Artificial Intelligence Technologies for Aircraft Maintenance:
A Systematic Literature Review

Dmitry Pavlyuk', Iyad Alomar?

L2 Transport and Telecommunication Institute, Lauvas 2, Riga, LV-1019, Latvia

Dmitry. Pavlyuk@tsi.lv
Alomar I@tsi.lv

ABSTRACT

Effective aircraft maintenance is crucial in ensuring safety,
reliability, and cost-effectiveness in the aviation industry.
Recent research and industry developments in artificial
intelligence (AI) raise the potential to transform various
aspects of aircraft maintenance, including predictive
maintenance, fault diagnosis, and aircraft health monitoring
and management. This paper presents a systematic literature
review of Al technologies such as Automated Reasoning and
Deep Learning in aircraft maintenance, highlighting its
challenges and prospects. An extensive literature search
resulted in a final dataset of 696 publications, covering the
40-years period from 1984 till 2024 and describing Al
applications in airworthiness management, aircraft health
monitoring, and maintenance, repair, and overhaul
operations. These publications were analyzed to identify key
Al technologies and related aircraft maintenance processes,
identifying trends, popular research venues, and
underexplored areas. The review concludes with insights into
Al adoption in aircraft maintenance and its potential
implications for researchers, practitioners, educators, and
other stakeholders.

1. INTRODUCTION

Strong and strict safety regulations, high operational costs,
and the crucial importance of timely maintenance are the
essential features of Aircraft Maintenance (AM) processes.
Regular AM practices often rely on scheduled inspections,
which are planned in operator-approved maintenance
programs and maintenance planning documents and are
frequently based on the reactive repair strategy. This strategy
can lead to inefficiencies, downtime, and increased
operational costs. However, with the emergence of artificial
intelligence (AI) technologies, there is a potential shift
towards predictive and proactive maintenance strategies,
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aimed at minimizing downtime, reducing maintenance
operation costs, and enhancing safety. AM is experiencing a
revolutionary transformation with the adoption of Al for
predictive maintenance (PdM). PdM utilizes advanced
technologies, such as data analytics, machine learning, and
sensor-based monitoring, to predict potential equipment
failures before they occur (Dibsdale, 2020). The vast amount
of data generated by numerous sensors embedded in aircraft
components has made predictive maintenance one of the
most advanced strategies. Analysis of this data using modern
Al techniques such as machine learning algorithms has
significantly enhanced maintenance reliability and improved
its cost efficiency (Mallioris et al., 2024). Although the
predictive strategy and health management are widely
considered beneficial, their efficiency highly relies on data
analysis techniques. Thus, Al advances such as deep learning
models and computer vision algorithms have a huge potential
for aircraft maintenance (Ranasinghe et al., 2022).

Due to the high research attention to the application of Al in
aircraft maintenance, the number of related publications has
significantly grown. At the same time, a comprehensive
understanding of Al applications across AM processes and
challenges remains lacking. Existing reviews are often
limited in scope, focusing on specific Al technologies,
subdomains, or methodologies without providing a holistic
view of the field. This creates a critical need for systematic
literature reviews that consolidate knowledge, identify
emerging trends, and highlight research gaps to guide future
studies. This review addresses these needs by analyzing Al
technologies applied in AM. By examining a large
systematically selected representative set of publications, this
study aims to answer the following research questions:

e RQ1: What are the emerging Al technologies currently
being explored in AM research and practice?

e RQ2: How has the application of Al in AM evolved
historically from industrial operations and technological
progress prospectives, and what are the current trends?

e RQ3: In which specific AM processes have Al
technologies been successfully applied?
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We provide a structured synthesis of Al applications in AM,
offering insights into the historical evolution, current state,
and future directions of AI technologies’ adoption for
ensuring aviation safety and reliability.

2. RESEARCH SCOPE AND RATIONALE

2.1. Aircraft Maintenance Scope

Aircraft maintenance is a complex and highly regulated
technical activity that includes servicing, inspection, testing,
repair, and overhaul or modification activities on every
aircraft in service. AM processes are affected by the
maintenance strategies that evolved from reactive to
proactive and predictive. Table 1 represents the evolution of
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Fig. 1. Comparison of AM strategies (Tchakoua et al., 2014)

maintenance strategies from reactive to predictive
maintenance (Kabashkin et al., 2025).
Strategy | Principle Training and | Investment
competence
Reactive | Waiting for Required a No specific
failure, then lower level of investment is
repair competence required
and smaller
training
Proactive | Looking for Required An average
faults and specific level of
removing them | knowledge and | investment is
to improve a good required
performance understanding
Predictive | Using sensor Required deep | A high level
data and data understanding of
analysis and a higher investment is
techniques to level of required
forecast the competence
aircraft
reliability

Table 1. Comparison of the AM strategies

The strategy employed by operators significantly influences
the number of failures and the maintenance cost (Fig. 1). The
cost optimization challenge has driven the aviation industry’s
increasing interest in Al-powered predictive maintenance
solutions. Applying Al-based algorithms to analyze sensor
data, maintenance logs, and operational parameters, airlines
can transition from traditional calendar-based maintenance
schedules to condition-based and predictive maintenance
strategies. This shift not only reduces maintenance costs but
also improves aircraft availability, enhances safety outcomes,
and supports regulatory compliance — factors that explain the
exponential growth in Al research for aviation maintenance
applications observed in recent years. Going deeper into the
AM processes, the three main strategies mentioned above are
based on different maintenance philosophies (IATA, 2022):
Hard Time (HT), On-Condition (OC), and Condition
Monitoring (CM). Table 2 summarizes these philosophies
(Kinnison & Siddiqui, 2013).

Philosophy Description Example
components
Hard Time A preventative process Landing gear,
whereby the maintenance emergency
actions carried out at time- equipment
related periods limit the
known deterioration of an
item to an acceptable level.
The prescribed action
normally includes servicing,
overhaul, and replacement.
On- A preventative process, but Lubrication
Condition the inspection actions are and oil
carried out at specified samples,
periods to determine whether | magnetic chip
it can continue in service. The | detector
fundamental purpose of the debris
process is to remove an item
before it fails in service.
Condition A proactive/predictive Engine Health
Monitoring process where data collection | Monitoring
and analysis allow the (EHM) and
portrayal of information upon | Structural
which judgments relating to Health
the safe condition of the Monitoring
airplane can be made. Itis a (SHM)
statistically controlled
process.

