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ABSTRACT 

This study proposes an integrated heuristic framework for 

the strategic optimization of distributed maintenance 

operations in geo-distributed production systems (GDPS). It 

introduces a dual-entity maintenance structure comprising a 

Centralized Maintenance Workshop (CMW) and a Mobile 

Maintenance Workshop (MMW), aimed at minimizing total 

long-term maintenance costs. The cost function incorporates 

transport, operations, and downtime penalties, optimized via 

a two-stage algorithmic approach: a Maintenance Planning 

Algorithm (MPA) based on predictive maintenance 

scheduling, and a Long-term Heuristic Scheduling 

Algorithm (LHSA) addressing a capacitated vehicle routing 

problem with time windows (CVRPTW). A novel 

contribution includes a heuristic for CMW location 

determination using the weighted barycentre of site failure 

probabilities and a discrete selection of MMW capacities. 

Mixed Integer Linear Programming (MILP) and a divide-

and-conquer heuristic are utilized to handle the NP-hard 

nature of the problem. Experimental validation using 

Weibull-distributed failure data and various cost scenarios 

demonstrates that the proposed Optimised Maintenance and 

Capacitated Routing (OMCR) framework can reduce 

lifecycle maintenance costs by up to 50%, with increased 

scalability for systems exceeding 30 GDPS. The framework 

is applicable to sectors requiring high availability and 

centralized servicing, including aerospace, railway, and 

energy industries. 

1. INTRODUCTION 

Effective maintenance scheduling has always led to a 

significant improvement in the reliability of industrial 

systems (Sedghi et al., 2021). It provides the timing of 

maintenance tasks and the allocation of a set of resources 

(operators, tools and spare parts). Fortunately, Industry 4.0 

technologies (Internet of Things, Artificial Intelligence, Big 

Data, Digital Twin, etc.) make it possible to anticipate 

failures in production equipment and offer the possibility of 

scheduling and managing maintenance operations in an 

increasingly intelligent manner and in real time 

(Gopalakrishnan et al., 2022). However, with the rise of 

global competition in recent decades, manufacturing 

companies face a highly cost-sensitive market (Saihi et al., 

2022). Moreover, maintenance costs can represent between 

15% and 70% of total production expenses (Sleptchenko et 

al., 2019). Therefore, optimising maintenance-related costs 

is a major issue for companies that want to stay ahead of the 

competition. 

1.1. Motivation 

Maintenance costs are associated with the resources 

required for scheduling operations. Obviously, the more 

equipment there is to maintain, the higher the maintenance 

costs, especially if the equipment is geographically 

dispersed. This study focuses on the maintenance of 

production sites that are located in different places, with 

equipment that is in use. The simplest approach to 

organising maintenance for geographically distributed sites 

is to have each site using its own resources in a 

decentralised system (Razavi Al-e-hashem et al., 2022). 

However, such an approach may be more expensive than a 

centralised system where all sites share the same resources. 

This paper explores the possibility of centralisation through 

the concept of distributed maintenance (Manco et al., 2022). 

The main challenge in this case is resource allocation, as 

geo-distributed sites share the same maintenance resources 

(Zhang and Yang, 2021). 

 

_____________________ 

Maria Di Mascolo et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

https://doi.org/10.36001/ijphm.2025.v16i2.4265 

 

mailto:maria.di-mascolo@grenoble-inp.fr
mailto:zineb.simeu-abazi@grenoble-inp.fr
mailto:rony.djeunang-mezafack@grenoble-inp.fr


INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

  

 

Figure 1: Structure of a Distributed Maintenance, with 𝑛 GDPS  

1.2. Problem statement 

Distributed maintenance involves a Centralised 

Maintenance Workshop (CMW) that pools resources, and a 

Mobile Maintenance Workshop (MMW) that acts as a 

physical link between Geo-Distributed Production Sites 

(GDPS), as shown in Figure 1. The MMW follows a 

predetermined schedule and visits each site to transport 

spare parts and operators for maintenance operations. The 

aim of distributed maintenance is to reduce costs by sharing 

resources. However, centralisation raises the issue of 

efficient resource allocation. In addition, the combination of 

scheduling maintenance operations and routing resources to 

geo-distributed sites is a difficult bi-objective (NP-Hard) 

optimisation problem. 

Industrial applications of distributed maintenance arise in 

industries where the distance between geo-distributed sites 

is not too great (Djeunang Mezafack et al., 2022). For 

example, in the railway sector, several locomotives share 

the same maintenance workshop for preventive actions 

(Hani et al., 2007). In the oil & gas industry, oil platforms 

(onshore or offshore) are geographically distributed 

according to the sources of raw materials. A centralised 

platform manages and carries out maintenance operations. 

Similarly, in the aviation industry, defective aircraft parts 

are replaced directly on-site without transporting the 

aircraft. Afterwards, a centralised workshop is needed to 

diagnose the origin of the failures and repair them (Sanchez 

et al., 2020). In other applications, a third party maintains 

distributed facilities owned by different companies. 

There are several approaches in the literature that could be 

useful in the implementation of distributed maintenance. 

Most of them deal with scheduling maintenance operations 

without taking mobility into account, or optimising vehicle 

routes. On the one hand, scheduling is a well-known 

problem in maintenance management (Valet et al., 2022). 

The major difficulty is to find the right number of 

maintenance operations to perform during a time horizon. 

Too many operations would lead to high equipment idle 

time and too few operations would increase the probability 

of equipment failure. On the other hand, routing 

optimisation is a familiar problem in operations research. It 

is a combinatorial optimisation problem generally known as 

VRP (Vehicle Routing Problem) or TSP (Travelling 

Salesman Problem). The main difficulty encountered is that 

this is an NP-hard problem, which means that the 

optimisation time is exponential as a function of the number 

of sites studied (Konstantakopoulos et al., 2020). 

Some papers in the literature allow the implementation of 

distributed maintenance by combining the two approaches 

mentioned above (scheduling of operations and vehicle 

routing). But these classic approaches only optimise costs 

from an operational point of view (daily). From a strategic 

point of view (yearly), no study has yet shown the influence 

of CMW location and MMW capacity on maintenance 

costs. These parameters are generally considered to be 

fixed, otherwise the joint optimisation of scheduling and 

routing would require exponential computing time using 

standard methods. In addition, instead of a short-term 

schedule (days), a long-term schedule (years) is needed to 

obtain a good estimate of maintenance costs during 

optimisation. Based on this observation, this paper proposes 

an approach to: 

i. perform long-term maintenance scheduling and 

vehicle routing 

ii. design the two main elements of distributed 

maintenance: CMW location and MMW capacity. 
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1.3. The contributions 

The first objective is to provide a novel heuristic allowing to 

address the computation time problem related to the long-

term aspect. Indeed, the majority of current studies that aim 

to reduce the computation time propose a short cyclic 

scheduling (Manco et al., 2022). Then, for a larger time 

horizon, the proposed cycle is repeated. Although this 

method guarantees high availability of production sites, 

maintenance costs remain high because the number of 

operations to be carried out over the time horizon is 

overestimated. In contrast to known approaches, this paper 

proposes a heuristic that enables the study of distributed 

maintenance costs over a wider operating time horizon.  

