosis  AM-focused Methods No 

AM subarea: SHM 

Ranasinghe et al. (2022) SHM  AM-focused Recent trends No 

Khalid et al. (2023) SHM  AM-focused Recent trends No 

Kwakye et al. (2024) SHM AM-focused Recent trends No 

Cha et al. (2024) SHM Multi-domain Deep learning  No 

Li et al. (2024) SHM Multi-domain Deep learning, GPT No 

AM subarea: Other operations 

Agustian and Pratama (2024) Wide-scope AM-focused Methods, data sources Yes 

Palmarini et al. (2018) Operations Multi-domain Augmented reality Yes 

Ezhilarasu et al. (2019) Health management AM-focused Reasoning No 

Feng et al. (2021) Spare parts logistics  AM-focused Methods No 

del Olmo and Domingo (2022) Resource planning  AM-focused Methods No 

Le Clainche et al. (2023) Aircraft performance AM-focused Machine learning No 

Raoofi and Yasar (2023) Airworthiness AM-focused Recent trends No 

Table 3. Review papers 

Summarizing the analysis of the existing reviews, we 

conclude the absence of a systematic literature review that 

covers all aspects of AI applications in the area of aircraft 

technical maintenance and continuing airworthiness 

processes. Considering the persistent importance of aviation 

safety and reliability improvement and special attention to 

the preparation and certification of aviation maintenance 

engineers, a comprehensive understanding of the landscape 

of related AI technologies becomes critically important.  The 

wide scope of the review will make it valuable for informing 

research. First, it is essential for educational purposes, 

particularly for researchers entering this interdisciplinary 

field. Aircraft maintenance encompasses multiple domains, 

each potentially benefiting from different AI approaches. 

Second, the wide scope enables trend prediction and 

identification of emerging patterns that would be invisible in 

narrowly focused reviews. A broad review provides 

researchers with the conceptual map that is necessary to 

understand how these domains interconnect and where AI 

applications have emerged, addressing a critical gap in 

aviation maintenance education and professional 

development. These conclusions provide a clear rationale for 

this wide-scope review. 

The added value of this review is strengthened by its 

systematic approach to the hierarchical classification of 

existing studies according to AI technologies and AM 

operations, rather than merely enumerating them. This 

hierarchical classification provides readers with a 

comprehensive overview of the broader landscape of AI 

technologies and AM operations. 

3. LITERATURE SELECTION  

3.1. Methodology of Literature Review 

Our SLR was conducted following the PRISMA 2020 

Statement (Page et al., 2021) and consists of the stages, 

presented in Fig. 3. The literature search was performed in 

two digital databases: Scopus and IEEE Xplore. These 

databases contain a good index of publications in engineering 
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science, and, although some papers can be missed, we believe 

that our search is representative of the overall trends and 

popularity of AI technologies.  

The exclusion of gray literature – industry technical reports, 

white papers, government publications, and proprietary 

research from aviation manufacturers and maintenance 

organizations – may limit the completeness of our findings. 

Given that AI implementation in aviation maintenance often 

occurs through industry-led initiatives and practical 

applications documented in non-peer-reviewed sources, this 

exclusion potentially overlooks valuable insights from 

practitioners and industry experts. While this limitation 

aligns with the PRISMA methodology's emphasis on 

systematic and replicable search procedures, it should be 

acknowledged that the rapidly evolving nature of AI 

applications in aviation maintenance may be better reflected 

in gray literature sources that provide more immediate 

documentation of technological developments and real-world 

implementations. Future research could benefit from 

incorporating a complementary gray literature search to 

provide a more complete picture of AI adoption and 

effectiveness in aviation maintenance practices. 

 

 

Fig. 3. Main stages of the literature review 

The search keywords were defined to cover the research topic 

as broadly as possible: 

• Aviation maintenance keywords: “maintenance” AND 

("aircraft" OR "aviation"). The scope will cover papers 

on aviation-assisted maintenance (like maintenance of 

bridges, using data from drones), which will be filtered 

out manually. 

• Artificial intelligence keywords: “artificial intelligence”, 

“computer vision”, “machine learning”, “deep learning”, 

“neural network”, “knowledge represent*”, 

“symbolic*”, “reinforcement learning”, “generative”, 

“statistic*”, “data mining”, “intelligent*”. The scope 

will cover most techniques, commonly associated with 

artificial intelligence. The inclusion of the “statistical” 

approaches leads to a large number of papers that utilize 

traditional statistical analysis and will be filtered out 

manually. 

After preliminary searches, it was decided to add the 

exclusion keywords “solar” and “pavement” to automatically 

filter out papers on aviation-assisted maintenance of solar 

power plants and road pavement states. Additionally, the 

search was limited to papers in English and original studies 

(surveys, systematic literature reviews, and mappings were 

excluded). The resulting queries for Scopus and IEEE Xplore 

databases are presented in Table 4. 

