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ABSTRACT

Deep learning has demonstrated significant potential for prog-
nostics in complex systems. Recent advances in physics-
informed machine learning have integrated physics-of-failure
principles within data-driven models. Beyond physical laws,
fleet-level time-to-failure (TTF) distributions provide valu-
able prior knowledge for individual asset life predictions.

In this paper we derive a probabilistic analytical health in-
dex (HI) model based on power-law degradation, enabling a
probabilistic description that reconciles individual variability
with fleet-wide trends. We show that, under Weibull, Gamma,
and Pareto-distributed TTFs, the HI evolution follows an an-
alytical form, allowing explicit characterization of time to
reach intermediate degradation levels. Therefore, this work
provides a theoretical foundation for integrating reliability
principles with deep learning, advancing towards Reliability-
Informed Deep Learning (RIDL).

The approach is validated on synthetic turbofan engine data
and real-world battery degradation datasets. This work estab-
lishes a rigorous basis for embedding reliability engineering
principles into deep learning, improving predictive mainte-
nance and remaining useful life (RUL) estimation.

Pierre Dersin et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.
https://doi.org/10.36001/IJPHM.2025.v16i2.4262

1. INTRODUCTION

An important step in prognostics and health management of
complex industrial systems is inferring their current health
condition (Fink et al., 2020). To this end, a normalized health
index is often defined as a metric that measures the degree of
degradation of equipment. Conventionally, a value of 1 for
the health index corresponds to perfect health, and a value of
0 to a failed state. An intermediate value characterizes a state
where the item is still operating but less than perfectly. If the
health index captures the physical condition of the asset cor-
rectly, the time evolution of the health index is an appropriate
means for performing prognostics, i.e., predicting the evolu-
tion of a degradation, eventually up to a failure, and the time
until that failure, or remaining useful life (RUL). Therefore,
the health index for an asset constitutes a key tool for main-
tenance decision-making, as it enables health assessment (in
particular, degradation severity) and prognostics.

The derivation of HIs has traditionally depended on extract-
ing key features from condition monitoring (CM) data and
integrating them with a physical understanding of the asset to
create a health index (Atamuradov et al., 2020). This practice,
while effective, is heavily reliant on domain-specific knowl-
edge, presenting a significant barrier to scalability and adapt-
ability across different systems. To address these limitations,
diverse data-driven approaches have been proposed for es-
timating HI from condition monitoring data. For instance,
supervised learning models have been applied when dealing
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with datasets that contain labels of HIs (Roman, Saxena, Robu,
Pecht, & Flynn, 2021). Similarly, residual techniques that
identify deviations from a system’s expected behavior (Ye &
Yu, 2021; Hsu, Frusque, & Fink, 2023) offer another path-
way, albeit contingent on the existence of a representative
dataset of “healthy” state labels- an often challenging pre-
requisite in industrial settings due to difficulties in obtaining
a representative data for complex systems.

Recently, unsupervised methods combining deep learning with
traditional reliability engineering principles in the form of

explicit, analytical representation of the health index have

shown promise in inferring asset-specific HI (Bajarunas, Bap-

tista, Goebel, & Arias Chao, 2023; Yang, Habibullah, & Shen,

2021; Qin, Yang, Zhou, Pu, & Mao, 2023). Therefore, these

recent works highlight the potential of leveraging the exten-

sive body of reliability engineering theory (Dersin, 2023),

alongside deep learning algorithms, to model RUL dynamics

effectively.

This paper builds on this foundation and previous work in
(Dersin, Bajarunas, & Arias-Chao, 2024) to propose an ana-
Iytical probabilistic framework for HI modeling that reflects
both fleet-wide trends and asset-specific conditions. By doing
this, we aim to enable the integration of reliability engineer-
ing models in machine learning algorithms by providing an
analytical probabilistic description of the HI. Addressing this
objective involves answering the following question: How fo
find an analytical description for a time-dependent health in-
dex integrating random parameters to capture asset variabil-
ity and align with observed times to reach various degrada-
tion severity levels including the time to failure?