As part of our work on distributed maintenance, we used 

two metaheuristics for just routing problems, namely: the 

genetic algorithm and simulated annealing (Ndiaye I.  

2014). Given the effectiveness of the latter in combinatorial 

problems such as the traveling salesman problem or the 

vehicle routing problem, we applied them to our problem of 

optimizing transport and logistics costs in the preventive 

maintenance of a multi-site system. The comparison of the 

two methods showed that the genetic algorithm generally 

remains more efficient because it offers a lower 

maintenance cost. The comparison of computation times 

also gives the advantage to the genetic algorithm. 

The approach used in this paper is based on predictive 

maintenance which, in combination with MILP (Mixed 

Integer Linear Programming), identifies for each GDPS the 

best time to preventively replace equipment and determines 

the optimal routing of vehicles. Additionally, the second 

objective is to optimize the location of CMWs and the 

capacity of MMWs. 

Current studies consider that the CMW should be located 

close to one of the GDPS for optimal cost (Simeu-Abazi and 

Gascard, 2020). But the more GDPS there are, the more 

difficult it is to choose the best one. Thus, what is missing is 

a precise description of the CMW location to be chosen to 

reduce maintenance costs independently of the number of 

GDPS involved. In this research, a second heuristic 

proposes to position the CMW at the weighted barycentre of 

the GDPS. After determining the location of the CMW, the 

capacity of the MMW is chosen from a predefined set. 

Indeed, the number of vehicle types is relatively small and 

can be grouped into three main categories (light, medium 

and heavy vehicles). 

 Following the introduction in Section 1, a review of the 

literature is presented in Section 2. The next section 

proposes a problem formulation with relevant assumptions. 

Section 4 presents the general optimisation framework and 

the detailed process steps. Then, Section 5 implements the 

proposed method in a case study through experiments. 

Section 6 presents and analyses the results obtained. The 

last section concludes this study and provides some 

perspectives for future research. 

2.  LITERATURE REVIEW 

The simplest approach towards dealing with GDPS 

maintenance is to wait for failures to occur before carrying 

out corrective maintenance. In this case, it would be 

sufficient to have a list of the sites affected by the failures 

and to find the best path for the workforce to access the 

sites. This first problem is a so-called joint optimisation of 

scheduling and workforce routing for the restoration of 

GDPS (Yulong et al., 2019). (Gupta, 2003) proposed a 

simulated annealing algorithm, (Drake et al., 2020) a genetic 

algorithm and (Allaham and Dalalah, 2022) a MILP to 

maximise the amount of work and minimise the total 

distance travelled by the workforce. (Cakirgil et al., 2020) 

combined a MILP with a variable neighbourhood search to 

complete the highest priority tasks earlier. In order to 

consider the possible delay of these corrective maintenance 

interventions, (Hedjazi et al., 2019) developed a multi-agent 

system maximising the availability of the facilities. 

However, in most companies, every second that a piece of 

equipment is down represents a significant loss. 

Furthermore, corrective maintenance cannot be applied in a 

long-term strategy, as operations are performed after 

failures. It would be interesting to be able to act before 

failures occur. Preventive maintenance enables proactive 

action to anticipate failures and improve the availability of 

the production sites. (Tang et al., 2007) proposed an 

adaptive memory tabu search, (López-Santana et al., 2016) a 

MILP, (Fontecha et al., 2020) a LP-based split heuristic, 

(Nguyen et al., 2019) a combination of a local search 

genetic algorithm (LSGA) and branch and bound method, 

and (Jia and Zhang, 2020) a simulated annealing algorithm 

for routing a set of crews to perform the planned 

maintenance operations at a near-minimum expected cost 

per unit time. To consider the possibility of reducing costs 

by centralising resources, (Simeu-Abazi and Ahmad, 2011) 

proposed a modular approach based on Petri nets and (Wang 

and Djurdjanovic, 2018) a discrete event simulation. 

However, not all of the above approaches consider the 

limited capacity of transport vehicles. Thus, (Allaham and 

Dalalah, 2022) proposed a MILP to introduce transport 

constraints. It is interesting to note that in the case of 

preventive maintenance, scheduling is cyclical and only 

allows maintenance costs to be assessed over a short time 

horizon. Indeed, preventive maintenance cycles do not 

consider the degradation of equipment over time. 

Predictive maintenance aims to use equipment degradation 

parameters to establish an appropriate maintenance 

schedule. The particularity of this approach in the literature 

is the use of prognostic information to maximise the 

availability of production sites and minimise the total 

distance travelled to reach these sites (Camci, 2015). 

(Rashidnejad et al., 2018) proposed a genetic algorithm for 
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scheduling predictive maintenance operations. To consider 

the transportation capacity constraints, (Si et al., 2022) 

proposed a MILP. Based on the real-time machine 

degradation, it is possible to estimate the assets' failure rate 

and establish a time-varying maintenance cost function to 

quantify the trade-off between early and delayed 

maintenance. In addition, (Manco et al., 2022) also proposes 

to centralise predictive maintenance operations to reduce 

costs. 

A summary of this literature review is presented in Table 1 

(see (Djeunang Mezafack 2023) for more details). The 

preceding analysis shows that predictive maintenance is the 

most appropriate strategy for long-term scheduling. The 

constraints considered concern on the one hand the MMW 

(vehicle capacity and long-term scheduling) and on the 

other hand the CMW (centralisation of resources and choice 

of the geographical location of the depot). It can be noted 

that some studies propose exact resolution methods, but 

they are far from reality and not very useful for the industry. 

Other studies use heuristics and metaheuristics to deal with 

more constraints. However, the use of exact methods is still 

appropriate for simple study cases (generally less than 10 

GDPS and one maintenance operation per site to be 

performed periodically). 

The organisation of distributed maintenance is an NP-hard 

problem, as explained previously (Manco et al., 2022), and 

the use of heuristic or metaheuristic methods remains the 

best compromise between calculation time and good 

approximation. Although existing approaches attempt to 

optimise maintenance costs, linked to resources, transport 

and breakdowns, they only solve operational problems, i.e. 

over a short time horizon (days). What is missing is a more 

strategic approach (years) to cost optimisation. In addition, 

current approaches do not consider the influence of CMW 

location and MMW capacity on maintenance costs. This 

study therefore aims to fill this gap based on the current 

predictive maintenance strategy. 

3. PROBLEM FORMULATION 

The objective of this paper is to propose a decision support 

tool for the choice of the geographical location of a CMW 

and the capacity of the MMW through long-term 

scheduling. Let’s consider a set of N heterogeneous GDPS. 

Each GDPS has a piece of equipment that is subject to 

uncertain failures. 

With a schedule, MMW is responsible for transporting 

maintenance resources (spare parts and tools) to visit all 

GDPS within a given time horizon. CMW monitors the 

condition of each piece of equipment and stores spare parts. 

The MMW starts his route from the CMW, with a limited 

spare parts capacity, and visits the GDPS following the 

optimal scheduling. When the MMW reaches a GDPS, the 

GDPS equipment is replaced with a spare part. The 

described transport and maintenance network are 

established to maximise the operational availability of 

production equipment installed in the GDPS. However, it is 

essential to ensure the minimisation of transportation and 

maintenance costs incurred by this network. Therefore, a 

cost evaluation method should be proposed to ensure that 

these costs are kept to a minimum. 