Database Query  Papers 

Scopus TITLE-ABS-KEY (  

("aircraft" OR "aviation") AND "maintenance" AND  ("artificial intelligence" OR "computer 

vision" OR "machine learning" OR "deep learning" OR "neural network" OR "knowledge 

represent*" OR "symbolic*" OR "reinforcement learning" OR "generative" OR "statistic*" OR 

"data mining" OR "intelligent*"))  AND NOT "solar" AND NOT "pavement" AND  

(LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (DOCTYPE, "cp") OR LIMIT-TO 

(DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "ch")) 

2276 

IEEE Xplore ("aircraft" OR "aviation") AND "maintenance" AND ("artificial intelligence" OR "computer 

vision" OR "machine learning" OR "deep learning" OR "neural network" OR "knowledge 

represent*" OR "symbolic*" OR "reinforcement learning" OR "generative" OR "statistic*" OR 

"data mining" OR "intelligent*") AND NOT "solar" NOT "pavement" 

1136 

Table 4. Queries on digital databases
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The literature search was conducted on January 1, 2025, and 

included all publications until 2024 (several early 

publications of 2025 were excluded). Bibliographic 

information, including abstracts, of all papers was extracted 

from Scopus and IEEE Xplore, and duplicates were removed, 

resulting in 2765 papers. Additionally, one retracted paper 

was removed from the selection.   

The initial queries are designed to minimize the probability 

of false negatives (automated exclusion of relevant papers), 

which increases the likelihood of false positives (automated 

inclusion of irrelevant papers). Thus, the abstract-based 

exclusion criteria play an important role. The exclusion 

criteria are summarized in Table 5. 

# Exclusion criteria description 

Papers that are excluded as not directly related to the scope of 

aircraft maintenance, in particular, papers focused on: 

AM1 - maintenance of non-aircraft objects (e.g., wind 

turbines, power plants, constructions, etc.) 

AM2 - maintenance of non-aircraft specific components 

(e.g., batteries) 

AM3 - software development 

AM4 - workforce optimization  

AM5 - spare parts logistics 

AM6 - maintenance process scheduling, routing, or 

other type of optimization 

AM7 - aircraft design, testing, or improvement 

AM8 - behavior analysis of aircraft maintenance 

engineers, including pose or movement 

recognition 

AM9 - health of aircraft maintenance engineers 

AM10 - regulation compliance 

Papers that are excluded as not directly related to the scope of 

artificial intelligence, in particular, papers focused on: 

AI1 - application of methodologies, not associated with 

artificial intelligence (expert-based decision-

making, classical and evolutionary optimization, 

etc.) 

AI2 - exploratory statistical data analysis 

AI3 - statistical inference (point and interval parameter 

estimation, hypothesis testing) 

AI4 - statistical estimation of trends 

AI5 - statistical models, not focused on prediction, 

decision-making, or reasoning 

Table 5. Exclusion criteria 

The exclusion process was independently conducted by two 

authors and all disparities were discussed and resolved. It was 

decided to keep papers on digital twins and augmented reality 

(AR) within the scope of the review, even if exact AI-based 

techniques are not mentioned in their abstracts. Frequently, 

digital twins and AR implementation require AI technologies 

under the hood. A comprehensive review of various aspects 

of digital twins in aircraft maintenance is presented by Bisanti 

et al. (2023). 

Following the refined exclusion rules, the selection of 2765 

papers was reduced to 696 papers, related to artificial 

intelligence in aviation maintenance. 

3.2. Preliminary Results 

The number of publications by year is presented in Fig. 4. 

The plot confirms the emerging interest in applying artificial 

intelligence in aircraft maintenance. 

 

Fig. 4. Dynamics of related publications 
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From 1984 to 2014, the overall number of publications 

remained relatively low. However, a noticeable increase 

began in 2016 and accelerated after 2018, continuing to 2024. 

As demonstrated in subsequent sections, this acceleration 

corresponds to the raise of deep learning (DL) applications. 

The beginning of the DL era is commonly attributed to 2012, 

when several critical factors converged: algorithmic 

advances, enhanced computational power, and the maturation 

of big data technologies. However, the adoption of emerging 

technologies varies significantly across industries. 

Furthermore, scientific publications typically have temporal 

delays due to the conservative peer-review processes of top 

journals and conferences. Consequently, within the aviation 

maintenance domain, the substantial increase in publications 

employing intensive DL methodologies occurred in 2018. To 

accurately capture this shift in our subsequent analysis, we 

established a temporal division comprising two distinct 

periods: the Pre-DL Era (1984-2017) and the DL Era (2018-

ongoing). 

  The overall growth is supplemented by the growing number 

of journal publications, which can be interpreted as a gradual 

shift from novel proposals, presented as conference papers, 

to more comprehensive and practically significant studies 

published in journals. 

Additionally, a reduction in publications in 2021 is observed. 

This reduction can be associated with the negative effects of 

the COVID-19 pandemic on the aviation industry, but this 

hypothesis requires additional validation. 

The most popular publication venues are presented in Table 

6. Some inferences from popular journals and conferences are 

presented in the Discussion section. 

Journals Publications Conferences Conference papers 

IEEE Access 14 SPIE International Society for 

Optical Engineering 

18 

Reliability Engineering and System 

Safety 

13 AUTOTESTCON 11 

Applied Sciences (Switzerland) 10 ASME Turbo Expo 10 

Aerospace 9 IEEE Aerospace Conference 10 

IEEE Transactions on Instrumentation 

and Measurement 

6 AIAA SciTech Forum 10 

Expert Systems with Applications 6 Annual Conference of Prognostics 

and Health Management Society 

7 

IEEE Sensors 6 Annual Reliability and 

Maintainability Symposium 

6 

Measurement Science and Technology 6 IEEE International Conference on 

Prognostics and Health Management 

6 

Mechanical Systems and Signal 

Processing 

6 International Workshop on 

Structural Health Monitoring 

6 

Table 6. Popular publication venues  

The overall distribution of citations of selected bibliographic 

sources is regular and follows Zipf’s law (an exponential 

distribution with few frequent and many rare items 

(Fedorowicz, 1982)) for citation frequencies with an 

estimated exponent of 1.33 (1.59 for conference papers and 

1.18 for journal articles) for cited papers. The overall share 

of cited papers is relatively small and equals 45%, which can 

be explained by many recent publications with a small 

number of citations. The three most cited publications are 

presented in Table 7. 