Table 2. Comparison of AM philosophies

The following key players implement the maintenance
strategies and philosophies:

e Continuing Airworthiness Management Organizations
(CAWM): CAWM’s main function is to maintain the
airworthiness of the aircraft by monitoring the technical
records, reliability reports, results of OC analysis,
prognostic trend analysis, and control of remaining
useful life (RUL).
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e Maintenance Repair and Overhaul / Operations
Organizations (MRO): MRO holds the ultimate
responsibility for the diagnostic, detection, and analysis
of the failures. In certain unusual cases, MRO can
request assistance from CAWM to complete the
assessment.

e Health Monitoring/Management: EHM and SHM are
engine and structural condition control, using a variety
of advanced sensor technology and flight data
parameters control to reduce/avoid accidental failure of
the aircraft and its systems.

The AM process classification used in this review is based on
the involved players and related AM processes.

2.2. Artificial Intelligence Scope

Recently, the European Aviation Safety Agency (EASA)
proposed a roadmap for addressing the challenges and
opportunities of Al in aviation and highlighted the growing
importance of Al for aircraft maintenance processes. The
scope of Al technologies, covered by the EASA roadmayp, is
presented in Fig. 2 and includes logic- and knowledge-based
(LKB) techniques, statistical approaches, and machine
learning (ML) and deep learning (DL) algorithms.

Scope of technology covered by Al Roadmap 2.0

Artificial intelligence (Al)

Technology that can, for a given set of human-defined objectives, generate
outputs such as content, predictions, recommendations or decisions influencing

the environments they interact with

Machine learning (ML)
E.g. regression
analysis
or clustering

Algorithms whose performance
improves as they are exposed to
data. This includes supervised,
unsupervised and reinforcement
learning techniques

Deep learning (DL)
E.g. computer
vision (CNNs)
or natural
language processing
(RNNs)

Subset of machine
learning in which
multilayered neural
networks learn from
vast amounts of data

Statistical approaches

Traditional statistical approaches where a series of predetermined equations
are used in order to find out how to fit the data. This includes Bayesian
estimation, search and optimisation methods.

Logic- and knowledge-based
(LKB) approaches

Approach for solving problems
by drawing inferences from a

logic or knowledge base. This E.g. expert
includes knowledge systems
representation, inductive (logic)
programming, knowledge
bases, inference and deductive
engines, (symbolic) reasoning
and expert systems.
E.g. neuro-
symbolic
reasoning

E.g. Bayesian
estimation

Fig. 2. Technologies enclosed by EASA Al Road map (EASA, 2023)

The presented EASA roadmap classifies the Al technologies
following the proposal for the EU Al Act (European
Commission, 2021), which differs from the final version of
the EU AI Act entered into force in 2024 (European
Commission, 2024). The EU Al Act only distinguishes
ML/DL and LKB approaches, and this review will follow the
latest Act’s Al scope definition.

2.3. Research Rationale

For identifying the rationale of the systematic literature
review (SLR) on Al in aircraft maintenance, the authors
conducted a preliminary literature search for review papers,
focused on artificial intelligence in aircraft engineering. The
initial selection from Scopus, ScienceDirect, and IEEE
Xplore was manually reviewed and filtered, resulting in a
sample of 26 review papers. These papers were published
from 2012 to 2024 (7 of them — in 2024), covering different

aspects of Al in aircraft maintenance. The review papers were
classified by:

e Subarea of aircraft maintenance — PdM, visual

inspection, SHM, etc.
e Review domain — AM-focused or multi-domain.
e Review focus — methods, applications, etc.

e Type —systematic, SLR (e.g., conducted under PRISMA
statement (Page et al., 2021)) or not.

The classification of existing literature reviews is presented
in Table 3. Seven of the 25 existing reviews (e.g., (Kwakye
et al., 2024; Rodriguez et al., 2024)) mention Al in the recent
trends and provide a limited overview of related
technologies. Another subset of the reviews provides
information about AI technologies as a part of method
descriptions in different subareas — predictive maintenance
(Xu et al., 2023; Zuo et al., 2012), visual inspection (Bdyiik
et al., 2021; Yasuda et al., 2022), spare parts logistics (Feng
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et al.,, 2021), resource planning (del Olmo & Domingo,
2022), and fault diagnosis (Liu et al., 2024). Four reviews are
directly focused on specific Al branches — machine learning

(Le Clainche et al., 2023; J. Li et al., 2023) and deep learning
(Cha et al., 2024; Y.-F. Li et al., 2024). Also, it is worth
noting that only 5 reviews can be classified as systematic.

Review paper AM Subarea Review domain | Review focus SLR
AM subarea: PdM
Zuo et al. (2012) PdM AM-focused Methods No
Khan et al. (2021) PdM AM-focused Recent trends No
Karaoglu et al. (2022) PdM AM-focused Methods Yes
Bisanti et al. (2023) PdM AM-focused Digital twins Yes
Xu et al. (2023) PdM AM-focused Methods No
Zhong et al. (2023) PdM Multi-domain Recent trends No
Mallioris et al. (2024) PdM Multi-domain Applications Yes
AM subarea: Visual Inspection
Boyiik et al. (2021) Visual inspection AM-focused Methods No
Yasuda et al. (2022) Visual inspection AM-focused Methods Yes
Rodriguez et al. (2024) Visual inspection Multi-domain Recent trends No
AM subarea: Fault Diagnosis
Lietal. (2023) Fault diagnosis AM-focused Machine learning No
Tang et al. (2023) Fault diagnosis AM-focused Knowledge graphs No
Liu et al. (2024) Fault diagnosis AM-focused Methods No
AM subarea: SHM
Ranasinghe et al. (2022) SHM AM-focused Recent trends No
Khalid et al. (2023) SHM AM-focused Recent trends No
Kwakye et al. (2024) SHM AM-focused Recent trends No
Cha et al. (2024) SHM Multi-domain Deep learning No
Li et al. (2024) SHM Multi-domain Deep learning, GPT No
AM subarea: Other operations
Agustian and Pratama (2024) Wide-scope AM-focused Methods, data sources Yes
Palmarini et al. (2018) Operations Multi-domain Augmented reality Yes
Ezhilarasu et al. (2019) Health management AM-focused Reasoning No
Feng et al. (2021) Spare parts logistics AM-focused Methods No
del Olmo and Domingo (2022) Resource planning AM-focused Methods No
Le Clainche et al. (2023) Aircraft performance AM-focused Machine learning No
Raoofi and Yasar (2023) Airworthiness AM-focused Recent trends No
Table 3. Review papers
Summarizing the analysis of the existing reviews, we aviation maintenance education and  professional

conclude the absence of a systematic literature review that
covers all aspects of Al applications in the area of aircraft
technical maintenance and continuing airworthiness
processes. Considering the persistent importance of aviation
safety and reliability improvement and special attention to
the preparation and certification of aviation maintenance
engineers, a comprehensive understanding of the landscape
of related Al technologies becomes critically important. The
wide scope of the review will make it valuable for informing
research. First, it is essential for educational purposes,
particularly for researchers entering this interdisciplinary
field. Aircraft maintenance encompasses multiple domains,
each potentially benefiting from different AI approaches.
Second, the wide scope enables trend prediction and
identification of emerging patterns that would be invisible in
narrowly focused reviews. A broad review provides
researchers with the conceptual map that is necessary to
understand how these domains interconnect and where Al
applications have emerged, addressing a critical gap in

development. These conclusions provide a clear rationale for
this wide-scope review.