As developed in Section 2, there are several methods for 

evaluating costs in a distributed maintenance context. 

However, the majority of these methods take a short-term 

approach, assuming that transportation and maintenance are 

cyclical. In a cyclical framework, it would be sufficient to 

assess the minimum costs for one cycle and multiply the 

result by the number of cycles. Unfortunately, this approach 

can lead to either an overestimation or underestimation of 

costs, given that transportation and maintenance needs vary 

from one cycle to another. Hence, it is necessary to propose 

a method that improves the long-term cost evaluation. 

Additionally, the choice of the geographical location of the 

CMW (Central Maintenance Workshop) and the capacity of 

the MMW requires a study of their impact on long-term 

costs. In this problem, we have to manage not only the 

application of maintenance by replacement in each of the 

production sites (GDPS), the storage capacity of the mobile 

workshop (MMW) and its routing but also the positioning 

of the central workshop (CMW). The main hypotheses of 

the problem are summarized as follows: 

3.1.  Assumptions about GDPS 

i. GDPS are N geographically dispersed sites, each with a 

single type of equipment 

ii. All pieces of equipment are mutually independent from 

the point of view of failures. This means that the state of 

health of one piece of equipment does not affect that of 

another. We therefore consider that it is possible to 

optimise the number of maintenance operations for each 

site separately. 

iii. The probability of a piece of equipment on site i failing 

at time t is equal to the cumulative distribution function 

Fi (T≤ t) where T is a random variable of the time to 

failure. 

iv. Each site i is subject to a tight time window [ai, bi] 

outside of which a maintenance operation cannot be 

carried out. 

v. In the event of an unexpected failure, the site waits until 

one of the vehicles arrives to replace the faulty 

equipment. 

3.2.  Assumption about CMW and MMW 

i. CMW has a spare parts depot with unlimited capacity. 

ii. MMW is a fleet of m homogeneous vehicles, each with 

a limited capacity Q 

vi. .
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Figure 2: Illustration of distributed maintenance costs for three GDPS 

 

3.3. Assumption about vehicle routing 

i. A vehicle carries spare parts and one operator, whose 

role is to replace a piece of equipment with a new spare 

part. 

ii. The travel times tij and distances dij between sites i and j 

are deterministic and do not change over the scheduling 

horizon τ, i.e. we do not consider any perturbation on 

the travel times 

iii. Each time a vehicle leaves a site i, it has a number yi of 

spare parts remaining and as soon as the stock is empty, 

it returns to the depot for resupply. It may happen that a 

vehicle returns to the depot without the stock being 

empty, if this makes the overall routing more efficient. 

iv. One of the major problems encountered when 

implementing distributed maintenance as it has been 

defined is long-term cost optimisation. The costs have 

three expected causes, as illustrated in Figure 2: 

transport; (Transport_Cost), operations 

(Operations_Cost) and downtime (Downtime_Cost).  

- Transport_Cost is a linear combination of 

distances and travel times  

- Operations_Cost  is proportional to the number of 

maintenance operations. 

- Downtime_Cost is more complex than the previous 

two costs but can be determined from the work of 

(López-Santana et al., 2016). Indeed, for a given 

piece of equipment, the research shows that the 

time that elapses between two successive 

maintenance operations generates a cost linked to 

the probability that the equipment fails i.e. the 

cumulative distribution function of the time-to-

failure. This is the primary reason why the 

cumulative distribution function of the time-to-

failure is chosen as the indicator of maintenance 

operation criticality in this study. The higher the 

probability of equipment failure, the more critical it 

is considered, and the more priority it will be given 

in the scheduling of operations. 

Other parameters, such as Fussell-Vesely importance 

(Meng, 2000) or Birnbaum importance (Wu and Coolen, 

2013), could have been used as indicators of criticality, but 

we chose the simplest parameter for this study, as it had also 

demonstrated its relevance in the context of distributed 

maintenance in previous studies. Therefore, from equation 

(31) in (López-Santana et al., 2016), it is sufficient to have 

the end time of one operation and the start time of the next 

operation to calculate Downtime_Cost. The sum of these 

three different costs gives the distributed maintenance cost 

(Total_Cost) as expressed in equation (1) to be optimised. 

 Total_Cost = Transport_Cost + Operations_Cost  

       + Downtime_Cost                                   (1) 

The main notations used in this study are summarised in 

Table 2. In the following section, the details of the proposed 

algorithms and the general framework to solve the problem 

are presented. 

4. DESIGN OPTIMISATION 

4.1. Optimised Maintenance and Capacitated Routing 

As presented above, the expected costs related to distributed 

maintenance (Total_Cost) are: transport costs 

(Transport_Cost), operating costs (Operations_Cost) and 

downtime costs (Downtime_Cost). They can be grouped 

into two categories based on their origin: transportation 

(Transport_Cost) and maintenance (Operations_Cost + 

Downtime_Cost). Cost optimisation can thus be divided into 

two steps: maintenance optimisation and transportation 

optimisation.
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Figure 2: Illustration of distributed maintenance costs for three GDPS 

 

4.1.1. Maintenance optimisation 

This first step involves minimising Operations_Cost and 

Downtime_Cost, and has been extensively studied in 

scientific literature. Drawing inspiration from the work of 

López-Santana et al. (2016), the aim is to determine the 

number of maintenance operations (nopi) to be carried out 

for each site i within a given horizon τ. For a clearer 

representation, Figure 3 illustrates the variables that 

influence these costs for a site. 

Let's imagine that for site i, we have planned nopi predictive 

maintenance operations. When the equipment at site i is put 

into operation, it takes a time TTFi,1 (Time To Failure) 

before it fails for the first time. TTFi,1 is a random variable 

with a value ranging from 0 to si,1 (the start time of the first 

maintenance operation at site i). TTFi,1 is associated with the 

failure probability Fi (TTFi,1 ≤ si,1 ). Therefore, site i has a 

probability Fi (TTFi,1 ≤ si,1) of being unavailable for a 

duration of TTDi,1 (Time To Downtime).  Once it reaches 

time si,1, whether the equipment is faulty or not, it is 

replaced/repaired for an average duration of MTTRi (Main 

Time To Repair). 

The reasoning is similar for subsequent operations until the 

planned number nopi of operations is reached. The values of 

Operations_Cost and Downtime_Cost can be deduced from 

Figure 3, considering N production sites: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝐶𝑜𝑠𝑡 =
1

𝜏
∗ ∑ 𝐶𝑅𝑖 . 𝑛𝑜𝑝𝑖𝑖=1:𝑁        (2) 

𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒_𝐶𝑜𝑠𝑡

=
1

𝜏
∗ ∑ ∑ 𝐶𝑃𝑖 ∗ 𝐹𝑖(TTF𝑖,𝑜  ≤  s𝑖,𝑜) ∗ 𝑇𝑇𝐷𝑖,𝑜                 (3)

𝑜=1:𝑛𝑜𝑝𝑖𝑖=1:𝑁

 

where CRi is the cost of a maintenance/replacement 

operation for the failed equipment on site i and CPi is the 

cost of penalty due to the unavailability of site i following a 

failure. 