Authors Title Year Publication venue Citations 

Wu et al. (2018) Remaining useful life estimation of engineered systems 

using vanilla LSTM neural networks 

2018 Neurocomputing 648 

Tamilselvan & 

Wang (2013) 

Failure diagnosis using deep belief learning-based 

health state classification 

2013 Reliability Engineering and 

System Safety 

638 

Yuan et al. (2016) Fault diagnosis and remaining useful life estimation of 

aero engine using LSTM neural network 

2016 IEEE/CSAA Conference on 

Aircraft Utility Systems 

366 

Table 7. Most cited papers 

As anticipated, the first applications of AI algorithms 

received significant attention and were frequently cited (e.g., 

Yuan et al.(2016) and Wu et al. (2018) with their first 

application of LSTM in aircraft maintenance). Thus, the 

recent AI technologies that have not been applied in aircraft 

maintenance yet are presented in the Discussion section and 

can be mentioned as potential research directions. 

The preliminary analysis of the paper database was 

conducted using title-and abstract-based clustering (k-means 

algorithm, VOSViewer). The resulting clusters are presented 

in Fig. 5.  
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Three main clusters can be associated with: 

• fault identification and knowledge-based systems – red 

cluster (“fault”, ”knowledge”, “tool”, “expert system”) 

• inspection and structural health monitoring – blue cluster 

(“structure”, “damage”, “inspection”, “detection”) 

• predictive methodologies – green cluster (“RUL”, 

“prediction”, “dataset”, “feature”, ”prognostic”) 

In terms of AI, knowledge-based technologies (expert 

systems, case-based reasoning) are concentrated in the red 

cluster (fault), machine-learning technologies (deep learning, 

neural networks) in the green cluster (RUL), and 

convolutional neural networks (CNN) are the only 

representatives of AI near the blue cluster (Inspection). 

 

Fig. 5. Publication clusters 

4. EMPIRICAL RESULTS 

4.1. Classification of publications 

The next step in the literature analysis involved manually 

labeling the papers. This labeling process was based on the 

titles and abstracts of the publications and was conducted 

along two dimensions: 

• utilized AI technology. 

• related AM processes.  

Within every dimension, the bottom-up approach was applied 

– the paper was labeled by the most specific technology (e.g., 

You Only Look Once version 8 network), and further 

grouped into more general classes (e.g., CNN-based models). 

The classes in both dimensions are not mutually exclusive, so 

one paper could be associated with different classes if it 

utilizes several AI technologies or is related to several AM 

processes. A class was included in the final hierarchy if it 

contained at least three papers. The resulting hierarchies of 

AI technologies and AM processes are presented in Table 8 

(number of papers in each class is provided in brackets). The 

hierarchies are visualized in Fig. 6 and Fig. 7.  

Hierarchy of AI technologies Hierarchy of AM processes 

1. Logic/Knowledge (145) 

1.1. Knowledge-based (65) 

1.1.1. Expert systems (28) 

1.1.2. Semantic Models (3) 

1.2. Reasoning (78) 

1.2.1. Case-based Reasoning (13) 

1.2.2. Bayesian Reasoning (25) 

1.2.2.1. Bayesian Belief Network (3) 

1.2.3. Fuzzy Logic (29) 

1.2.4. Markov Models (8) 

4. Continuing Airworthiness Management, CAWM (300) 

4.1. Condition Monitoring (27) 

4.2. On Condition (10) 

4.3. Residual useful life (158) 

4.4. Prognostic (80) 

4.4.1. Prognostic: Engine (46) 

4.4.2. Prognostic: Airframe (16) 

4.4.3. Prognostic: Aircraft Systems (15) 

4.5. Reliability (42) 

4.6. Maintenance Optimization (35) 
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Hierarchy of AI technologies Hierarchy of AM processes 