Hence, in this work, we assume the availability of time-to-
failure (TTF) distributions for a fleet of assets. Given this
assumption, we formulate the problem in a general context
and provide an analytical solution when the TTF follows a
Gamma distribution, a Weibull distribution or a Pareto dis-
tribution. In this scenario, with a health index defined by a
power law featuring either an inverse-Gamma or a Fréchet-
distributed or inverse-Pareto distributed coefficient, as the case
may be, we demonstrate that the time to reach any interme-
diate degradation level follows a Gamma, Weibull or Pareto
distribution, respectively, sharing the same shape parameter
as the TTF. Moreover, the scale parameter explicitly depends
on the degradation level. Also, a general formula for the ex-
pectation of the time to reach any intermediate level is given,
which does not depend on the time-to-failure distribution. We
also detail the procedure for estimating the power law expo-
nent from field data through regression analysis and conduct
a sensitivity analysis regarding this exponent. Further, we
provide additional degrees of freedom to the model by mak-
ing the exponent variable a function of time, operating con-
ditions, or maintenance. A relationship is then discovered
between the exponent and the shape parameter: if the shape

parameter (which reflects the speed of degradation) varies,
the exponent can be adjusted accordingly so that, for a given
quantile the HI reaches a given degradation level at the same
time.

To validate our methodology, we present case studies focus-
ing on the N-CMAPPS turbofan (Arias Chao, Kulkarni, Goebel,
& Fink, 2021) and randomized usage Li-ion batteries datasets
(Bole, Kulkarni, & Daigle, 2014). The results confirm the
proposed methodology and highlights its practical applica-
tions. Obtaining an explicit, analytical representation of the
health index, including the random variability among assets,
is a definite advance over the state of the art that offers a ma-
jor advantage. The proposed approach enables maintenance
decision-making with minimal computational demand.

The paper is organized as follows: Section 2 presents the
methodology used in this work; we first formulate the prob-
lem in Section 2.1 and present a resolution method in Section
2.2. We then delve into specific cases involving Gamma (Sec-
tion 2.3), Weibull (Section 2.4), and Pareto distribution (Sec-
tion 2.5), followed by the general expected hitting time for-
mula (Section 2.6), and a discussion on estimating the power
law exponent controlling the shape of degradation for the an-
alyzed distributions (Section 2.7). The case of incomplete
degradation trajectories is addressed in Section 2.8. In Sec-
tion 2.9, the concept of a generalized health index is intro-
duced, to reflect the dependence on time or varying oper-
ating conditions or maintenance actions. Case studies from
the N-CMAPSS and randomized battery usage datasets illus-
trate our approach (Section 3), with sensitivity analysis on the
power law exponent (Section 3.2). In Section 3.3, the gener-
alization of the health index to a variable exponent is studied,
and illustrated with the N-CMAPPS data. The paper con-
cludes with a summary of our findings and suggestions for
future research in Section 5.

2. METHOD

In this section, we describe our methodology for deriving an
analytical representation of the health index (HI) in prognos-
tics. Our goal is to connect the evolution of the HI with fleet-
level time-to-failure (TTF) distributions—specifically, when
the TTF is modeled as a Gamma, Weibull, or Pareto distribu-
tion.

Figure 1 summarizes the methodological steps and the broader
context of this work. The proposed workflow begins by mod-
eling the HI as a monotonic, parametric function governed
by interpretable degradation parameters (h(b, p,t)). Given a
prior distribution for the TTF (Gamma, Weibull, or Pareto
models), we derive closed-form analytical expressions for the
probability distribution of the time required to reach any in-
termediate health level s (i.e., T or TTS). This framework
enables population-level modeling of degradation while re-
taining interpretability and analytical tractability.
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The broader context of this work is as follows. The method-
ology assumes the availability of asset-specific HI derived
from CM data, for instance based on (Bajarunas, Baptista,
Goebel, & Chao, 2024). In the future, we envision leveraging
this framework for tasks such as remaining useful life (RUL)
forecasting and incorporating variable exponents to capture
operating context or maintenance effects.
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Figure 1. Flowchart illustrating the different steps of the
proposed method along with the context of its applicability.
The process of estimating begins with the assumption of a
prior plausible Time to Failure (TTF) distribution (Gamma,
Weibull or Pareto models) and a probabilistic parametric
model of a Health Index (h(b, p, t)). Based on these assump-
tions, we derive the analytical forms of the distributions de-
scribing the time required for the HI to reach any specified
intermediate health level (7), thus providing a comprehen-
sive statistical framework to model a degradation process.