The decision variables that allow the optimisation of 

Operations_Cost and Downtime_Cost through equations (2) 

and (3) are the elements of the vector [nopi] and the matrix 

[si,o] given that τ, N, [CRi], [CPi] and [TTDi,o] are input 

parameters.  

Regarding the decision variables, we know that, for a site i: 

nopi i ∈[1,+∞[  , si,o ∈[0, τ],  si,o < si,o+1 and nopi = number 

of different values for si,o. 

Optimising the above defined costs leads to a nonlinear 

optimisation problem. Several methods could be used to 

solve it, such as the Golden-section search, Interpolation 

methods, Line search, Nelder–Mead method, etc, and they 

lead to similar results. In this work, we use the Golden-

section search method (Chang, 2009). We refer to this first 

optimisation phase as MPA (Maintenance Planning 

Algorithm). This algorithm enables to predict the optimal 

number of maintenance operations nopi for each site i, and 

also gives the values of start times si,o and a set of time 

windows [ei,o ; li,o]  
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Table 2: Notation of this study 

Parameters Description Unit Input Output 

GDPS parameters   

𝜏 Scheduling horizon 𝑚𝑜𝑛𝑡ℎ𝑠 •  

𝑁 Number of production sites - •  

𝑅 Distribution radius of the sites 𝑘𝑚 •  

𝑡𝑖𝑗, 𝑑𝑖𝑗 Travel times and distances between sites 𝑖 and 𝑗 ℎ, 𝑘𝑚 •  

𝑀𝑇𝑇𝑅𝑖 , 𝐶𝑅𝑖   Duration and cost of a maintenance/replacement operation ℎ, $ •  

𝐶𝑃𝑖 Cost of penalties for unavailability of equipment on site 𝑖 $/ℎ •  

𝐹𝑖 Cumulative distribution function of the time to failure of 

equipment on site 𝑖 
- •  

𝑛𝑜𝑝𝑖 Number of maintenance operations performed on site 𝑖 -  • 

𝑛 Sum of maintenance operations on all sites -  • 

𝑠𝑖,𝑜  , [𝑒𝑖,𝑜; 𝑙𝑖,𝑜]  Start time and time window of operation o on site 𝑖 ℎ  • 

𝑇𝑇𝐹𝑖,o Time To Failure of the piece of equipment on 

site 𝑖 before operation 𝑜 

ℎ  • 

𝑇𝑇𝐷𝑖,o Time To Downtime of the piece of equipment on site 𝑖 
before operation 𝑜 

ℎ  • 

𝐴𝑖 Average availability of a production site 𝑖 during the 

scheduling horizon 

-  • 

CMW parameters   

Ω Set of possible CMW positions - •  

𝛷𝑘 CMW position at iteration 𝑘 of the proposed general 

framework 

-  • 

MMW parameters   

𝑄 Transport capacity of a vehicle - •  

𝐶𝐷 Unit transport cost per 𝑘𝑚 per unit of capacity $/𝑘𝑚 •  

𝐶𝑇 Unit transport cost per ℎ𝑜𝑢𝑟 $/ℎ •  

𝑚 Number of vehicles -  • 

𝑦𝑖 Number of spare parts remaining in stock after the site 

visit 𝑖 
-  • 

𝑥𝑖𝑗 Binary decision variable indicating whether a vehicle 

crosses an arc (𝑖, 𝑗) in the optimal scheduling 

-  • 

Other notations   

𝐶𝑀𝑊 Centralized maintenance workshop - - - 

𝑀𝑀𝑊 Mobile maintenance workshop - - - 

𝑂𝑀𝐶𝑅 Optimized Maintenance and Capacitated Routing - - - 

𝑀𝑃𝐴 Maintenance planning algorithm - - - 

𝐿𝐻𝑆𝐴 Long-term Heuristic Scheduling Algorithm - - - 
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4.1.2. Routing optimisation 

The second objective is to minimise Transport_Cost. This 

problem is quite similar to a Capacitated Vehicle Routing 

Problem with Time Windows (CVRPTW) in operations 

research, but it is within the framework of long-term 

scheduling rather than short-term scheduling. In a classical 

CVRPTW, a fleet of homogeneous vehicles has to serve 

customers with known demand and opening hours 

(Konstantakopoulos et al., 2020). Approaches found in the 

literature focus on finding the best routes for transport 

vehicles in such a way that all sites/customers are visited 

once and only once. In the application of such methods, the 

optimal route is repeated once all sites have been visited. In 

the context of distributed maintenance, automatically 

repeating visit cycles can lead to either an overestimation or 

underestimation of costs, as mentioned earlier. This is 

justified by the fact that the maintenance demand for 

production sites varies over a long-time horizon (several 

years) according to the failure distribution law. Therefore, 

one of the innovations of this study will be to propose an 

algorithm that improves the estimation of maintenance costs 

for optimal availability of production sites. We will refer to 

this algorithm as the "Long-term Heuristic Scheduling 

Algorithm" (LHSA). 

In the input of this second algorithm (LHSA), we would 

have the output of the first algorithm (MPA), i.e., the vector 

[nopi] and the matrix [si,o]. Additionally, LHSA takes as 

input a tolerance interval [ei,o ; li,o] for the start time of 

operations for each site, referred to as "time windows" i.e. 

si,o ∈ [ei,o ; li,o] such that si,o - eio = lio - si,o . The objective is 

to modify the values of the elements of [si,o] in the time 

windows [ei,o ; li,o] to achieve a maintenance operation 

scheduling that guarantees minimal transportation costs.  

Let’s consider as other input of LHSA a complete directed 

graph G=(V,A), where  V={0,1,2,…,N} is a set of nodes 

with a depot 0, and Vs = V\{0} a subset of sites.  

A={(i, j) : i, j ∈ V} represents the set of links between all 

pairs of nodes. The set of vehicles is defined by 

K={1,2,…,m}, each with a capacity Q. Each site I ∈Vs is 

associated with an on-site service time MTTRi. Non-

negative travel times tij and distances dij are associated to 

each arc (i, j) ∈ A. 

Each site I ∈Vs has nopi  times a maintenance operation 

over the scheduling horizon τ. The MPA sub-algorithm 

provides time windows for each operation [ei,o ; 

li,o]:o=1,2,…, nopi. An aggregate set of nodes 

V'={0,1,2,…,n} is therefore considered, where 0 is the 

depot and n=∑ nopi  represents the sum of all maintenance 

operations on the horizon τ. Then, an auxiliary directed 

graph G' = (V', A' ) is defined, where A'={(i', j' ) : i', j' ∈ V' 

} denotes the set of arcs. For each arc (i', j') ∈  A' the 

equivalent arc (i, j) ∈ A can be found such as ti' j' = tij and di' 

j' = dij. 

The problem is therefore to determine the optimal routing 

between the maintenance operations i' such that: 

i. Each operation i' ∈ V'\{0} is performed exactly once. 

ii. A vehicle cannot transport spare parts over its capacity 

Q 

iii. The time window [ei' ; li'] of operation i' is equivalent to a 

single time window [ei,o ; li,o] : i ∈ Vs , o=1,2,…,nopi, 

provided by the MPA sub-algorithm and vice versa. 