The added value of this review is strengthened by its
systematic approach to the hierarchical classification of
existing studies according to Al technologies and AM
operations, rather than merely enumerating them. This
hierarchical classification provides readers with a
comprehensive overview of the broader landscape of Al
technologies and AM operations.

3. LITERATURE SELECTION

3.1. Methodology of Literature Review

Our SLR was conducted following the PRISMA 2020
Statement (Page et al., 2021) and consists of the stages,
presented in Fig. 3. The literature search was performed in
two digital databases: Scopus and IEEE Xplore. These
databases contain a good index of publications in engineering
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science, and, although some papers can be missed, we believe
that our search is representative of the overall trends and
popularity of Al technologies.

The exclusion of gray literature — industry technical reports,
white papers, government publications, and proprietary
research from aviation manufacturers and maintenance
organizations — may limit the completeness of our findings.
Given that Al implementation in aviation maintenance often
occurs through industry-led initiatives and practical
applications documented in non-peer-reviewed sources, this
exclusion potentially overlooks valuable insights from
practitioners and industry experts. While this limitation

aligns with the PRISMA methodology's emphasis on
systematic and replicable search procedures, it should be
acknowledged that the rapidly evolving nature of Al
applications in aviation maintenance may be better reflected
in gray literature sources that provide more immediate
documentation of technological developments and real-world
implementations. Future research could benefit from
incorporating a complementary gray literature search to
provide a more complete picture of Al adoption and
effectiveness in aviation maintenance practices.

Paper Search and Selection

Repository Selection

Research Questions { Search Strategy

.

Scopus®
2276 papers

/ Paper Synthesis \

] [ IEEE Xplore:

—
1136 papers

l

Manual labelling with
Al technology and AM area

Keywords Definition

[
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2765 papers J Statistical Analysis:

Defnmon

Python

[ Visualization: J

k.
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[ )
[ J
[ Search Query J
| |
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Review

2
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696 papers / K [ ] /

Fig. 3. Main stages of the literature review

The search keywords were defined to cover the research topic
as broadly as possible:

e Aviation maintenance keywords: “maintenance” AND
("aircraft" OR "aviation"). The scope will cover papers
on aviation-assisted maintenance (like maintenance of
bridges, using data from drones), which will be filtered
out manually.

e Artificial intelligence keywords: “artificial intelligence”,

“computer vision”, “machine learning”, “deep learning”,
“neural network”, “knowledge represent®”,
“symbolic*”, “reinforcement learning”, “generative”,

“statistic*”, “data mining”, “intelligent*”. The scope
will cover most techniques, commonly associated with

artificial intelligence. The inclusion of the “statistical”
approaches leads to a large number of papers that utilize
traditional statistical analysis and will be filtered out
manually.

After preliminary searches, it was decided to add the
exclusion keywords “solar” and “pavement” to automatically
filter out papers on aviation-assisted maintenance of solar
power plants and road pavement states. Additionally, the
search was limited to papers in English and original studies
(surveys, systematic literature reviews, and mappings were
excluded). The resulting queries for Scopus and IEEE Xplore
databases are presented in Table 4.

Database Query Papers

Scopus TITLE-ABS-KEY ( 2276
("aircraft" OR "aviation") AND "maintenance" AND ("artificial intelligence" OR "computer
vision" OR "machine learning" OR "deep learning" OR "neural network" OR "knowledge
represent*" OR "symbolic*" OR "reinforcement learning" OR "generative" OR "statistic*" OR
"data mining" OR "intelligent*")) AND NOT "solar" AND NOT "pavement" AND
(LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (DOCTYPE, "cp") OR LIMIT-TO
(DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "ch"))

IEEE Xplore ("aircraft" OR "aviation") AND "maintenance" AND ("artificial intelligence" OR "computer 1136
vision" OR "machine learning" OR "deep learning" OR "neural network" OR "knowledge
represent*" OR "symbolic*" OR "reinforcement learning" OR "generative" OR "statistic*" OR
"data mining" OR "intelligent*") AND NOT "solar" NOT "pavement"

Table 4. Queries on digital databases



The literature search was conducted on January 1, 2025, and
included all publications until 2024 (several -early
publications of 2025 were excluded). Bibliographic
information, including abstracts, of all papers was extracted
from Scopus and IEEE Xplore, and duplicates were removed,
resulting in 2765 papers. Additionally, one retracted paper
was removed from the selection.

The initial queries are designed to minimize the probability
of false negatives (automated exclusion of relevant papers),
which increases the likelihood of false positives (automated
inclusion of irrelevant papers). Thus, the abstract-based
exclusion criteria play an important role. The exclusion
criteria are summarized in Table 5.

# | Exclusion criteria description

Papers that are excluded as not directly related to the scope of
aircraft maintenance, in particular, papers focused on:

AM1 - maintenance of non-aircraft objects (e.g., wind
turbines, power plants, constructions, etc.)

AM2 - maintenance of non-aircraft specific components
(e.g., batteries)

AM3 - software development

AM4 - workforce optimization

AMS - spare parts logistics

AM6 - maintenance process scheduling, routing, or
other type of optimization

AM7 - aircraft design, testing, or improvement

AMS - behavior analysis of aircraft maintenance
engineers, including pose or movement
recognition

AM9 - health of aircraft maintenance engineers

AMI10 |-  regulation compliance

Papers that are excluded as not directly related to the scope of
artificial intelligence, in particular, papers focused on:

All - application of methodologies, not associated with
artificial intelligence (expert-based decision-
making, classical and evolutionary optimization,
etc.)