2. Machine Learning, ML (515) 

2.1. Conventional ML (234) 

2.1.1. Feed-forward neural network, FFNN (131) 

2.1.2. Support vector machine, SVM (42) 

2.1.3. Random Forest (13) 

2.1.4. Decision Tree (16) 

2.1.5. Self-organizing map, SOM (6) 

2.2. Deep Learning (297) 

2.2.1. Convolutional neural network (95) 

2.2.1.1. You Only Look Once, YOLO (11) 

2.2.2. Generative adversarial network, GAN (13) 

2.2.3. Recurrent neural network, RNN (112) 

2.2.3.1. Long short-term memory neural network, LSTM (89) 

2.2.3.2. Gated recurrent unit, GRU (18) 

2.2.4. Deep belief network, DBN (9) 

2.2.5. Autoencoder (25) 

2.2.6. Transformer (17) 

2.2.7. Transfer learning (6) 

2.2.8. Ensemble model (31) 

2.2.8.1. Boosting (21) 

2.3. Reinforcement learning (10) 

3. Digital Representation Technologies (33) 

3.1. Augmented Reality (10) 

3.2. Digital Twin (23) 

5. Maintenance, Repair, and Overhaul (208) 

5.1. Fault detection (72) 

5.2. Fault Analysis (34) 

5.2.1. Failure analysis: Engine (10) 

5.2.2. Failure Analysis: Airframe (3) 

5.2.3. Failure Analysis: Aircraft Systems (8) 

5.3. Fault Diagnosis (118) 

5.3.1. Failure Diagnosis: Engine (38) 

5.3.2. Failure Diagnosis: Airframe (16) 

5.3.3. Failure Diagnosis: Aircraft Systems (31) 

5.4. Fault Isolation (7) 

6. Health Monitoring / Management (257) 

6.1. Health Monitoring: Engine (57) 

6.2. Health Management Structure (73) 

6.3. Predictive maintenance, PdM (133) 

6.3.1. PdM: Engine (71) 

6.3.2. PdM: Airframe (27) 

6.3.3. PdM: Aircraft Systems (26) 

7. Training (14) 

Table 8. Hierarchy of publication classes

Note that the sum of papers across subcategories does not 

equal the total in higher-level categories due to two factors: 

(1) subcategories are not mutually exclusive, allowing papers 

to be classified under multiple subcategories, and (2) 

subcategories with fewer than three papers were excluded 

from the analysis. For instance, the Logic/Knowledge 

category contains 145 papers total. Within this category, the 

Knowledge-based subcategory includes 65 papers and the 

Reasoning subcategory includes 78 papers. The distribution 

is as follows: 62 papers are exclusively Knowledge-based, 75 

are exclusively Reasoning, 3 papers belong to both 

subcategories, and 5 papers utilize specific approaches not 

covered by the included subcategories. Similarly, the 

Machine Learning category encompasses 515 papers, 

distributed among subcategories as follows: 234 papers are 

classified as Conventional Machine Learning, 297 as Deep 

Learning, and 10 as Reinforcement Learning. Twenty-nine 

papers employ both conventional and deep learning 

techniques and are therefore included in both relevant 

subcategories. The primary objective of Table 8 and Fig. 6-7 

is to present the total number of papers within each 

subcategory. Thus, for clarity and simplicity, intersections 

between subcategories are not explicitly represented in these 

visualizations. 

The first level of the hierarchy of AI technologies includes 

Machine learning (ML), Logic- and Knowledge-based 

(LKB) algorithms, and Digital Representation Technologies. 

ML and LKB correspond to the classes of AI technologies, 

defined in the EU AI Act. Digital Representation 

Technologies aggregate papers on Digital twins and 

Augmented/Virtual reality, frequently requiring AI 

technologies such as computer vision, generative AI, and 

optimization algorithms. The ML class of publications is 

divided to Conventional ML (FFNN, SVM, SOM, DT, RF) 

and Deep Learning (all multi-layer ANN architectures such 

as CNN, LSTM, and transformers). The LKB class of 

publications is split into knowledge-based models such as 

expert systems and different reasoning approaches such as 

case-based and Bayesian models. For the AM dimension, 

CAWM accounts for 312 publications, with “Remaining 

Useful Life” (169 publications) as the dominant subclass. 

Other notable applications include “Prognostic” (81), 

“Reliability” (42), and "Maintenance Optimization" (35). 

MRO encompasses 224 publications and prioritizes 

diagnostics and failure management. Fault diagnosis (127 

papers), detection (74), and analysis (36) are the central 

themes, with engines being the most analyzed aircraft 

component. Health Management/Monitoring, comprising 

273 publications, focuses on condition tracking through 

“Engine Health Monitoring” (62), “Structure Health 

Monitoring” (75), and broader predictive maintenance (142). 

Predictive maintenance applications mostly focus on engines 

with less emphasis on airframes, and systems. Training (14) 

is the least explored application area, suggesting that AI 

applications in training for aviation maintenance are still in 

their early stages or represent a less prioritized area compared 

to diagnostics and prognostics.
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Fig. 6. Hierarchy of AI applications by the AI technology 

 

Fig. 7. Hierarchy of AI applications by the AM process 

4.2. Trend identification 

The specific research question (RQ2) is associated with the 

historical trends of AI technologies in aircraft maintenance. 

Fig. 8 illustrates the trends in the application of second-level 

AI technologies of the hierarchy, explained in Table 8, in 

aircraft maintenance over the years. In the earlier decades, 

knowledge-based systems and reasoning approaches 

dominated, with relatively low annual publication counts. 

From the mid-1990s onwards, conventional machine learning 

began to grow steadily, and after 2015 there is a significant 

increase in total publications, primarily driven by deep 

learning. Digital representation technologies appear only in 

recent years with comparatively lower counts. Overall, the 

figure highlights a marked shift from knowledge-based 

paradigms toward data-driven approaches, particularly deep 

learning, accompanied by a rapid expansion of research 

output. 
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Fig. 8. Dynamics of AI applications by the AI technology 

 

Fig. 9 illustrates the trends in the application of AI 

technologies for different AM processes. Early years show 

low publication counts with only sporadic contributions 

across categories. From the mid-2000s onwards, the number 

of papers gradually increases, and after 2015 there is a surge, 

particularly in condition monitoring, predictive maintenance, 

remaining useful life estimation, and fault diagnosis. Other 

topics such as engine and structural health monitoring, 

maintenance optimization, and training appear more recently 

with smaller but growing contributions. Overall, we observe 

the rapid expansion and diversification of research in 

maintenance and reliability over the past decade. 

