Analytical Health Indices: Towards Reliability-Informed Deep Learning for PHM

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 26, 2025
Dr.Pierre Dersin
Mr. Dario Goglio Dr. Kristupas Bajarunas Dr. Manuel Arias Chao

Abstract

Deep learning has demonstrated significant potential for prognostics in complex systems (Fink et al., 2020). Recent advances in physics-informed machine learning have integrated physics-of-failure principles within data-driven models (AriasChao, Kulkarni, Goebel, & Fink, 2022). Beyond physical laws, fleet-level time-to-failure (TTF) distributions provide valuable prior knowledge for individual asset life predictions.In this paper we derive a probabilistic analytical health index(HI) model based on power-law degradation, enabling a probabilistic description that reconciles individual variability  with fleet-wide trends. We show that, under Weibull, Gamma, and Pareto-distributed TTFs, the HI evolution follows an analytical form, allowing explicit characterization of time to reach intermediate degradation levels. Therefore, this work provides a theoretical foundation for integrating reliability principles with deep learning, advancing towards Reliability-Informed Deep Learning (RIDL). The approach is validated on synthetic turbofan engine data and real-world battery degradation datasets. This work establishes a rigorous basis for embedding reliability engineering principles into deep learning, improving predictive maintenance and remaining useful life (RUL) estimation.

Abstract 15 | PDF Downloads 8

##plugins.themes.bootstrap3.article.details##

Keywords

Health Index, Reliability, Degradation, Deep Learning, Time to Failure

References
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716–723.
Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics. Data, 6(1), 5.
Atamuradov, V., Medjaher, K., Camci, F., Zerhouni, N., Dersin, P., & Lamoureux, B. (2020). Machine health indicator construction framework for failure diagnostics and prognostics. Journal of signal processing systems, 92, 591–609.
Bajarunas, K., Baptista, M., Goebel, K., & Arias Chao, M. (2023). Unsupervised physics-informed health indicator estimation for complex systems. In Annual conference of the phm society (Vol. 15).
Bajarunas, K., Baptista, M. L., Goebel, K., & Chao, M. A. (2024). Health index estimation through integration of general knowledge with unsupervised learning. Reliability Engineering & System Safety, 251, 110352.
Bole, B., Kulkarni, C. S., & Daigle, M. (2014). Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use. In Annual conference of the phm society (Vol. 6).
Dersin, P. (2023). Modeling remaining useful life dynamics in reliability engineering. CRC Press, Taylor and Francis.
Dersin, P., Bajarunas, K., & Arias-Chao, M. (2024). Analytical modelling of health indices for prognostics and health management. In Vol. 8 no. 1 (2024): Proceedings of the european conference of the phm society.
Fink, O., Wang, Q., Svens´en, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020). Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell., 92, 103678.
Fréchet, M. (1927). Sur la loi de probabilité de l’écart maximum. Ann. de la Soc. Polonaise de Math.
Goglio, D., Bajarunas, K., Dersin, P., Santos, B. F., & Arias Chao, M. (2024). Enhancing predictive maintenance in aviation: A quantile regression approach for health index-based remaining useful life estimation. In Proceedings of the 2nd international conference for condition-based maintenance in aerospace (iccbma). Paris, France. (Presented at ICCBMA, 11–13 September 2024)
Hsu, C.-C., Frusque, G., & Fink, O. (2023). A comparison of residual-based methods on fault detection [Conference Paper]. In C. S. Kulkarni & I. Roychoudhury (Eds.), Proceedings of the annual conference of the phm society 2023 (Vol. 15). s.l.: PHM Society. (15th Annual Conference of the Prognostics and Health Management Society (PHM 2023); Conference Location: Salt Lake City, UT, USA; Conference Date: October 28 - November 2, 2023) doi: 10.3929/ethz-b-000636893
Llera, A., & Beckmann, C. F. (2016). Estimating an inverse gamma distribution. arXiv:1605.01019v2.
Nachlas, J. (2017). Reliability engineering- probabilistic models and maintenance methods, 2d edition. CRC Press,Taylor and Francis.
Qin, Y., Yang, J., Zhou, J., Pu, H., & Mao, Y. (2023). A new supervised multi-head self-attention autoencoder for health indicator construction and similarity-based machinery rul prediction. Advanced Engineering Informatics, 56, 101973. doi: https://doi.org/10.1016/j.aei.2023.101973
Ramos, P., Louzada, F., Ramos, E., & Dey, S. (2020). The fréchet distribution: Estimation and application-an overview. Journal of Statistics and Management Systems, 23(3), 549-578.
Roman, D., Saxena, S., Robu, V., Pecht, M., & Flynn, D. (2021). Machine learning pipeline for battery state-of-health estimation. Nature Machine Intelligence, 3(5), 447–456.
Sui, X., He, S., Vilsen, S. B., Meng, J., Teodorescu, R., & Stroe, D.-I. (2021). A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. Applied Energy, 300, 117346.
Yang, F., Habibullah, M. S., & Shen, Y. (2021). Remaining useful life prediction of induction motors using nonlinear degradation of health index. Mechanical Systems and Signal Processing, 148, 107183.
Ye, Z., & Yu, J. (2021). Health condition monitoring of machines based on long short-term memory convolutional autoencoder. Applied Soft Computing, 107, 107379.
Section
Technical Papers