2.1. Problem Statement

A degradation process is characterized by a health index, HI(t),

that typically decreases monotonically with time from a value
of 1 (perfect health) to O (failure). Let the time to failure be
defined as:

T = inf{t : HI(t) = 0} (1

Given that prior knowledge or data suggests that 7" follows
a known probability distribution (e.g., Gamma, Weibull, or
Pareto), our objective is to determine, for any intermediate
health level s € (0, 1), the distribution of the time

T, =inf{t: HI(t) = s} 2)

2.2. Resolution Method: General Principle

Let R(t) denote an assumed reliability function. Then a prob-
abilistic model for HI(t), as a non-increasing function of ¢,
is selected, and the condition P[T" > ¢] = R(t) is imposed.
Finally, Eq. (2) is applied to obtain the distribution of 7T:

Ry(t) = P[T, > 1] 3)

Let us consider the following parametric model for the health
index:

with an assumed functional form A, where some of the pa-
rameters p1, ps, - - . , Pn, are random variables.

Then, it should be noted that

is equivalent to
T>t (6)
therefore the following condition is imposed:
Plh(p1,p2,...pn;t) > 0] = R(t) %)

with the right-hand side of Eq. (7) known.

Similarly, the condition T > t is equivalent to HI(t) > s
and hence from Eq. (7), one derives

for any value of s between 0 and 1. The method is quite
general and can be applied to any TTF distribution.

In the next two subsections, the method is detailed and illus-
trated on three frequently encountered families of TTF distri-
butions: Gamma, Weibull, and Pareto.

2.3. Gamma Case

Let us consider the case when the time to failure follows a
Gamma distribution with shape parameter 5 and rate param-
eter A\. The Gamma reliability function for time 7" (Nachlas,
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2017) can be expressed as:

v(At; B)
r'(B)

where v(\t; 3) stands for the incomplete Euler gamma func-
tion.

R(t)=1-

€))

A health index is sought, H(t), such that the time for the HI
to reach the value 0 is Gamma-distributed.

We shall now show that a solution is provided by the follow-
ing power law for the health index:

h(b;p;t) =1 — (bt)? (10

with a positive exponent p and a random variable b with an
inverse-gamma distribution with shape parameter 3 and scale
parameter A (b has the dimension of a frequency, i.e., the in-
verse of a time, so does A). The health index defined by Equa-
tion (10) decreases monotonically from 1 to 0 as the time or
usage variable ¢ increases from 0 to % It is a convex function
of t if p < 1 and a concave function if p > 1 ( and linear in
the limit case of p = 1). The property that b has an inverse-
Gamma distribution is equivalent to % having a Gamma dis-
tribution with parameters (3 (shape) and A (rate).

Denoting by T the time to failure, there follows from the
above health index definition that

PIT > ] = P|(bt)" < 1] = Plbt < 1] = p[% >4 an

Since % is Gamma distributed, the right-hand side of Eq.(11)
is the Gamma reliability function at time t, with shape and
rate parameters respectively equal to 5 and A\. Therefore, it
has been proved that the definition of Eq.(10) for the health
index leads to a Gamma-distributed time to failure.

Now let us look at the distribution of the time for the health
index to reach a level s, between O and 1.

Let us denote that first hitting time 7T’.

P[T, > t] = P[h(b;p;t) > s] = P[1 — (bt)? > s] (12)

Equation (12) is equivalent to:

PlT,>t]=P[bt)’ <1—s]=P

! > tl} (13)

b (1—s)r

Since % is Gamma (3,A) distributed, it follows from Eq.(9)
that,

7((17)\;)%;5)
Rr (t)=P[Ts >t]=1— W

Therefore, it has been shown that T, has a Gamma distribu-
tion with shape factor 3, and rate parameter g given by the
following function of s and the exponent p:

A

he= —— (15)
(1-s)?»

(14)

The problem stated in the beginning has thus been solved in
the case when the time to failure has a Gamma distribution.
The mathematical expectations of T and that of the health
index HI(t) are then derived explicitly, as follows, from the
properties of the gamma distribution and the inverse-gamma
distribution (Llera & Beckmann, 2016):

E(T,) = Aﬁ = §(1 —5)» (16)

which can also be written as :

E(T,) = E(T)(1 - s)» (17)

To derive the expectation of the health index HI(t), we now
use properties of the inverse-gamma distribution. If X has
an inverse-gamma distribution with parameters 3 and ), the
nth-order moment of X is given (Llera & Beckmann, 2016)
by:

I'(B—mn)
EX") =A"——+— (18)
X =)
as long as
n<p
Therefore
(38—
BIHI®] =1 BG)r =1— upt8 =P (g
INE)
assuming the exponent p to be smaller than the shape factor

8.