 

Fig. 9. Dynamics of AI applications by the AM process 
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4.3. Contingency tables 

Finally, we obtained the crosstab results of the AI 

technologies and AM processes to cover the research 

question RQ3. The contingency tables of second-level classes 

are visualized in Fig. 10. The sizes of the circles in Fig. 10 

and the values inside represent the number of publications. 

Colors represent a relationship between normalized row and 

column share: red colors correspond to larger column share 

(larger importance of the AI technology for a specific AM 

process), blue colors correspond to larger row share (larger 

focus of a specific AI technology on the AM process), violet 

colors correspond to similar row and column share. 

 

Fig. 10. Contingency table of AI technologies and AM processes. 

The largest violet circles correspond to Deep Learning, 

particularly in RUL prediction (130), PdM (74), and Fault 

Diagnosis (38). This indicates that DL plays a crucial and 

highly targeted role in these areas. The large dark-red circle 

for DL in “Fault Detection” (47) illustrates the high 

importance of DL for this AM process. 

Conventional ML has consistently large circles across several 

research problems, particularly in PdM (53) and Fault 

Detection (47). This suggests that conventional ML is a 

versatile technology applicable to various AM problems. 

Knowledge-based systems are used across many research 

problems but with a smaller intensity. Larger blue circles 

indicate the high focus of knowledge-based algorithms and 

reasoning algorithms on Fault Diagnosis (21 and 29 papers 

respectively), which may reflect the necessity of explainable 

solutions for understanding and resolving system faults. 

Digital Representation Technologies are applicable across 

the AM processes, but their role is limited up to 2024. 

5. DISCUSSION 

The growing use of AI in research on aircraft maintenance is 

evidenced by Fig. 4 and corresponds to the overall tendency 

for successful AI applications. Further, we formulate several 

more specific insights from the obtained results. 

Multidisciplinary journals, domain-specific conferences 

The only journal among the most popular publication venues 

(Table 6) that is specifically focused on the aviation industry 

is Aerospace. The other journals are multidisciplinary, 

covering applications of AI technologies across various 

domains (IEEE Access) or focusing on methodological 

advancements (Expert Systems with Applications). 

Potentially, this lack of specialization could create an 

obstacle for access to recent AI advances for specialists, 

working purely in aircraft maintenance. On the other hand, 

the majority of conference publications are domain-specific 

and focused on maintenance, prognostic, and health 

management. 

Fall and rise of knowledge-based technologies 

Applications of AI technology classes (ML and LKB) in 

aircraft maintenance correspond to the regular patterns of AI 

development. Historically, knowledge-based expert systems 

were the primary AI tool (Fig. 8), and, starting from Bedoya 

and Keller (1984), several papers report about the successful 
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application of expert systems in aircraft maintenance. Despite 

the attractive properties of expert systems like transparency, 

interpretability, and domain-specific precision, they were 

widely acknowledged as too expensive to maintain. In the 

history of AI, the difficulties of expert system maintenance 

led to the slowdown of their practical applications, frequently 

referred to as one of AI winters (Wooldridge, 2021). The 

same process is visible for AI use in aircraft maintenance. In 

1990-2000 the interest within LKB was shifted to reasoning 

techniques such as case-based reasoning (Magaldi, 1994) or 

Bayesian reasoning (Allen, 1990), but remained low until 

2023. Recently, the number of papers significantly increased 

(10 papers from the logic/knowledge-based branch published 

in 2023 and 11 – in 2024). We explain this growth with the 

general trend toward explainability in AI, where researchers 

try to better understand and explain processes inside the 

“black box” of machine-learning models, providing more 

interpretable results. Thus, several papers proposed a 

combination of LKB and ML techniques (Meng et al., 2024), 

raising interest in classical reasoning approaches. We expect 

that this trend will continue in the next years. 

Rise of deep learning 

Deep learning (DL) techniques are rapidly coming into 

practice in all areas, including aircraft maintenance. 

Tamilselvan et al. publications (2012; 2013) were the first 

applications of DL (more specifically, deep belief networks) 

for aircraft engine health diagnosis, enabling further 

applications and DL techniques and collecting more than 600 

citations. Further, we observe (Fig. 8) the explosive growth 

of DL applications in aircraft maintenance, resulting in 106 

publications in 2024 (73% of all related papers, published in 

2024). These research advances are expected to enable daily 

use of DL tools. 

Most popular models 

Although there is evidence of applications of different types 

of DL models in aircraft maintenance, two models can be 

classified (Fig. 6) as the mainstream ones – convolutional 

neural network, CNN (108 papers, 15.5% of all publications, 

37 of them – in 2024), and long short-term memory neural 

network, LSTM (98 papers, 14.0% of all publications, 28 of 

them – in 2024). 

