Innovative Distributed Maintenance Concept From the Design to Cost Optimisation

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 26, 2025
Maria Di Mascolo ZINEB SIMEU ABAZI Rony DJEUNANG

Abstract

This study proposes an integrated heuristic framework for the strategic optimization of distributed maintenance operations in geo-distributed production systems (GDPS). It introduces a dual-entity maintenance structure comprising a Centralized Maintenance Workshop (CMW) and a Mobile Maintenance Workshop (MMW), aimed at minimizing total long-term maintenance costs. The cost function incorporates transport, operations, and downtime penalties, optimized via a two-stage algorithmic approach: a Maintenance Planning Algorithm (MPA) based on predictive maintenance scheduling, and a Long-term Heuristic Scheduling Algorithm (LHSA) addressing a capacitated vehicle routing problem with time windows (CVRPTW). A novel contribution includes a heuristic for CMW location determination using the weighted barycentre of site failure probabilities and a discrete selection of MMW capacities. Mixed Integer Linear Programming (MILP) and a divide-and-conquer heuristic are utilized to handle the NP-hard nature of the problem. Experimental validation using Weibull-distributed failure data and various cost scenarios demonstrates that the proposed Optimised Maintenance and Capacitated Routing (OMCR) framework can reduce lifecycle maintenance costs by up to 50%, with increased scalability for systems exceeding 30 GDPS. The framework is applicable to sectors requiring high availability and centralized servicing, including aerospace, railway, and energy industries.

Abstract 22 | PDF Downloads 15

##plugins.themes.bootstrap3.article.details##

Keywords

centralised maintenance workshop, predictive maintenance, long-term scheduling, vehicle routing problem