In the remainder of this paper, the index i is used, instead of 

i' or o to refer to each maintenance operation. This 

formulated problem is NP-hard, requiring exponential 

computation time. Only small instances can be solved 

analytically. An analytical model is thus defined for solving 

small instances and a heuristic for larger instances of the 

problem. A mixed integer linear programming (MILP) 

model is first chosen, which is the most widely used in the 

literature (Borcinova, 2017).  

Next, a divide-and-conquer algorithm (Mariescu-Istodor et 

al., 2021) is adapted and implemented to solve the 

computational time problem, as illustrated in Figure 4. 

 

Figure 4 Divide-and-Conquer algorithm, adapted to the 

LHSA sub-algorithm. 

 This method should make it possible to deal with the 

computation time by dividing the list of all maintenance 

operations into ordered sub-lists. First, the large list of 

maintenance operations is sorted from oldest to newest and 

divided into smaller sub-lists. The maximum number of 

elements in a sub-list is equal to Q. Then each sub-list is 
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solved by the MILP and the results are combined to obtain 

the maintenance scheduling.  

The focus is now on the MILP formulation. A binary 

decision variable xij is defined to indicate whether a vehicle 

crosses an arc (i,j) in the optimal scheduling. A vehicle 

arrives for an operation i at a time indicated by si and with a 

load yi. 

 

The MILP of the LHSA sub-algorithm can be stated as 

follows: 

Minimize 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶𝑜𝑠𝑡 =
1

𝜏
∑ ∑ (𝑄. 𝐶𝐷. 𝑑𝑖𝑗 + 𝐶𝑇. 𝑡𝑖𝑗)𝑛

𝑗=0
𝑛
𝑖=0 . 𝑥𝑖𝑗  (4) 

Subject to 

−𝑄. 𝑚 ≤ −𝑛;       (5) 

∑ 𝑥0𝑗 − 𝑚 = 0𝑛
𝑗=1 ;        (6) 

∑ 𝑥𝑖𝑖 = 0𝑛
𝑖=0 ;         (7) 

∑ 𝑥𝑖𝑗 = 1, ∀𝑗 𝜖𝑉′\{0};𝑛
𝑖=0,𝑖≠𝑗        (8) 

∑ 𝑥𝑖𝑗 ≤ 1, ∀𝑖 𝜖 𝑉′\{0};𝑛
𝑗=1,𝑖≠𝑗        (9) 

𝑦𝑖 − 𝑦𝑗 + (1 + 𝑄). 𝑥𝑖𝑗 ≤ 𝑄, ∀𝑖, 𝑗𝜖𝑉′\{0}, 𝑖 ≠ 𝑗;          (10) 

𝑠𝑖 − 𝑠𝑗 + (𝑇𝑅𝑖 + 𝑡𝑖𝑗 + 𝜏). 𝑥𝑖𝑗 ≤ 𝜏, ∀𝑖, 𝑗𝜖𝑉′\{0}, 𝑖 ≠ 𝑗; (11) 

1 ≤ 𝑦𝑖 ≤ 𝑄, ∀𝑖𝜖𝑉′\{𝑂};        (12) 

𝑒𝑖 ≤ 𝑠𝑖 ≤ 𝑙𝑖 , ∀𝑖 𝜖𝑉′\{𝑂};        (13) 

𝑥𝑖𝑗𝜖{0, 1}, ∀𝑖, 𝑗 𝜖𝑉′\{𝑂};        (14) 

 

This MILP formulation minimises the transport costs 

Transport_Cost through the objective function (1). 

Constraint (5) represents the minimum number of vehicles 

required to service all operations. In the linear program, a 

vehicle is considered as a route that starts from the central 

maintenance workshop (CMW), visits a certain number of 

sites, and returns to the central maintenance workshop 

(CMW), as illustrated in Figure 5. Constraint (6) requires 

that exactly m vehicles leave the depot. The classical flow 

constraints (7), (8) and (9) ensure that each vehicle can 

leave the depot exactly once, and that each maintenance 

operation is performed only once. In constraint (10), the 

capacity of the vehicles is defined such that the difference in 

load of a vehicle between two successive operations i and j 

does not exceed the demand of j. Constraint (11) ensures 

that the time between two successive operations i and j does 

not exceed MTTRi + tij. Constraints (12), (13) and (14) 

restrict the upper and lower bounds of the decision 

variables. 

4.1.3. Joint optimisation of maintenance and transport 

The optimisation approach proposed for the planning and 

scheduling of distributed maintenance is an iterative process 

between the MPA and LHSA algorithms, referred to as 

OMCR (Optimised Maintenance and Capacitated Routing), 

as illustrated in Figure 6.Thus, the OMCR algorithm 

consists in solving two different sub-algorithms iteratively. 

At each iteration, the sum of all costs (Total_Cost) is 

updated until it converges within a defined confidence 

interval. At the beginning of the optimisation, all elements 

of [TTDi,o] (Time To Downtime) are set to zero, i.e., it is 

assumed that if there is a failure, a vehicle arrives instantly 

for the repair/replacement. 

 

Figure 5  Example of scheduling for 4 heterogeneous sites. 
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Figure 6: OMCR algorithm for combining routing and scheduling optimisation 

 

This consideration allows the first algorithm, MPA, to 

propose the minimum number of maintenance operations for 

a site i (nopi = 1). With this input data, the second 

algorithm, LHSA, determines the optimal route for 

performing the operations and, consequently, the actual 

value of [TTDi,o], which is not zero due to transportation 

delays and vehicle availability constraints.  

𝑇𝑇𝐷𝑖,𝑜 = (𝑠𝑖,𝑜 − 𝑠𝑖,𝑜−1) − ∫
𝑡.𝑓𝑖(𝑇𝑇𝐹𝑖,𝑜≤𝑡)

𝐹𝑖(𝑇𝑇𝐹𝑖,𝑜≤𝑠𝑖,𝑜)

𝑠𝑖,𝑜

𝑠𝑖,𝑜−1
                 (15) 

Equation (15) is derived from the demonstration in 

Appendix B of López-Santana et al. (2016) with : 

fi(TTFi,o)≤ t)  the probability density function of “Time To 

Failure” such that: 

𝐹𝑖(𝑇𝑇𝐹𝑖,𝑜 ≤ 𝑠𝑖,𝑜) = ∫ 𝑓𝑖(𝑇𝑇𝐹𝑖,𝑜 ≤ 𝑡). 𝑑𝑡
𝑠𝑖,𝑜

𝑠𝑖,𝑜−1
      (16) 

With the new [TTDi,o] as input, the MPA algorithm 

logically increases the number of operations in an attempt to 

reduce site unavailability, but this action contributes to 

increasing the cost of operations. The optimal number of 

operations must be found each time, followed by the 

optimisation of the corresponding routes. The average 

availability of the sites can be calculated using the simple 

formula (17), which is a ratio between the period during 

which the equipment at the site is probably in operation and 

the scheduling horizon. 