CNNs are designed to adaptively learn spatial hierarchies of 

features from input images through the use of convolutional 

layers, which apply filters to capture local patterns like edges, 

textures, and shapes. The structure of CNNs allows them to 

excel at tasks like image classification and object detection, 

by learning complex features at deeper layers. In aircraft 

maintenance, CNNs are primarily used for visual inspection 

tasks (Doğru et al., 2020) such as crack identification and 

damage and corrosion detection. Although traditional CNNs 

are mostly based on the processing of two-dimensional image 

data, there are a couple of examples where CNNs are applied 

for one-dimensional signal processing (Rajagopalan et al., 

2024) and text processing (F. Jiang et al., 2024). 

LSTMs are a type of recurrent neural network architecture 

designed to effectively learn and model sequences of data, 

particularly when long-term dependencies are crucial. 

LSTMs use specialized memory cells with gates that control 

the flow of information and allow LSTMs to retain or forget 

information over long sequences, making them highly 

effective for tasks like time-series prediction. In aircraft 

maintenance, time-series prediction is usually associated 

with  RUL prediction, where LSTMs play the primary role 

(Yuan et al., 2016). 

CNN and LSTM models are considered workhorses in 

aircraft maintenance, making it highly beneficial to 

incorporate their foundational concepts into education and 

training programs in this field. 

Speed of adoption of new AI models 

Although aircraft maintenance is widely acknowledged as a 

very conservative process, the adoption of recent DL models 

in related research is going relatively fast (Fig. 6). Generative 

adversarial networks were introduced in 2014 and applied in 

aircraft maintenance for the first time in 2019 (Ducoffe et al., 

2019), the YOLO architecture was introduced in 2016 and 

applied in aircraft maintenance in 2020 (A. Jiang & Liu, 

2020), transformers were introduced in 2018 and applied in 

aircraft maintenance in 2022 (Yang et al., 2022), therefore it 

typically takes 4-5 years for new AI model adoption. Thus, 

we expect to see the application of MLP-Mixer (Tolstikhin et 

al., 2021), normalizer-free networks (Brock et al., 2021), and 

other modern architectures in aircraft maintenance shortly. 

Another potential direction for growth is associated with 

the application of pre-trained models. Transfer learning has 

already been adopted in aircraft maintenance (Gong et al., 

2020), while other modern approaches like fine-tuning 

foundation models have not been applied yet. 

Weak reinforcement 

Another class of AI technology, under-utilized in aircraft 

maintenance, is reinforcement learning (10 papers, Fig. 6). 

Reinforcement learning is a type of machine learning where 

an agent learns to make decisions by interacting with an 

environment and receiving rewards or penalties based on its 

actions. These models are widely adopted for solving 

scheduling and planning problems (including aircraft 

maintenance, see exclusion criteria AM4 and AM5 in Table 

5), but are rarely applied to other maintenance tasks. Existing 

examples (Lee & Mitici, 2023; Wei et al., 2024) suggest 

the integration of reinforcement learning techniques with 

regular maintenance tasks like RUL prediction to improve 

their economic performance. Authors foresee the growth of 

interest in the application of hybrid AI models with 

reinforcement learning components. 
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Steady utility of conventional machine-learning 

Despite the explosive growth of DL models, the 

“conventional” machine-learning models (feed-forward 

neural networks, support vector machines, decision trees, 

random forests, and self-organizing maps) demonstrate 

steady utility in aircraft maintenance. The number of papers 

has been stable over the last years (25 in 2022, 24 in 2023, 

and 32 in 2024), which supports the status of conventional 

ML models as well-established AI tools. 

Emergence of digital representation technologies 

We observe the growing links between digital representation 

technologies (virtual reality, augmented reality, digital twins) 

and AI tools. Although such digital technologies do not fall 

into the primary scope of this review and are not specifically 

covered by the literature search strategy, the number of 

papers referring to AI technologies is significant (38 papers 

overall, 13 in 2024). Usually, AI technologies like deep 

learning or Bayesian reasoning are utilized for the internal 

implementation of digital twins (Selvarajan et al., 2024; Zhou 

& Dong, 2024), while computer vision-related techniques 

(e.g., CNNs) are intensively applied for augmented reality 

applications (Hu et al., 2023; D. Li et al., 2023). 

Dominant AI application areas 

Prognostic and Predictive Maintenance stand out as the most 

published areas of AI applications, particularly in the last 

decade. This trend indicates a prioritization of technologies 

and methodologies that focus on preventing failures rather 

than reacting to them. PdM utilizes AI algorithms to analyze 

historical maintenance data, sensor readings, and other 

relevant parameters to predict the likelihood of component 

failures before they occur. Airlines and maintenance 

providers can identify potential issues early on and 

proactively prevent costly breakdowns and disruptions 

(Bemani & Björsell, 2022; Dangut et al., 2021; Liao et al., 

2020). AI already plays a key role in PdM, assisting in 

analyzing big datasets generated by aircraft systems and 

equipment. Although AI use has a significant potential, this 

implementation has significant challenges and requires 

numerous considerations from the industry. One of the 

important factors that must be considered is the regulatory 

framework as all maintenance processes are strongly 

regulated by the Federal Aviation Administration (FAA) and 

EASA. 