2.4. Weibull Case

We shall now consider the case where the time to failure fol-
lows a 2-parameter Weibull distribution. Denoting 8 and 7
the shape and scale parameters, respectively, this corresponds
to the well-known reliability function:

R(t) = e~ /)’ (20)
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For the health index, let us take the following power law,
slightly different from the one taken in the Gamma distribu-
tion case, for reasons which will become apparent:

h(b;p;t) =1 — bt? 20

where p is a positive exponent, and b is a random variable.
It will be seen that, if b has a Fréchet distribution (Fréchet,
1927; Ramos, Louzada, Ramos, & Dey, 2020), then the time
to failure is Weibull distributed.

Indeed, by definition of the Fréchet (also known as “inverse
Weibull”) distribution, if the random variable b is Fréchet-
distributed with scale parameter \; and shape parameter [,
then:

P> u] = 1——ewpf—(§%)‘5bﬂ 22)

The shape parameter [ is dimensionless, and the scale pa-
rameter A, has the dimension of ¢ to the power of (—p), just
as the coefficient b.

Then, by substituting
u=t""? (23)

in Eq.(22), the following is obtained :
P[HI(t) > 0] = P[b < t7P] = exp[—(\pt?)®]  (24)

and this expression must be equated to P[T" > ¢], which
is assumed to be the reliability function of a two-parameter
Weibull variable (1 ,).

Therefore, the parameters of the Fréchet distribution for b are
obtained as follows:
Ay = 1/n" (25)

By = B/p (26)

as it can be verified by substituting the right-hand sides of
Eq.(25) and Eq.(26) respectively for A\, and 3, in (24). Then
the distribution of T, the first hitting time of level s, can be
derived as well, for any value of s between 0 and 1.

P[T's > t] = PIHI(t) > 3] @7)
=P[1-bt’>s]=Phb<(1—s)t7?] (28)

Therefore, by substituting for u in Eq.(22) the value
(1 — s)t~P and using Eq.(25) and Eq.(26),

B
P

PITs > 1] = eapl~( /(L - ))7]  (29)

or
mn>ﬂ=WM4rwr%§ﬂ (30)

It is seen that Eq.(30) describes the reliability function of a
Weibull random variable with: 1) the same shape factor 3 as
the distribution of T'; 2) A scale factor 75 expressed as follows
as a function of s, the scale factor 1 of 7" and the exponent p:

ns =n(1—s)v 31)

Thus, the problem stated in the beginning has also been solved
in the Weibull distribution case.

Accordingly, the mathematical expectation of the first hitting
time 7’ is obtained:

E(T,) =n(1—s)»T(1+ %) (32)

Equation (32) can also be formulated as
E(T.) = E(T)(1 - s)» (33)

which is the same as in the Gamma-distribution case (Eq.
(17)). Also, the expectation of the health index H1(t) at time
t can be derived from the expectation of the random coeffi-
cient b, assumed Fréchet distributed:

1 P

E(b) = %F(l — B) (34)
Therefore
t
"

p

EHI®t)=1—E®)t* =1— (=)PI(1 - B) (35)

The quantiles of b can also be derived. The g-percent quantile
is B, defined by
Plb>q] =B, (36)

Therefore,
1
Byj=—— 37)
P (=lng)?
In particular, the median (50-percent quantile) is given by:
1

Bos=——
" )

(38)

2.5. Pareto Case

After Weibull and Gamma, let us consider yet another distri-
bution: the Pareto (type 1) distribution, defined as follows:

R(t) = PIT > 1] = (3)° (39)
with scale parameter « and shape parameter 3 (both positive,

and with 3 greater than 1). The Pareto distribution reflects
the property that a nonnegligible number of items in the pop-
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ulation has long life. Then, if the health index is defined by
Eq.(21) just as in the Fréchet case,the probability distribution
of b is derived as follows:

P
P[1—bt?] > 0] = (%)3 (40)
Or equivalently,
p
Pl > 7] = (2)3 1)

b t

This is to say that the random variable % has a Pareto distri-
bution with shape parameter:

B
Br=" (42)
p
and scale parameter:

ap = aP 43)

Equivalently, one can say that b has an ’inverse Pareto’ distri-
bution, also known as power distribution:

Pb>z]=1— (apz)™ (44)
From the properties of the Pareto and power distributions,

there follow expressions for the mean time to failure and the
expectation of the health index.