𝐴𝑖 =
𝜏−∑ 𝑇𝑇𝐷𝑖,𝑜.𝐹𝑖(𝑇𝑇𝐹𝑖,𝑜≤𝑠𝑖,𝑜)𝑜=1:𝑛𝑜𝑝𝑖

𝜏
   (17) 

After defining the OMCR algorithm used to optimise the 

scheduling of maintenance operations, the next step is to 

determine a cost-effective location for the depot. 

4.2. Centralised Maintenance Workshop Location 

Let's consider Ω as the set of all possible geographical 

positions for the central workshop/depot. The simplest 

approach to position the depot would be to evaluate the 

costs for all elements of Ω to compare them and deduce an 

optimal position. Let Φ_k ∈ Ω be the sought optimal 

position with k as an index that allows us to explore all 

elements of Ω i.e. k∈[1;|Ω|]. However, the larger Ω is, the 

more difficult, if not impossible, it is to calculate and 

compare the costs of all the elements of the set. The 

objective is then to propose a heuristic that guarantees a 

small size of Ω. An empirical study addresses this problem 

by proposing to construct Ω from sites’ location (Simeu-

Abazi and Gascard, 2020). The idea is to position the depot 

near one of the sites. However, the more sites there are, the 

larger the size of Ω becomes. The aim is therefore to 

propose a method where |Ω| is independent of the number of 

sites. The novelty of this paper is to position the depot at the 

weighted barycentre of the sites. The idea is that the depot is 

closer to the most critical site without being too far from the 

less critical ones. In this study, the criticality of each piece 

of equipment on site i is modelled by the cumulative 

distribution function (Fi), as presented in Section 3. The 

greater the probability that a piece of equipment will fail in 

the scheduling horizon, the closer the depot will be. 

In the following, the two approaches are compared 

empirically through experiments. As explained in the 

previous paragraph, the first approach is based on the choice 

of the best site as a location for the depot ("near to a site"). 

The second approach is based on the barycentre of the sites 

whose failure probabilities are weights ("barycenter"). By 
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choosing an orthonormal reference frame (0, x, y) for the 

geographical locations, we have: 

i. “near to a site”: (depot(x), depot(y)) ∈ {(sitei (x),〖sitei (y))} 

ii. “𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟”: {
𝑑𝑒𝑝𝑜𝑡(𝑥) =  ∑

𝑠𝑖𝑡𝑒𝑖(𝑥).𝐹𝑖 (𝑇≤𝜏)

∑ 𝐹𝑖  (𝑇≤𝜏)
) 

𝑑𝑒𝑝𝑜𝑡(𝑦) =  ∑
𝑠𝑖𝑡𝑒𝑖(𝑦).𝐹𝑖  (𝑇≤𝜏)

∑ 𝐹𝑖  (𝑇≤𝜏)
)
 

After researching a set of methods for cost evaluation and 

optimisation in a distributed maintenance context (Section 

4.1) and choosing the geographical location of the central 

workshop/depot (Section 4.2), we will now construct a 

general framework to combine all the proposed methods. 

4.3. General framework 

The long-term scheduling, vehicles’ capacity (Q*) and 

depot location Φ𝑘
∗   that minimise Total_Cost are obtained 

through the general framework illustrated in Figure 7. 

Indeed, it is an iterative algorithm that takes as input the 

geographical data of the sites ([dij ]; [tij ]), the health state of 

the equipment (Fi), a predefined range of vehicles’ capacity 

[Qmin;Qmax]) and a set of probable positions of the depot (Ω). 

The objective is to employ the previously developed OMCR 

(Optimised Maintenance and Capacitated Routing) 

algorithm to determine the best possible maintenance cost 

for each of the values of Q ∈ [Qmin ; Qmax] and Φ_k∈Ω, 

through long-term scheduling. Therefore, two iterative loops 

are created to test all values of Q and Φk. Each iteration 

updates the lowest Total_Cost value and associated 

parameters 

 

 

5. EXPERIMENTS: IMPLEMENTATION OF THE PROPOSED 

ALGORITHMS 

As a reminder, the purpose of this paper is to reduce 

distributed maintenance costs Long-term versus short-term 

scheduling: influence of the scheduling horizon 

The first contribution of this paper concerns long-term 

scheduling as described above. The idea of this first part of 

the experiment is to determine the evolution of the 

maintenance cost (Total_Cost) as a function of the 

scheduling horizon (τ). This experiment concerns equipment 

whose number of failures follows the Weibull distribution 

with the given cumulative distribution function: 

𝐹𝑖(𝑇𝑇𝐹𝑖 ≤ 𝑡) = 1 − 𝑒
−(

𝑡

𝜂
)

𝛽

       (18) 

Where η is scale parameter in years and β is the shape 

parameter. 

It is necessary to study several scenarios for two reasons: to 

extend the scope of this experiment and to select the most 

representative scenarios for analysis. A scenario is 

considered relevant when it allows studying the influence of 

the scheduling horizon (τ), and hence long-term scheduling, 

i.e., when τ is large, on the performance of distributed 

maintenance. Assuming that, depending on the application 

(aerospace, railway, energy, etc.), the cost of equipment 

unavailability penalties can be a key variable in strategic 

maintenance decision-making, a scenario is represented by 

CPi. Consequently, the next steps involve understanding the 

impact of CPi on the influence of τ. Thus, we vary τ from 2 

months (61 days) to 2 years (732 days). The following 

question will guide us through this: how does the influence 

 

Figure 7: General framework of distributed maintenance optimisation. 
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of the scheduling horizon on the performance of distributed 

maintenance evolve when the cost of unavailability 

penalties is relatively low or high compared to the cost of 

replacing a failed equipment? 

5.1. Depot location and extension of the number of sites 

The second contribution of this paper concerns the location 

of the depot at the barycentre of the sites. The idea of this 

second part of the experiment is to assess whether 

positioning the depot at the barycentre of the sites is more 

interesting than the most relevant method in the literature, 

which positions the depot close to one of the sites.  Another 

objective of this experiment is to study the impact of a 

possible extension of the number of sites after the choice of 

the geographical position of the depot. The idea is to 

evaluate the costs if additional sites were added after the 

construction of the depot at the proposed barycentre. The 

questions that will be used as a guide are as follows: is it 

relevant to position the depot at the barycentre of the sites? 

What would happen if the depot position is chosen for an 

initial number of sites N and then other sites are added later 

without changing the depot? 

5.2. Case study - Input Data 

This experiment considers 10 sites geo-distributed over a 

radius of 50 kilometres, corresponding approximately to an 

area the size of the Isère department in France.  

Each site has a piece of equipment subject to uncertain 

failures and whose characteristics are presented in Table 3. 

Unlike the exponential distribution regularly used in the 

literature, the choice of the Weibull distribution allows us to 

study equipment whose failure rate varies over time. This 

experiment will focus on pieces of equipment that are 

reaching the end of their useful life and therefore require 

greater attention in terms of maintenance due to the 

increasing number of breakdowns. To consider the 

heterogeneity of equipment, half of the production sites 

have equipment that tends to deteriorate regularly (β=2) and 

the other half have equipment that deteriorate more rapidly 

(β=3). Furthermore, maintenance/replacement costs are 

generally high in the railway, aircraft and oil sectors. We 

have assumed a value of $100,000 per operation, which is 

less than 0.33% of the price of a TGV (Duteil, 2016) or 

0.02% of the price of an Airbus A380 (Reuters, 2019). 