AI importance in MRO 

AI-powered fault diagnosis systems employ advanced 

algorithms to analyze sensor data and detect anomalies 

indicative of potential faults or malfunctions in aircraft 

systems. The number of reviewed publications focused on 

MRO is surprisingly large – 224 papers (32% of all 

publications). Many of these articles were published in 2023-

2024, thus, the citation rate is low at the review moment, 

except for some articles such as (Zhang et al., 2020) and 

(Bouarfa et al., 2020). In the last decade, aircraft construction 

and design have been characterized by the essential 

integration of electronics technology within 

aircraft microgrids. This has led to complex relationships 

between aircraft systems and made fault diagnosis much 

more difficult for technicians using traditional methods. 

Integration of health management into newly designed 

aircraft provided a lot of capabilities required for 

transformation from condition-based maintenance into 

predictive maintenance (Li et al., 2023). This trend highlights 

the recognition of workforce development as a critical factor 

in realizing the potential of AI technologies in MRO. 

Fault Detection: Steady but Secondary Focus 

While the use of AI in processes like fault detection and 

isolation has shown steady growth over the years, they 

remain less prominent compared to broader themes (Nyulászi 

et al., 2018). This could suggest that while they are critical 

components of maintenance strategies, they are often 

integrated into more comprehensive systems like condition 

monitoring and diagnostics, leading to a less isolated research 

focus. 

AI Expansion in Health Monitoring/Management 

The use of AI for Engine Health Monitoring and Structure 

Health Monitoring/Management has gained significant 

attention in recent years. This trend likely reflects the 

growing complexity of modern engineering systems, such as 

aircraft and infrastructure, where tailored monitoring 

solutions are crucial for ensuring safety and operational 

efficiency. Across all categories, engines receive the most 

attention, particularly in diagnostics (40 publications, 31.5% 

in fault diagnosis and 46, 57.5% in prognostics) and 

predictive maintenance (78 publications, 53.4% in PdM), 

e.g., (Peng et al., 2019). This highlights the critical 

importance of engine performance and reliability in aviation 

maintenance workflows. Despite its potential, condition 

monitoring has only 27 cases have been identified under 

CAWM, a relatively small number compared to other 

subcategories such as RUL prediction. This may point to an 

opportunity to expand condition-monitoring applications for 

real-time assessment and immediate feedback on system 

health. 

Maturity of AI technologies in AM 

After the critical analysis of the research literature, we 

propose the following classification of maturity levels of AI 

technologies in AM (Table 9).  

Table 9 summarizes typical applications and estimated 

maturity levels expressed as Technology Readiness Levels 

(TRLs). It should be noted that these classifications are 

subjective assessments based on available literature, and vary 

depending on the operational context, data availability, and 

regulatory environment. 

https://www.sciencedirect.com/topics/engineering/microgrid
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AI 

technology 

Typical AM 

applications 

Maturit

y, TRL 

Status 

Logic/Knowle

dge-based 

Assistance, 

Troubleshooting 

High (8-9) Widesprea

d 

Predictive ML RUL prediction, 

fault prediction 

Medium 

(6-8) 

Selective 

use 

Computer 

vision ML 

Visual inspection Medium 

(5-7) 

Pilot 

projects 

Reinforcement 

learning 

Process 

optimization 

Low (3-5) Research 

Digital 

Representation  

Engine 

monitoring 

Medium 

(5-7) 

Selective 

use 

Table 9. Maturity of AI technologies in AM  

Barriers and Enablers of AI Adoption 

The maturity levels presented in Table 9 reflect not only 

technological readiness but also the interplay of regulatory, 

workforce, economic, and integration factors that either 

accelerate or hinder practical adoption: 

• Regulatory challenge. Existing AI guidelines (FAA and 

EASA) and many research papers highlight the 

compliance complexities and necessities for 

standardized AI deployment frameworks (EASA, 2023; 

FAA, 2024).  The challenge lies in balancing AI system 

explainability with regulatory transparency demands, 

while the opportunity exists in developing AI systems 

that can provide auditable decision trails. 

• Workforce challenge. Re-training maintenance 

personnel represents a significant organizational 

challenge (IATA, 2025). Conversely, adoption of 

modern AI-based digital representation technologies 

creates opportunities for workforce upskilling and new 

job categories in AI-augmented maintenance. 

• Economic challenge. Organizations face significant 

upfront investments in AI infrastructure and data 

systems. However, industry reports (e.g., results of 

Delta’s advanced predictive engine program (Delta Air 

Lines, 2024)) demonstrate substantial return on 

investments through reduced unscheduled maintenance, 

optimized parts inventory, and extended component 

lifecycles. The challenge involves justifying initial 

investment against long-term operational savings. 

• Integration challenge. AM organizations typically 

operate with established legacy systems and processes. 

The operational challenge involves integrating AI 

solutions with existing maintenance management 

systems and enterprise resource planning platforms 

without disrupting critical operations(Credence 

Research Europe, 2025) 

LKB systems achieve high maturity largely because they 

align with existing regulatory frameworks. The FAA and 

EASA strongly regulate all maintenance processes, and 

transparency and interpretability of knowledge-based 

systems make them attractive for compliance documentation. 

However, these systems are known as too expensive to 

maintain, creating an economic barrier that limited their 

expansion despite regulatory acceptance. The workforce 

enabler is strong here as technicians can understand, trust, 

and follow rule-based recommendations, facilitating 

adoption. The recent publications reflect the general trend 

toward explainability in AI, suggesting that hybrid 

approaches combining LKB transparency with ML 

performance may overcome maintenance cost barriers. 