References
Allaham, H., Dalalah, D., 2022. MILP of multitask scheduling of geographically distributed maintenance tasks. Int. J. Ind. Eng. Comput. 13, 119–134.
Borcinova, Z., 2017. Two models of the capacitated vehicle routing problem. Croat. Oper. Res. Rev. 8, 463–469. https://doi.org/10.17535/crorr.2017.0029
Cakirgil, S., Yucel, E., Kuyzu, G., 2020. An integrated solution approach for multi-objective, multi-skill workforce scheduling and routing problems. Comput. Oper. Res. https://doi.org/10.1016/j.cor.2020.104908
Camci, F., 2015. Maintenance scheduling of geographically distributed assets with prognostics information. Eur. J. Oper. Res. https://doi.org/10.1016/j.ejor.2015.03.023
Djeunang Mezafack, R.A., Di Mascolo, M., Simeu-Abazi, Z., 2022. Systematic literature review of repair shops: focus on sustainability. Int. J. Prod. Res. 60, 7093–7112. https://doi.org/10.1080/00207543.2021.2002965
Drake, J.H., Starkey, A., Owusu, G., Burke, E.K., 2020. Multiobjective evolutionary algorithms for strategic deployment of resources in operational units. Eur. J. Oper. Res. 282, 729–740. https://doi.org/10.1016/j.ejor.2019.02.002
Duteil, M., 2016. 15 TGV pour Alstom : une commande au prix fort pour l'État [WWW Document], URL https://www.europe1.fr/economie/15-tgv-pour-alstom-une-commande-au-prix-fort-pour-letat-2864806 (accessed 6.19.23).
Fontecha, J.E., Guaje, O.O., Duque, D., Akhavan-Tabatabaei, R., Rodriguez, J.P., Medaglia, A.L., 2020. Combined maintenance and routing optimization for large-scale sewage cleaning. Ann. Oper. Res. https://doi.org/10.1007/s10479-019-03342-8
Gopalakrishnan, M., Subramaniyan, M., Skoogh, A., 2022. Data-driven machine criticality assessment – maintenance decision support for increased productivity. Prod. Plan. Control 33, 1–19. https://doi.org/10.1080/09537287.2020.1817601
Gupta, D., 2003. A new algorithm to solve Vehicle Routing Problems (VRPs). Int. J. Comput. Math. https://doi.org/10.1080/0020716022000005537
Hani, Y., Amodeo, L., Yalaoui, F., Chen, H., 2007. Ant colony optimization for solving an industrial layout problem. Eur. J. Oper. Res. 183, 633–642. https://doi.org/10.1016/j.ejor.2006.10.032
Hedjazi, D., Layachi, F., Boubiche, D.E., 2019. A multi-agent system for distributed maintenance scheduling. Comput. Electr. Eng. 77, 1–11. https://doi.org/10.1016/j.compeleceng.2019.04.016
Jia, C., Zhang, C., 2020. Joint optimization of maintenance planning and workforce routing for a geographically distributed networked infrastructure. IISE Trans. https://doi.org/10.1080/24725854.2019.1647478
Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P., 2020. Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification. Oper. Res. https://doi.org/10.1007/s12351-020-00600-7
López-Santana, E., Akhavan-Tabatabaei, R., Dieulle, L., Labadie, N., Medaglia, A.L., 2016. On the combined maintenance and routing optimization problem. Reliab. Eng. Syst. Saf. 145, 199–214. https://doi.org/10.1016/j.ress.2015.09.016
Manco, P., Rinaldi, M., Caterino, M., Fera, M., Macchiaroli, R., 2022. Maintenance management for geographically distributed assets: a criticality-based approach. Reliab. Eng. Syst. Saf. 218, 108148. https://doi.org/10.1016/j.ress.2021.108148
Mariescu-Istodor, R., Cristian, A., Negrea, M., Cao, P., 2021. VRPDiv: A Divide and Conquer Framework for Large Vehicle Routing Problems. ACM Trans. Spat. Algorithms Syst. 7, 23:1-23:41. https://doi.org/10.1145/3474832
Meng, F.C., 2000. Relationships of Fussell–Vesely and Birnbaum importance to structural importance in coherent systems. Reliab. Eng. Syst. Saf. 67, 55–60. https://doi.org/10.1016/S0951-8320(99)00043-5
Nguyen, H.S.H., Do Van, P., Vu, H.C., Iung, B., 2019. Dynamic maintenance grouping and routing for geographically dispersed production systems. Reliab. Eng. Syst. Saf. 185, 392–404. https://doi.org/10.1016/j.ress.2018.12.031
Rashidnejad, M., Ebrahimnejad, S., Safari, J., 2018. A bi-objective model of preventive maintenance planning in distributed systems considering vehicle routing problem. Comput. Ind. Eng. 120. https://doi.org/10.1016/j.cie.2018.05.001
Razavi Al-e-hashem, S.A., Papi, A., Pishvaee, M.S., Rasouli, M., 2022. Robust maintenance planning and scheduling for multi-factory production networks considering disruption cost: a bi-objective optimization model and a metaheuristic solution method. Oper. Res. 22, 4999–5034. https://doi.org/10.1007/s12351-022-00733-x
Reuters, 2019. Airbus devra baisser le prix de l'A380 pour en vendre plus [WWW Document], Les Echos Investir. URL https://investir.lesechos.fr/actu-des-valeurs/la-vie-des-actions/airbus-devra-baisser-le-prix-de-la380-pour-en-vendre-plus-iag-1825402 (accessed 6.19.23).
Saihi, A., Ben-Daya, M., As’ad, R.A., 2022. Maintenance and sustainability: a systematic review of modeling-based literature. J. Qual. Maint. Eng. ahead-of-print. https://doi.org/10.1108/JQME-07-2021-0058
Sanchez, D.T., Boyacı, B., Zografos, K.G., 2020. An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations. Transp. Res. Part B Methodol. 133, 142–164. https://doi.org/10.1016/j.trb.2019.12.008
Sedghi, M., Kauppila, O., Bergquist, B., Vanhatalo, E., Kulahci, M., 2021. A taxonomy of railway track maintenance planning and scheduling: A review and research trends. Reliab. Eng. Syst. Saf. 215, 107827. https://doi.org/10.1016/j.ress.2021.107827
Si, G., Xia, T., Pan, E., Xi, L., 2022. Service-oriented global optimization integrating maintenance grouping and technician routing for multi-location multi-unit production systems. IISE Trans. 54, 894–907. https://doi.org/10.1080/24725854.2021.1957181
Simeu-Abazi, Z., Ahmad, A.A., 2011. Optimisation of distributed maintenance: Modelling and application to the multi-factory production. Reliab. Eng. Syst. Saf. 96, 1564–1575. https://doi.org/10.1016/j.ress.2011.05.011
Simeu-Abazi, Z., Gascard, E., 2020. Implementation of a cost optimization algorithm in a context of distributed maintenance, in: 2020 International Conference on Control, Automation and Diagnosis (ICCAD). Presented at the 2020 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–6. https://doi.org/10.1109/ICCAD49821.2020.9260507
Sleptchenko, A., Turan, H.H., Pokharel, S., ElMekkawy, T.Y., 2019. Cross-training policies for repair shops with spare part inventories. Int. J. Prod. Econ. 209, 334–345. https://doi.org/10.1016/j.ijpe.2017.12.018
Tang, H., Miller-Hooks, E., Tomastik, R., 2007. Scheduling technicians for planned maintenance of geographically distributed equipment. Transp. Res. Part E Logist. Transp. Rev. 43, 591–609. https://doi.org/10.1016/j.tre.2006.03.004
Valet, A., Altenmüller, T., Waschneck, B., May, M.C., Kuhnle, A., Lanza, G., 2022. Opportunistic maintenance scheduling with deep reinforcement learning. J. Manuf. Syst. 64, 518–534. https://doi.org/10.1016/j.jmsy.2022.07.016
Wang, K., Djurdjanovic, D., 2018. Joint Optimization of Preventive Maintenance, Spare Parts Inventory and Transportation Options for Systems of Geographically Distributed Assets. MACHINES. https://doi.org/10.3390/machines6040055
Wu, S., Coolen, F.P.A., 2013. A cost-based importance measure for system components: An extension of the Birnbaum importance. Eur. J. Oper. Res. 225, 189–195. https://doi.org/10.1016/j.ejor.2012.09.034
Yulong, L., Chi, Z., Chuanzhou, J., Xiaodong, L., Yimin, Z., 2019. Joint optimization of workforce scheduling and routing for restoring a disrupted critical infrastructure. Reliab. Eng. Syst. Saf. https://doi.org/10.1016/j.ress.2019.106551
Zhang, C., Yang, T., 2021. Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ. Renew. Energy 164, 1540–1549. https://doi.org/10.1016/j.renene.2020.10.125
Section
Technical Papers