Al2 - exploratory statistical data analysis

Al3 - statistical inference (point and interval parameter
estimation, hypothesis testing)

A4 - statistical estimation of trends

Al5 - statistical models, not focused on prediction,
decision-making, or reasoning

Table 5. Exclusion criteria

The exclusion process was independently conducted by two
authors and all disparities were discussed and resolved. It was
decided to keep papers on digital twins and augmented reality
(AR) within the scope of the review, even if exact Al-based
techniques are not mentioned in their abstracts. Frequently,
digital twins and AR implementation require Al technologies
under the hood. A comprehensive review of various aspects
of digital twins in aircraft maintenance is presented by Bisanti
et al. (2023).

Following the refined exclusion rules, the selection of 2765
papers was reduced to 696 papers, related to artificial
intelligence in aviation maintenance.

3.2. Preliminary Results

The number of publications by year is presented in Fig. 4.
The plot confirms the emerging interest in applying artificial
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Fig. 4. Dynamics of related publications
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From 1984 to 2014, the overall number of publications
remained relatively low. However, a noticeable increase
began in 2016 and accelerated after 2018, continuing to 2024.
As demonstrated in subsequent sections, this acceleration
corresponds to the raise of deep learning (DL) applications.
The beginning of the DL era is commonly attributed to 2012,
when several critical factors converged: algorithmic
advances, enhanced computational power, and the maturation
of big data technologies. However, the adoption of emerging
technologies varies significantly across industries.
Furthermore, scientific publications typically have temporal
delays due to the conservative peer-review processes of top
journals and conferences. Consequently, within the aviation
maintenance domain, the substantial increase in publications
employing intensive DL methodologies occurred in 2018. To
accurately capture this shift in our subsequent analysis, we
established a temporal division comprising two distinct

periods: the Pre-DL Era (1984-2017) and the DL Era (2018-
ongoing).

The overall growth is supplemented by the growing number
of journal publications, which can be interpreted as a gradual
shift from novel proposals, presented as conference papers,
to more comprehensive and practically significant studies
published in journals.

Additionally, a reduction in publications in 2021 is observed.
This reduction can be associated with the negative effects of
the COVID-19 pandemic on the aviation industry, but this
hypothesis requires additional validation.

The most popular publication venues are presented in Table
6. Some inferences from popular journals and conferences are
presented in the Discussion section.

Journals Publications Conferences Conference papers

IEEE Access 14 SPIE International Society for 18
Optical Engineering

Reliability Engineering and System 13 AUTOTESTCON 11

Safety

Applied Sciences (Switzerland) 10 ASME Turbo Expo 10

Aerospace 9 IEEE Aerospace Conference 10

IEEE Transactions on Instrumentation 6 AIAA SciTech Forum 10

and Measurement

Expert Systems with Applications 6 Annual Conference of Prognostics 7
and Health Management Society

IEEE Sensors 6 Annual Reliability and 6
Maintainability Symposium

Measurement Science and Technology 6 IEEE International Conference on 6
Prognostics and Health Management

Mechanical Systems and Signal 6 International Workshop on 6

Processing Structural Health Monitoring

Table 6. Popular publication venues

The overall distribution of citations of selected bibliographic
sources is regular and follows Zipf’s law (an exponential
distribution with few frequent and many rare items
(Fedorowicz, 1982)) for citation frequencies with an
estimated exponent of 1.33 (1.59 for conference papers and

1.18 for journal articles) for cited papers. The overall share
of cited papers is relatively small and equals 45%, which can
be explained by many recent publications with a small
number of citations. The three most cited publications are
presented in Table 7.

Authors Title Year | Publication venue Citations

Wu et al. (2018) Remaining useful life estimation of engineered systems | 2018 Neurocomputing 648
using vanilla LSTM neural networks

Tamilselvan & Failure diagnosis using deep belief learning-based 2013 Reliability Engineering and 638

Wang (2013) health state classification System Safety

Yuan et al. (2016) Fault diagnosis and remaining useful life estimation of | 2016 IEEE/CSAA Conference on 366
aero engine using LSTM neural network Aircraft Utility Systems

Table 7. Most cited papers

As anticipated, the first applications of Al algorithms
received significant attention and were frequently cited (e.g.,
Yuan et al.(2016) and Wu et al. (2018) with their first
application of LSTM in aircraft maintenance). Thus, the
recent Al technologies that have not been applied in aircraft

maintenance yet are presented in the Discussion section and
can be mentioned as potential research directions.

The preliminary analysis of the paper database was
conducted using title-and abstract-based clustering (k-means
algorithm, VOSViewer). The resulting clusters are presented
in Fig. 5.

International Journal of Prognostics and Health Management, ISSN 2153-2648, 2026 7



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Three main clusters can be associated with:
o fault identification and knowledge-based systems — red
cluster (“fault”, ”knowledge”, “tool”, “expert system’)

e inspection and structural health monitoring — blue cluster

CEINNT3

(“structure”, “damage”, “inspection”, “detection”)

e predictive methodologies — green cluster (“RUL”,

9

“prediction”, “dataset”, “feature”, “prognostic”)

composite material

L
structural Ig#h monitoring novel method

SW‘ failure mode

In terms of AI, knowledge-based technologies (expert
systems, case-based reasoning) are concentrated in the red
cluster (faulf), machine-learning technologies (deep learning,
neural networks) in the green cluster (RUL), and
convolutional neural networks (CNN) are the only
representatives of Al near the blue cluster (Inspection).
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Fig. 5. Publication clusters

4. EMPIRICAL RESULTS

4.1. Classification of publications

The next step in the literature analysis involved manually
labeling the papers. This labeling process was based on the
titles and abstracts of the publications and was conducted
along two dimensions:

o utilized Al technology.

e related AM processes.

Within every dimension, the bottom-up approach was applied
— the paper was labeled by the most specific technology (e.g.,
You Only Look Once version 8 network), and further
grouped into more general classes (e.g., CNN-based models).
The classes in both dimensions are not mutually exclusive, so
one paper could be associated with different classes if it
utilizes several Al technologies or is related to several AM
processes. A class was included in the final hierarchy if it
contained at least three papers. The resulting hierarchies of
Al technologies and AM processes are presented in Table 8
(number of papers in each class is provided in brackets). The
hierarchies are visualized in Fig. 6 and Fig. 7.