Predictive ML for RUL and fault prediction and computer 

vision-based visual inspection are currently associated with 

selective use, constrained primarily by data availability and 

integration challenges.  Successful deployment of these 

systems requires careful integration with existing predictive 

maintenance and inspection workflows. The barrier here is 

less about technology capability and more about operational 

logistics, including standardizing data pipelines, validating 

models across application types, and establishing regulatory 

acceptance protocols. AI-based visual inspection 

demonstrates the highest short-term promise for 

advancement within the next 2-5 years. The technology 

includes well-established model architectures (e.g., LSTM, 

CNN), available data from maintenance operations, and clear 

return on investments through maintenance costs and labor 

cost reduction. The progression appears achievable as 

regulatory frameworks increasingly accommodate AI 

systems, and pre-trained models reduce development. 

RL remains at low maturity primarily due to regulatory and 

safety concerns. RL agents learn through interaction with 

environments and receiving penalties, but AM cannot afford 

trial-and-error learning in operational contexts. The barrier is 

fundamental: safety-critical systems require deterministic, 

explainable decisions. The long-term track for RL adoption 

likely involves hybrid architectures that combine domain 

knowledge from LKB components and applied in non-safety-

critical maintenance tasks. We foresee a 5–7-year timeline for 

meaningful maturity advancement of RL. 

Digital representation technologies also face integration 

complexity as their primary barrier. AI technologies, utilized 

for internal implementation of digital twins, require stable 

data flow from physical assets to digital models. The 

economic enabler is substantial but implementation costs and 

data infrastructure requirements are significant. Integration 

of health management into newly designed aircraft provided 

capabilities required for transformation, suggesting that 

enablers strengthen for newer aircraft while legacy fleet 

integration remains a barrier. 

Summary 

Seven key findings and their potential implications are 

summarized in Table 10.  
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# Key finding Description Potential Implications 

1 Publications in 

multidisciplinary journals 

The majority of papers are published 

not in aviation-specific journals, but in 

multidisciplinary journals 

Researchers and practitioners who focus on emerging AI 

techniques in AM should monitor multidisciplinary 

journals. Applying modern AI-based assistants for 

publication monitoring becomes more important. 

2 Rise of Deep Learning The explosive growth of DL 

applications in AM, especially CNN 

and LSTM 

Researchers and practitioners should develop expertise in 

Deep Learning (DL) architectures such as CNNs and 

LSTMs, as they are becoming integral to AM. 

3 Speed of adoption of new 

AI models 

It typically takes 4-5 years for the 

adoption of new AI models in AM 

research practice 

Collaboration between academia and industry should be 

accelerated to shorten the gap between AI research 

breakthroughs and their practical implementation in AM. 

4 Steady importance of 

conventional machine 

learning 

The “conventional” machine-learning 

models (FFNN, SVR, DT, RF) 

demonstrate steady utility in aircraft 

maintenance.  

Training programs for AM professionals should include 

case studies and practical applications of ML in diagnostics, 

predictive maintenance, and fault detection. 

5 AI importance in MRO Intensive research on AI applications 

in MRO processes like fault diagnosis, 

isolation, and analysis. 

Complex relationships between aircraft systems made fault 

diagnosis much more difficult for technicians using 

traditional methods. AI-focused workforce training and 

development is a critical factor in realizing the potential of 

AI technologies in MRO. 

6 Dominant AI application 

areas 

Prognostic and Predictive 

Maintenance stand out as the most 

published topics. Their dominance 

highlights the importance of AI for 

these proactive strategies for ensuring 

system reliability and reducing 

downtime. 

FAA and EASA strongly regulate maintenance processes, 

thus, implementing AI will require a huge effort from the 

industry to adapt regulatory orders to align with new 

technologies. 

7 AI expansion in Health 

Management / 

Monitoring 

AI provides a shorter path to expand 

condition-monitoring applications for 

real-time assessment and immediate 

feedback on system health. 

AI will support and stimulate a switch to proactive 

strategies in AM practice. 

Table 10. Key findings and their implications  

6. CONCLUSION  

This systematic literature review highlights how modern AI 

technologies are applied in the research and practice of AM. 

It indicates key trends, research gaps, and promising future 

directions in the application of AI to AM processes. AI 

techniques are already widely applied and their roles in AM 

are increasingly significant. Deep learning demonstrates 

great potential in predicting remaining useful life, diagnosing 

faults, and enabling predictive maintenance. Meanwhile, 

traditional ML models and knowledge-based systems remain 

versatile tools for solving various AM challenges. 

The analysis of publication trends reveals steady growth in 

AI research within AM, with a notable increase in studies 

since 2018. This recent surge suggests a move toward more 

impactful, practical applications. One of the critical 

challenges is making AI models more explainable, 

particularly in fault diagnosis, where understanding the 

reasons behind system faults is crucial. While predictive 

maintenance for engines is well-studied, areas like airframes 

and auxiliary systems receive less attention. Emerging 

technologies like digital twins and augmented reality also 

show potential, though their use in AM is still in the early 

stages. Additionally, the role of AI in training maintenance 

engineers is underexplored.  

This review underlines the importance of the collaboration of 

AI and AM specialists to address these challenges and unlock 

the full potential of AI in AM. Future research should 

prioritize improving AI explainability, expanding 

applications to less-studied areas, and integrating AI into 

cutting-edge technologies like digital twins. 
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