Only one spare part is required for each operation. The 

geographical positions of the production sites are randomly 

selected on a Cartesian plane (0,x,y) following a uniform 

distribution. Subsequently, the distance between each pair of 

equipment is calculated using the Euclidean method. For 

each scenario of  CPi as described above, the experiment is 

replicated more than 10 times to ensure a 95% confidence 

interval for the results. Consequently, the results obtained 

represent the average of all replications with a 5% error rate. 

Appendix 1 provides an illustration of 10 replications of the 

positioning of production sites, noting that the positions 

change with each replication. A uniform distribution has 

been chosen to ensure that the positions of the production 

sites do not influence the results, as this study is solely 

concerned with the influence of the MMW/depot location 

and MMW/vehicles capacity. A fleet of homogeneous 

vehicles is considered and the capacity needs to be 

optimised. The characteristics of each vehicle are presented 

in Table 4. Three types of vehicles are considered, each with 

a nominal speed of 80 km/h. 

i. Light: Q = 4 pieces of equipment;  

ii. Medium: Q = 6  pieces of equipment;  

iii. Heavy: Q = 8  pieces of equipment. 

We chose Scilab 5.5.2 to implement the case study. All tests 

were performed using the MILP-adapted "FOSSEE 

Optimisation Toolbox" library. We performed the 

experiments on a Windows 8, 64-bit machine with an 

Intel(R) Core (TM) i7-10850H, 2.70 GHz CPU and 32 GB 

RAM. In the end, more than 1380 experiments are 

conducted. 

Table 3: Data of the sites and equipment 

Symbols Values Comments Units 

𝑁 10 N dispersed production sites - 

𝐹𝑖  

(𝑇𝑇𝐹𝑖 ≤

𝑡) 
1 − 𝑒

−(
𝑡
𝜂)𝛽

 
Weibull’s cumulative 

distribution function with 

parameters 𝜂 and 𝛽 

- 

𝜂 1 Weibull’s scale parameter 𝑦𝑒𝑎𝑟 

𝛽 𝛽 ∈ {2,3} Weibull’s shape parameter - 

𝑅 50 The sites are randomly 

distributed in a radius 𝑅 
𝑘𝑚 

𝑣 80 Average transport speed 𝑘𝑚/ℎ 

𝜏 𝜏 ∈ ]0; 2] 
Horizon for maintenance 

operations 
𝑦𝑒𝑎𝑟 

𝑀𝑇𝑇𝑅𝑖 3 Maintenance/replacement time 
of a piece of equipment 

ℎ 

𝐶𝑅𝑖 100,000 Maintenance/replacement cost 

of a piece of equipment 
$ 

𝐶𝑃𝑖 
𝐶𝑃𝑖

∈ [10;  1000] 

Penalty cost of waiting for 

replacement/maintenance of a 

piece of equipment 

$/ℎ 

Table 4: data of the vehicles 

Symbols Values Comments Units 

𝑄 𝑄 ∈ {4;  6;  8} 
Maximum transport 

capacity 
𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 

𝐶𝐷 2 
Cost per unit of transport 

distance 
$/𝑘𝑚 

𝐶𝑇 30 
Cost per unit of 

transport time 
$/ℎ 
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6. RESULTS AND DISCUSSION 

Experimental results show that long-term scheduling (more 

than two months) could result in lower costs than short-term 

approaches (two months). With the proposed OMCR 

algorithm, maintenance costs can be optimised over a 2-year 

horizon. Therefore, different depot locations and vehicle 

capacities can be tested to determine the most cost-effective 

options. An optimal evaluation of the number of predictive 

maintenance operations and their scheduling could reduce 

total maintenance costs by up to 50%. 

6.1. Analysis and interpretation 

6.1.1. Influence of penalty costs 

The penalty cost represents the loss of revenue when 

equipment is unavailable due to failure. Figure 8 illustrates 

the influence of this cost on the availability of the 

production sites. The interpretation is similar from a cost 

perspective (Appendix 2). It can be seen that when CPi  

=$10/h, the longer the scheduling horizon, the lower the 

availability (from 0.98 if τ=2 months to 0.01 if τ=2 years). 

In this case, scheduling for the long-term has no positive 

effect on the availability of the production sites. The penalty 

cost is not high enough to allow the algorithm to perform 

more maintenance operations if the scheduling horizon is 

long. In terms of cost (see Appendix 2), it is clearly 

observed that the larger the chosen horizon, the lower the 

Total_Cost. This demonstrates that for certain application 

cases where the penalty cost is not sufficiently high, 

corrective maintenance might be favoured, i.e., with very 

few preventive maintenance operations. In this scenario 

(CPi=$10/h), this would amount to 3 preventive operations 

each 2 years at a minimum Total_Cost of $109/h. 

 

 

Figure 8: Influence of the penalty cost (𝐶𝑃𝑖) 

 

If CPi =$1000/h, the availability remains almost constant 

(0.980.05) despite the increase in the scheduling horizon. 

This can be explained by the fact that the penalty cost is 

very high. The proposed algorithm adapts the number of 

operations in order to maintain the production sites in an 

optimal availability regardless of the chosen scheduling 

horizon. This scenario is the one studied by (López-Santana 

et al., 2016). Although it guarantees a high availability of 

the sites, this value of the penalty cost does not highlight the 

influence of the choice of the scheduling horizon. In terms 

of cost (see Appendix 2), we naturally observe a variation of 

less than 6% in Total_Cost, regardless of whether the 

scheduling horizon is short or long. It might indicate that for 

an application domain where CPi =$1000/h (high penalty 

cost in case of failure), long-term scheduling would not 

have a very significant impact. 

If CPi =$100/h then two phases of availability evolution are 

observed. From 2 months to 8 months horizon, the 

availability decreases from 0.98 to 0.80 and then slowly 

increases from 0.80 to 0.86. In this case, the value of the 

penalty cost is interesting for the observation of the 

scheduling horizon influence. The following sections will 

provide a more in-depth interpretation of this scenario. 

As a reminder, a scenario can be considered specific to a 

particular application domain. For example, in the aerospace 

domain, the cost of unavailability is very high (in this case, 

setting CPi =$1000/h would be appropriate). In the railway 

domain, the cost of unavailability is generally lower than in 

the aerospace domain (setting CPi =$100/h would be 

interesting in this case). In other industrial domains where 

equipment unavailability does not lead to significant costs, 

setting CPi =$10/h would be acceptable. We will now focus 

on the scenario with CPi =$100/h, as it offers more insight 

into long-term scheduling, as observed earlier. 

6.1.2. Optimal scheduling horizon 

Figure 9 shows the evolution of costs according to the 

scheduling horizon for the scenario CPi =$100/h. The 4 

types of costs can be distinguished: Transport_Cost, 

Operations_Cost, Downtime_Cost and Total_Cost 

Transport costs are in the minority compared to other costs.  