Hierarchy of Al technologies

Hierarchy of AM processes

1. Logic/Knowledge (145)

1.1. Knowledge-based (65)
1.1.1. Expert systems (28)
1.1.2. Semantic Models (3)

1.2. Reasoning (78)
1.2.1. Case-based Reasoning (13)
1.2.2. Bayesian Reasoning (25)

1.2.2.1. Bayesian Belief Network (3)

1.2.3. Fuzzy Logic (29)
1.2.4. Markov Models (8)

4. Continuing Airworthiness Management, CAWM (300)
4.1. Condition Monitoring (27)
4.2.  On Condition (10)
4.3. Residual useful life (158)
4.4. Prognostic (80)
4.4.1. Prognostic: Engine (46)
4.4.2. Prognostic: Airframe (16)
4.4.3. Prognostic: Aircraft Systems (15)
4.5. Reliability (42)
4.6. Maintenance Optimization (35)
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Hierarchy of Al technologies

Hierarchy of AM processes

2. Machine Learning, ML (515)
2.1. Conventional ML (234)
2.1.1. Feed-forward neural network, FFNN (131)
2.1.2. Support vector machine, SVM (42)
2.1.3. Random Forest (13)
2.1.4. Decision Tree (16)
2.1.5. Self-organizing map, SOM (6)
2.2. Deep Learning (297)
2.2.1. Convolutional neural network (95)
2.2.1.1. You Only Look Once, YOLO (11)
2.2.2. Generative adversarial network, GAN (13)
2.2.3. Recurrent neural network, RNN (112)
2.2.3.1. Long short-term memory neural network, LSTM (89)
2.2.3.2. Gated recurrent unit, GRU (18)
2.2.4. Deep belief network, DBN (9)
2.2.5. Autoencoder (25)
2.2.6. Transformer (17)
2.2.7. Transfer learning (6)
2.2.8. Ensemble model (31)
2.2.8.1. Boosting (21)
2.3. Reinforcement learning (10)
3. Digital Representation Technologies (33)
3.1. Augmented Reality (10)
3.2. Digital Twin (23)

5. Maintenance, Repair, and Overhaul (208)
5.1. Fault detection (72)
5.2. Fault Analysis (34)
5.2.1. Failure analysis: Engine (10)
5.2.2. Failure Analysis: Airframe (3)
5.2.3. Failure Analysis: Aircraft Systems (8)
5.3. Fault Diagnosis (118)
5.3.1. Failure Diagnosis: Engine (38)
5.3.2. Failure Diagnosis: Airframe (16)
5.3.3. Failure Diagnosis: Aircraft Systems (31)
5.4. Fault Isolation (7)
6.Health Monitoring / Management (257)
6.1. Health Monitoring: Engine (57)
6.2. Health Management Structure (73)
6.3. Predictive maintenance, PdM (133)
6.3.1. PdM: Engine (71)
6.3.2. PdM: Airframe (27)
6.3.3. PdM: Aircraft Systems (26)
7. Training (14)

Table 8. Hierarchy of publication classes

Note that the sum of papers across subcategories does not
equal the total in higher-level categories due to two factors:
(1) subcategories are not mutually exclusive, allowing papers
to be classified under multiple subcategories, and (2)
subcategories with fewer than three papers were excluded
from the analysis. For instance, the Logic/Knowledge
category contains 145 papers total. Within this category, the
Knowledge-based subcategory includes 65 papers and the
Reasoning subcategory includes 78 papers. The distribution
is as follows: 62 papers are exclusively Knowledge-based, 75
are exclusively Reasoning, 3 papers belong to both
subcategories, and 5 papers utilize specific approaches not
covered by the included subcategories. Similarly, the
Machine Learning category encompasses 515 papers,
distributed among subcategories as follows: 234 papers are
classified as Conventional Machine Learning, 297 as Deep
Learning, and 10 as Reinforcement Learning. Twenty-nine
papers employ both conventional and deep learning
techniques and are therefore included in both relevant
subcategories. The primary objective of Table 8 and Fig. 6-7
is to present the total number of papers within each
subcategory. Thus, for clarity and simplicity, intersections
between subcategories are not explicitly represented in these
visualizations.

The first level of the hierarchy of Al technologies includes
Machine learning (ML), Logic- and Knowledge-based
(LKB) algorithms, and Digital Representation Technologies.
ML and LKB correspond to the classes of Al technologies,

defined in the EU AI Act. Digital Representation
Technologies aggregate papers on Digital twins and
Augmented/Virtual reality, frequently requiring Al
technologies such as computer vision, generative Al, and
optimization algorithms. The ML class of publications is
divided to Conventional ML (FFNN, SVM, SOM, DT, RF)
and Deep Learning (all multi-layer ANN architectures such
as CNN, LSTM, and transformers). The LKB class of
publications is split into knowledge-based models such as
expert systems and different reasoning approaches such as
case-based and Bayesian models. For the AM dimension,
CAWM accounts for 312 publications, with “Remaining
Useful Life” (169 publications) as the dominant subclass.
Other notable applications include “Prognostic” (81),
“Reliability” (42), and "Maintenance Optimization" (35).
MRO encompasses 224 publications and prioritizes
diagnostics and failure management. Fault diagnosis (127
papers), detection (74), and analysis (36) are the central
themes, with engines being the most analyzed aircraft
component. Health Management/Monitoring, comprising
273 publications, focuses on condition tracking through
“Engine Health Monitoring” (62), “Structure Health
Monitoring” (75), and broader predictive maintenance (142).
Predictive maintenance applications mostly focus on engines
with less emphasis on airframes, and systems. Training (14)
is the least explored application area, suggesting that Al
applications in training for aviation maintenance are still in
their early stages or represent a less prioritized area compared
to diagnostics and prognostics.
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4.2. Trend identification

The specific research question (RQ2) is associated with the
historical trends of Al technologies in aircraft maintenance.
Fig. 8 illustrates the trends in the application of second-level
Al technologies of the hierarchy, explained in Table 8, in
aircraft maintenance over the years. In the earlier decades,
knowledge-based systems and reasoning approaches
dominated, with relatively low annual publication counts.
From the mid-1990s onwards, conventional machine learning

began to grow steadily, and after 2015 there is a significant
increase in total publications, primarily driven by deep
learning. Digital representation technologies appear only in
recent years with comparatively lower counts. Overall, the
figure highlights a marked shift from knowledge-based
paradigms toward data-driven approaches, particularly deep
learning, accompanied by a rapid expansion of research
output.
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Fig. 9 illustrates the trends in the application of Al remaining useful life estimation, and fault diagnosis. Other
technologies for different AM processes. Early years show topics such as engine and structural health monitoring,
low publication counts with only sporadic contributions  maintenance optimization, and training appear more recently
across categories. From the mid-2000s onwards, the number ~ with smaller but growing contributions. Overall, we observe
of papers gradually increases, and after 2015 there is a surge, the rapid expansion and diversification of research in
particularly in condition monitoring, predictive maintenance, =~ maintenance and reliability over the past decade.
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4.3. Contingency tables

Finally, we obtained the crosstab results of the Al
technologies and AM processes to cover the research
question RQ3. The contingency tables of second-level classes
are visualized in Fig. 10. The sizes of the circles in Fig. 10
and the values inside represent the number of publications.

Colors represent a relationship between normalized row and
column share: red colors correspond to larger column share
(larger importance of the Al technology for a specific AM
process), blue colors correspond to larger row share (larger
focus of a specific Al technology on the AM process), violet
colors correspond to similar row and column share.
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Fig. 10. Contingency table of Al technologies and AM processes.

The largest violet circles correspond to Deep Learning,
particularly in RUL prediction (130), PdM (74), and Fault
Diagnosis (38). This indicates that DL plays a crucial and
highly targeted role in these areas. The large dark-red circle
for DL in “Fault Detection” (47) illustrates the high
importance of DL for this AM process.

Conventional ML has consistently large circles across several
research problems, particularly in PdM (53) and Fault
Detection (47). This suggests that conventional ML is a
versatile technology applicable to various AM problems.

Knowledge-based systems are used across many research
problems but with a smaller intensity. Larger blue circles
indicate the high focus of knowledge-based algorithms and
reasoning algorithms on Fault Diagnosis (21 and 29 papers
respectively), which may reflect the necessity of explainable
solutions for understanding and resolving system faults.

Digital Representation Technologies are applicable across
the AM processes, but their role is limited up to 2024.
5. DISCUSSION

The growing use of Al in research on aircraft maintenance is
evidenced by Fig. 4 and corresponds to the overall tendency

for successful Al applications. Further, we formulate several
more specific insights from the obtained results.

Multidisciplinary journals, domain-specific conferences

The only journal among the most popular publication venues
(Table 6) that is specifically focused on the aviation industry
is Aerospace. The other journals are multidisciplinary,
covering applications of Al technologies across various
domains ([EEE Access) or focusing on methodological
advancements  (Expert Systems with  Applications).
Potentially, this lack of specialization could create an
obstacle for access to recent Al advances for specialists,
working purely in aircraft maintenance. On the other hand,
the majority of conference publications are domain-specific
and focused on maintenance, prognostic, and health
management.

Fall and rise of knowledge-based technologies

Applications of Al technology classes (ML and LKB) in
aircraft maintenance correspond to the regular patterns of Al
development. Historically, knowledge-based expert systems
were the primary Al tool (Fig. 8), and, starting from Bedoya
and Keller (1984), several papers report about the successful
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application of expert systems in aircraft maintenance. Despite
the attractive properties of expert systems like transparency,
interpretability, and domain-specific precision, they were
widely acknowledged as too expensive to maintain. In the
history of Al the difficulties of expert system maintenance
led to the slowdown of their practical applications, frequently
referred to as one of Al winters (Wooldridge, 2021). The
same process is visible for Al use in aircraft maintenance. In
1990-2000 the interest within LKB was shifted to reasoning
techniques such as case-based reasoning (Magaldi, 1994) or
Bayesian reasoning (Allen, 1990), but remained low until
2023. Recently, the number of papers significantly increased
(10 papers from the logic/knowledge-based branch published
in 2023 and 11 — in 2024). We explain this growth with the
general trend toward explainability in Al, where researchers
try to better understand and explain processes inside the
“black box” of machine-learning models, providing more
interpretable results. Thus, several papers proposed a
combination of LKB and ML techniques (Meng et al., 2024),
raising interest in classical reasoning approaches. We expect
that this trend will continue in the next years.

Rise of deep learning

Deep learning (DL) techniques are rapidly coming into
practice in all areas, including aircraft maintenance.
Tamilselvan et al. publications (2012; 2013) were the first
applications of DL (more specifically, deep belief networks)
for aircraft engine health diagnosis, enabling further
applications and DL techniques and collecting more than 600
citations. Further, we observe (Fig. 8) the explosive growth
of DL applications in aircraft maintenance, resulting in 106
publications in 2024 (73% of all related papers, published in
2024). These research advances are expected to enable daily
use of DL tools.

Most popular models

Although there is evidence of applications of different types
of DL models in aircraft maintenance, two models can be
classified (Fig. 6) as the mainstream ones — convolutional
neural network, CNN (108 papers, 15.5% of all publications,
37 of them — in 2024), and long short-term memory neural
network, LSTM (98 papers, 14.0% of all publications, 28 of
them — in 2024).

CNNss are designed to adaptively learn spatial hierarchies of
features from input images through the use of convolutional
layers, which apply filters to capture local patterns like edges,
textures, and shapes. The structure of CNNs allows them to
excel at tasks like image classification and object detection,
by learning complex features at deeper layers. In aircraft
maintenance, CNNs are primarily used for visual inspection
tasks (Dogru et al., 2020) such as crack identification and
damage and corrosion detection. Although traditional CNNs
are mostly based on the processing of two-dimensional image
data, there are a couple of examples where CNNs are applied

for one-dimensional signal processing (Rajagopalan et al.,
2024) and text processing (F. Jiang et al., 2024).

LSTMs are a type of recurrent neural network architecture
designed to effectively learn and model sequences of data,
particularly when long-term dependencies are -crucial.
LSTMs use specialized memory cells with gates that control
the flow of information and allow LSTMs to retain or forget
information over long sequences, making them highly
effective for tasks like time-series prediction. In aircraft
maintenance, time-series prediction is usually associated
with RUL prediction, where LSTMs play the primary role
(Yuan et al., 2016).

CNN and LSTM models are considered workhorses in
aircraft maintenance, making it highly beneficial to
incorporate their foundational concepts into education and
training programs in this field.

Speed of adoption of new Al models

Although aircraft maintenance is widely acknowledged as a
very conservative process, the adoption of recent DL models
in related research is going relatively fast (Fig. 6). Generative
adversarial networks were introduced in 2014 and applied in
aircraft maintenance for the first time in 2019 (Ducoffe et al.,
2019), the YOLO architecture was introduced in 2016 and
applied in aircraft maintenance in 2020 (A. Jiang & Liu,
2020), transformers were introduced in 2018 and applied in
aircraft maintenance in 2022 (Yang et al., 2022), therefore it
typically takes 4-5 years for new Al model adoption. Thus,
we expect to see the application of MLP-Mixer (Tolstikhin et
al., 2021), normalizer-free networks (Brock et al., 2021), and
other modern architectures in aircraft maintenance shortly.