 

 

Figure 9: Costs and schedule horizon 
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The two phases discovered above (decrease phase and slow 

growth phase) have different effects on costs. From 2 to 8 

months the costs of operations decrease while the costs of 

downtime increase, then the trends are reversed. These 

evolutions allow the total costs to have a local minimum for 

a 6-month scheduling horizon (from $700/h to $350/h), a 

50% decrease. Therefore, for this scenario it is effective 

from a cost point of view to plan the maintenance operations 

every 6 months. After determining an optimal time horizon 

for maintenance scheduling, the next step is to determine the 

location of the depot and the capacity of the transport 

vehicles. 

6.1.3. Influence of depot location 

Figure 10 shows the influence of the geographical position 

of the depot on the distance travelled by the vehicles (a) and 

the calculation time of the evaluation algorithm (b). The 

location of the depot was determined using the proposed 

general framework, for 10 production sites. Several other 

sites (up to 30 sites) were then added without changing the 

location of the depot. The first obvious observation is that 

the more production sites there are, the further the vehicles 

travel each year. Secondly, as the number of sites increases, 

the positioning of the depot at the barycentre of the sites 

becomes more advantageous. These results show that it 

could be more interesting to position the depot at the 

barycentre than to position it near one of the production 

sites. This choice is even more advantageous if the number 

of sites increases in time after the installation of the depot. 

 

Figure 10: Influence of the depot location 

6.1.4. Influen5ce of vehicle capacity 

Figure 11 shows the influence of vehicle capacity on annual 

distance travelled (a) and transport costs (b). As in the 

interpretation in the previous section, the more additional 

production sites there are, the greater the annual distance 

travelled. It can be seen that heavy vehicles travel less 

distance than light vehicles (1499km and 1973km), a 

difference of 474km. In fact, light vehicles carry less 

equipment than heavy vehicles and therefore have to travel 

more kilometres to meet the demand. But as far as costs are 

concerned, it is rather the light vehicles that are less 

expensive. Indeed, each kilometre driven by a heavy vehicle 

is more expensive than that of a light vehicle. Therefore, 

light vehicles could be chosen to ensure the maintenance of 

the sites at a lower cost. Of course, these conclusions have 

been drawn for this particular case study. The main 

contributions remain the model and the optimisation 

methodology. 

 

Figure 11: Influence of vehicle capacity 

6.2. Industrial usefulness 

As presented in the introduction, distributed maintenance 

can be applied in several areas: oil & gas, railway and 

aircraft domains. The key is to have several geographically 

distributed production sites and a centralised entity 

responsible for the maintenance of all sites. The results of 

the experiments carried out highlight the relevance of the 

proposed approach for the implementation of distributed 

maintenance. The case of 10 production sites has been 

studied and our approach can be applied to many more (30 

additional sites were tested) thanks to the heuristics 

proposed to solve the computation time problem. 

The production sites were considered heterogeneous, i.e. 

each site has different equipment. This assumption is close 

to the industrial reality where the geo-distributed sites 

generally have different facilities or different states of 

health. However, this study assumes that each site has only 

one piece of production equipment. In other applications 

where there is more than one piece of equipment per site, 

this method could be adapted by considering only the most 

critical equipment per site.  

The vehicle fleet is considered homogeneous, i.e. all 

vehicles have the same transport capacity. Although this 

assumption allows the capacity constraint of the mobile 

maintenance workshop fleet to be considered, it remains 

limited for certain applications. The proposed method could 

then be applied separately to each type of vehicle. A 

weighted mean of the costs could then be used to obtain an 

approximate result in the absence of a more advanced 

method. 

In this study, the results show that it is possible to estimate 

maintenance costs over a long-time horizon. This approach 

would allow practitioners to compare different maintenance 

policies over the long term. A broad view in time offers the 

possibility to make effective decisions long before failures 

occur. 
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6.3. Conclusion 

This study aimed to design and optimize distributed 

maintenance operations for a network of geographically 

dispersed production sites requiring regular equipment 

servicing. The proposed strategy involved centralizing 

maintenance activities within a dedicated workshop and 

deploying a fleet of vehicles to perform on-site 

interventions. The originality of the work lies in its focus on 

three key decision-making areas: the long-term scheduling 

of maintenance operations, the optimal geographical 

positioning of the central maintenance facility, and the 

strategic sizing of the vehicle fleet. 

To address these challenges, a hybrid approach combining a 

linear optimization model with heuristic algorithms was 

developed to minimize overall maintenance costs. A case 

study demonstrated that systematic long-term scheduling 

can reduce maintenance expenditures by up to 50%, 

primarily through precise estimation of required 

maintenance actions to maintain site availability over an 

extended planning horizon. The equipment considered 

followed a Weibull failure distribution with a one-year scale 

parameter. In this context, scheduling interventions every 

two months proved cost-effective when penalty costs for 

downtime were high relative to replacement costs; 

otherwise, a six-month interval was more optimal. 

Locating the central maintenance workshop at the weighted 

barycentre of the production sites was shown to 

significantly reduce computational complexity—by a factor 

proportional to the number of sites involved. While light 

vehicles covered longer distances than heavy vehicles, their 

lower operational costs made configurations involving 

multiple light vehicles (e.g., two vehicles carrying four units 

each) more economically viable than fewer, higher-capacity 

heavy vehicles. 

Nevertheless, the study has several limitations, both in terms 

of modelling and optimization methodology. First, it 

assumes that each repair restores the equipment to an "as 

good as new" state, overlooking scenarios involving 

imperfect repairs. Future research could investigate how 

varying levels of repair quality influence long-term 

maintenance costs. Second, the cost function was 

decomposed into downtime and transportation components, 

each addressed through separate optimization routines. A 

promising direction would be to develop a unified model 

that jointly optimizes both components, for instance, by 

integrating them into a single objective function via a linear 

formulation. Third, we considered only one piece of 

equipment per production site. Generalization to multiple 

pieces of equipment with multiple failures is currently under 

study, but the model and its resolution remain complex 

using linear programming. 

Further extensions could include the incorporation of 

unexpected equipment failures into the scheduling model, 

along with the development of online algorithms capable of 

dynamically adjusting vehicle routes in response. Moreover, 

the current study focuses solely on cost as the performance 

metric. Future investigations could broaden the scope by 

integrating additional criteria, such as CO₂ emissions from 

transportation activities. Another potential research avenue 

involves the dimensioning of spare parts inventory at the 

central workshop, which was assumed to have unlimited 

capacity in this work. Finally, applying the proposed 

methodology to a real industrial case study would enhance 

the practical relevance of the findings and help address data 

availability challenges encountered in this initial 

exploration. From a broader perspective, this hybrid 

approach addresses a key limitation in traditional PHM 

systems by providing both generalization and physical 

interpretability — two often competing objectives. 

Moreover, the framework is modular and scalable, making it 

adaptable to a wide range of industrial domains, including 

aerospace, energy systems, and complex manufacturing 

processes. 

Several avenues of research are identified and need to be 

addressed in the immediate future. First, real-time 

deployment of the hybrid model will require efficient online 

learning techniques and adaptive filtering to process 

streaming data. Second, further research will focus on 

generalizing the framework to multi-failure scenarios and 

system-wide degradation mechanisms, using probabilistic 

graphical models or physics-based neural networks. Finally, 

integrating Explainable AI (XAI) with ML components 

would improve transparency and user trust, facilitating 

wider adoption of hybrid PHM systems in safety-critical 

environments. 
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