Another potential direction for growth is associated with
the application of pre-trained models. Transfer learning has
already been adopted in aircraft maintenance (Gong et al.,
2020), while other modern approaches like fine-tuning
foundation models have not been applied yet.

Weak reinforcement

Another class of Al technology, under-utilized in aircraft
maintenance, is reinforcement learning (10 papers, Fig. 6).
Reinforcement learning is a type of machine learning where
an agent learns to make decisions by interacting with an
environment and receiving rewards or penalties based on its
actions. These models are widely adopted for solving
scheduling and planning problems (including aircraft
maintenance, see exclusion criteria AM4 and AMS in Table
5), but are rarely applied to other maintenance tasks. Existing
examples (Lee & Mitici, 2023; Wei et al., 2024) suggest
the integration of reinforcement learning techniques with
regular maintenance tasks like RUL prediction to improve
their economic performance. Authors foresee the growth of
interest in the application of hybrid Al models with
reinforcement learning components.
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Steady utility of conventional machine-learning

Despite the explosive growth of DL models, the
“conventional” machine-learning models (feed-forward
neural networks, support vector machines, decision trees,
random forests, and self-organizing maps) demonstrate
steady utility in aircraft maintenance. The number of papers
has been stable over the last years (25 in 2022, 24 in 2023,
and 32 in 2024), which supports the status of conventional
ML models as well-established Al tools.

Emergence of digital representation technologies

We observe the growing links between digital representation
technologies (virtual reality, augmented reality, digital twins)
and Al tools. Although such digital technologies do not fall
into the primary scope of this review and are not specifically
covered by the literature search strategy, the number of
papers referring to Al technologies is significant (38 papers
overall, 13 in 2024). Usually, Al technologies like deep
learning or Bayesian reasoning are utilized for the internal
implementation of digital twins (Selvarajan et al., 2024; Zhou
& Dong, 2024), while computer vision-related techniques
(e.g., CNNs) are intensively applied for augmented reality
applications (Hu et al., 2023; D. Li et al., 2023).

Dominant AI application areas

Prognostic and Predictive Maintenance stand out as the most
published areas of Al applications, particularly in the last
decade. This trend indicates a prioritization of technologies
and methodologies that focus on preventing failures rather
than reacting to them. PdM utilizes Al algorithms to analyze
historical maintenance data, sensor readings, and other
relevant parameters to predict the likelihood of component
failures before they occur. Airlines and maintenance
providers can identify potential issues early on and
proactively prevent costly breakdowns and disruptions
(Bemani & Bjorsell, 2022; Dangut et al., 2021; Liao et al.,
2020). Al already plays a key role in PdM, assisting in
analyzing big datasets generated by aircraft systems and
equipment. Although Al use has a significant potential, this
implementation has significant challenges and requires
numerous considerations from the industry. One of the
important factors that must be considered is the regulatory
framework as all maintenance processes are strongly
regulated by the Federal Aviation Administration (FAA) and
EASA.

Al importance in MRO

Al-powered fault diagnosis systems employ advanced
algorithms to analyze sensor data and detect anomalies
indicative of potential faults or malfunctions in aircraft
systems. The number of reviewed publications focused on
MRO is surprisingly large — 224 papers (32% of all
publications). Many of these articles were published in 2023-
2024, thus, the citation rate is low at the review moment,
except for some articles such as (Zhang et al., 2020) and

(Bouarfa et al., 2020). In the last decade, aircraft construction
and design have been characterized by the essential
integration of electronics technology within
aircraft microgrids. This has led to complex relationships
between aircraft systems and made fault diagnosis much
more difficult for technicians using traditional methods.
Integration of health management into newly designed
aircraft provided a lot of capabilities required for
transformation from condition-based maintenance into
predictive maintenance (Li et al., 2023). This trend highlights
the recognition of workforce development as a critical factor
in realizing the potential of Al technologies in MRO.

Fault Detection: Steady but Secondary Focus

While the use of Al in processes like fault detection and
isolation has shown steady growth over the years, they
remain less prominent compared to broader themes (Nyulaszi
et al., 2018). This could suggest that while they are critical
components of maintenance strategies, they are often
integrated into more comprehensive systems like condition
monitoring and diagnostics, leading to a less isolated research
focus.

Al Expansion in Health Monitoring/Management

The use of Al for Engine Health Monitoring and Structure
Health Monitoring/Management has gained significant
attention in recent years. This trend likely reflects the
growing complexity of modern engineering systems, such as
aircraft and infrastructure, where tailored monitoring
solutions are crucial for ensuring safety and operational
efficiency. Across all categories, engines receive the most
attention, particularly in diagnostics (40 publications, 31.5%
in fault diagnosis and 46, 57.5% in prognostics) and
predictive maintenance (78 publications, 53.4% in PdM),
e.g., (Peng et al, 2019). This highlights the critical
importance of engine performance and reliability in aviation
maintenance workflows. Despite its potential, condition
monitoring has only 27 cases have been identified under
CAWM, a relatively small number compared to other
subcategories such as RUL prediction. This may point to an
opportunity to expand condition-monitoring applications for
real-time assessment and immediate feedback on system
health.

Maturity of Al technologies in AM

After the critical analysis of the research literature, we
propose the following classification of maturity levels of Al
technologies in AM (Table 9).

Table 9 summarizes typical applications and estimated
maturity levels expressed as Technology Readiness Levels
(TRLs). It should be noted that these classifications are
subjective assessments based on available literature, and vary
depending on the operational context, data availability, and
regulatory environment.
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Al Typical AM | Maturit | Status
technology applications y, TRL
Logic/Knowle | Assistance, High (8-9) | Widesprea
dge-based Troubleshooting d
Predictive ML | RUL prediction, Medium Selective
fault prediction (6-8) use
Computer Visual inspection | Medium Pilot
vision ML (5-7) projects
Reinforcement | Process Low (3-5) | Research
learning optimization
Digital Engine Medium Selective
Representation | monitoring (5-7) use

Table 9. Maturity of Al technologies in AM

Barriers and Enablers of AI Adoption

The maturity levels presented in Table 9 reflect not only
technological readiness but also the interplay of regulatory,
workforce, economic, and integration factors that either
accelerate or hinder practical adoption:

e Regulatory challenge. Existing Al guidelines (FAA and
EASA) and many research papers highlight the
compliance  complexities and necessities for
standardized AI deployment frameworks (EASA, 2023;
FAA, 2024). The challenge lies in balancing Al system
explainability with regulatory transparency demands,
while the opportunity exists in developing Al systems
that can provide auditable decision trails.

e Workforce challenge. Re-training maintenance
personnel represents a significant organizational
challenge (IATA, 2025). Conversely, adoption of
modern Al-based digital representation technologies
creates opportunities for workforce upskilling and new
job categories in Al-augmented maintenance.

e Economic challenge. Organizations face significant
upfront investments in Al infrastructure and data
systems. However, industry reports (e.g., results of
Delta’s advanced predictive engine program (Delta Air
Lines, 2024)) demonstrate substantial return on
investments through reduced unscheduled maintenance,
optimized parts inventory, and extended component
lifecycles. The challenge involves justifying initial
investment against long-term operational savings.

e Integration challenge. AM organizations typically
operate with established legacy systems and processes.
The operational challenge involves integrating Al
solutions with existing maintenance management
systems and enterprise resource planning platforms
without  disrupting  critical  operations(Credence
Research Europe, 2025)

LKB systems achieve high maturity largely because they
align with existing regulatory frameworks. The FAA and
EASA strongly regulate all maintenance processes, and
transparency and interpretability of knowledge-based

systems make them attractive for compliance documentation.
However, these systems are known as too expensive to
maintain, creating an economic barrier that limited their
expansion despite regulatory acceptance. The workforce
enabler is strong here as technicians can understand, trust,
and follow rule-based recommendations, facilitating
adoption. The recent publications reflect the general trend
toward explainability in AI, suggesting that hybrid
approaches combining LKB transparency with ML
performance may overcome maintenance cost barriers.

Predictive ML for RUL and fault prediction and computer
vision-based visual inspection are currently associated with
selective use, constrained primarily by data availability and
integration challenges. Successful deployment of these
systems requires careful integration with existing predictive
maintenance and inspection workflows. The barrier here is
less about technology capability and more about operational
logistics, including standardizing data pipelines, validating
models across application types, and establishing regulatory
acceptance  protocols.  Al-based visual inspection
demonstrates the highest short-term promise for
advancement within the next 2-5 years. The technology
includes well-established model architectures (e.g., LSTM,
CNN), available data from maintenance operations, and clear
return on investments through maintenance costs and labor
cost reduction. The progression appears achievable as
regulatory frameworks increasingly accommodate Al
systems, and pre-trained models reduce development.

RL remains at low maturity primarily due to regulatory and
safety concerns. RL agents learn through interaction with
environments and receiving penalties, but AM cannot afford
trial-and-error learning in operational contexts. The barrier is
fundamental: safety-critical systems require deterministic,
explainable decisions. The long-term track for RL adoption
likely involves hybrid architectures that combine domain
knowledge from LKB components and applied in non-safety-
critical maintenance tasks. We foresee a 5—7-year timeline for
meaningful maturity advancement of RL.

Digital representation technologies also face integration
complexity as their primary barrier. Al technologies, utilized
for internal implementation of digital twins, require stable
data flow from physical assets to digital models. The
economic enabler is substantial but implementation costs and
data infrastructure requirements are significant. Integration
of health management into newly designed aircraft provided
capabilities required for transformation, suggesting that
enablers strengthen for newer aircraft while legacy fleet
integration remains a barrier.

Summary

Seven key findings and their potential implications are
summarized in Table 10.
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# | Key finding

Description

Potential Implications

1 | Publications in
multidisciplinary journals

The majority of papers are published
not in aviation-specific journals, but in
multidisciplinary journals

Researchers and practitioners who focus on emerging Al
techniques in AM should monitor multidisciplinary
journals. Applying modern Al-based assistants for
publication monitoring becomes more important.

2 | Rise of Deep Learning

The explosive growth of DL
applications in AM, especially CNN
and LSTM

Researchers and practitioners should develop expertise in
Deep Learning (DL) architectures such as CNNs and
LSTMs, as they are becoming integral to AM.

3 | Speed of adoption of new
Al models

It typically takes 4-5 years for the
adoption of new Al models in AM
research practice

Collaboration between academia and industry should be
accelerated to shorten the gap between Al research
breakthroughs and their practical implementation in AM.

4 | Steady importance of
conventional machine
learning

The “conventional” machine-learning
models (FFNN, SVR, DT, RF)
demonstrate steady utility in aircraft
maintenance.

Training programs for AM professionals should include
case studies and practical applications of ML in diagnostics,
predictive maintenance, and fault detection.

5 | Al importance in MRO

Intensive research on Al applications
in MRO processes like fault diagnosis,
isolation, and analysis.

Complex relationships between aircraft systems made fault
diagnosis much more difficult for technicians using
traditional methods. Al-focused workforce training and
development is a critical factor in realizing the potential of
Al technologies in MRO.

6 | Dominant Al application
areas

Prognostic and Predictive
Maintenance stand out as the most
published topics. Their dominance
highlights the importance of Al for
these proactive strategies for ensuring
system reliability and reducing
downtime.

FAA and EASA strongly regulate maintenance processes,
thus, implementing Al will require a huge effort from the
industry to adapt regulatory orders to align with new
technologies.

7 | Al expansion in Health
Management /
Monitoring

Al provides a shorter path to expand
condition-monitoring applications for
real-time assessment and immediate
feedback on system health.

Al will support and stimulate a switch to proactive
strategies in AM practice.

Table 10. Key findings and their implications

6. CONCLUSION

This systematic literature review highlights how modern Al
technologies are applied in the research and practice of AM.
It indicates key trends, research gaps, and promising future
directions in the application of Al to AM processes. Al
techniques are already widely applied and their roles in AM
are increasingly significant. Deep learning demonstrates
great potential in predicting remaining useful life, diagnosing
faults, and enabling predictive maintenance. Meanwhile,
traditional ML models and knowledge-based systems remain
versatile tools for solving various AM challenges.

The analysis of publication trends reveals steady growth in
Al research within AM, with a notable increase in studies
since 2018. This recent surge suggests a move toward more
impactful, practical applications. One of the critical
challenges is making Al models more explainable,
particularly in fault diagnosis, where understanding the
reasons behind system faults is crucial. While predictive
maintenance for engines is well-studied, areas like airframes
and auxiliary systems receive less attention. Emerging
technologies like digital twins and augmented reality also
show potential, though their use in AM is still in the early
stages. Additionally, the role of Al in training maintenance
engineers is underexplored.

This review underlines the importance of the collaboration of
Al and AM specialists to address these challenges and unlock
the full potential of AI in AM. Future research should
prioritize  improving Al  explainability, expanding
applications to less-studied areas, and integrating Al into
cutting-edge technologies like digital twins.
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