B(T)= 5 (45)
BIHIM)] =1— Bi (at)? (46)

In the same way, as for the Gamma and Weibull distribu-
tions,the distribution of T,the time for the HI to reach level
s,is determined :it is a Pareto distibution with shape parameter
[ and scale parameter «s, with

s = ol —s)'/P 47)

Consequently, the expected time to reach level s is :

ofB
8—1
An expression for the quantiles can be derived as well. De-

noting as previously by 3, the g-percent quantile, as defined
in Eq.(36),

E(T,) = (1—s)'/P (48)

there follows, from Eq.(44),

1 p
By=—(1-q)? (49)

2.6. General formula for F(7%)

The formula for E(Ts) given for the Weibull, Gamma and
Pareto distributions is in fact quite general. We now prove it
in the general case i.e. regardless of the TTF distribution, for
a health index described by a power law. Since T is nonneg-
ative,

B(T,) = /0 PIT, > 1] dt (50)

and, for any health index HI(t), the condition Ty > t is
equivalent to HI(t) > s. There follows:

B(T,) = / PLHI() > 8] dt 51)
0
for s between 0 and 1. In particular, for s = 0,
B(T) = / PIHI(t) > 0] dt (52)
0

Therefore

B(Ty) _ I PIHI(t) > s dt

E(T) ~ [ P[HI(t) > 0] dt

(53)

Let us now consider a health index defined by a power law
such as in Eq. (21) and let R(¢) denote the complementary

cdf (cumulative distribution function) of the random variable
1

B

R(z) = P[E > x] 4
Then
PIHI(t) > s] = P[1 — bt? > s]
1 tP tP (55)
= P — =
[b ~ 1—8} R(l—s)
Therefore, from Eq.(53) ,
E(Ts) _ fooo R( 1t—ps) dt (56)
E(T) J5° R(tr) dt
Now consider the change of variable
w= ' (57)
(1—s)7
which implies
dt = (1 — s)vdu (58)
There follows
E(Tg) 1 fooo R(Up) du 1
=(1-s)pde L " —(1—s)r 59
Br) - a0 Y

This formula is true for any HI expressed by a power law
as in Eq.(21), regardless of the particular TTF distribution.
It can be shown in exactly the same way that the formula is
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also valid for an HI of the type Eq. (10) used earlier for the
Gamma distribution. An important remark is that Eq.(59) is
valid, not only for constant p, but for a function p(s). Indeed,
Eq.(58) would remain valid.

2.7. Estimation of Exponent p from Data

From Eq.(59), there follows, by taking logarithms,

log(1 — s) = plog( ) (60)

Therefore, in order to estimate p, it is equivalent to estimate
E(Ts) from the data samples corresponding to several values
of s and then run the linear regression of log(1 — s) with
E(TS )
E(T)
the best estimate of p. The method applies in any distribution
case since the dependence of E(7%) on s is the same in all
cases, as per the previous subsection (Eq.(59)). Furthermore,
it can apply to a variable exponent p function of s.

respect to log ( ) The regression coefficient (slope) is

2.8. Incomplete Degradation Trajectories

Our method for obtaining an analytical form of the HI does
not require run-to-failure condition monitoring data '. Let us
consider w as the smallest threshold of H(t) observed for all
units in the fleet. Then in Eq. (33), instead of considering the
expected TTF, E(T'), we would consider the expected time
to hit the common threshold E(7}). The revised equation
would be:

(1—s)l/p
(1 —u)t/p
Where E(T5) is the sample arithmetic mean for each value
s > u. When u = 0, this is equivalent to Eq. (33). The
exponent p can be estimated from linear regression in

log(1—u)—log(1—s) = p(log(E(T.))—log(E(T%))) (62)

Once again, this method would be valid for an exponent p
function of the threshold s instead of being constant.

2.9. Time-Dependent and Covariate-Dependent Degrada-
tion: Generalizing the Health Index Model

The classical degradation model assumes that the health in-
dex evolves according Eq. (21). While this formulation ef-
fectively models many degradation processes, it implicitly
assumes that the degradation rate follows a fixed power-law
behavior across all units. However, in practical applications,
p does not necessarily remain constant but instead evolves
dynamically based on operating conditions, maintenance his-
tory, and system wear mechanisms. This variability reflects
the fact that some components degrade progressively, while

UIf no failures are observed the HI has a different meaning as it is normalized
with respect to the most degraded unit in the fleet.

others exhibit accelerated wear leading to failure.

To introduce a more flexible formulation, we allow p to vary
over time and be influenced by external factors:

h(t) = 1 — bPEXO: X (1) (63)

where p(t, X(t)) is now a function of:
e Time ¢: Capturing how degradation dynamics change
over the system’s lifetime,

* Operational conditions X (¢): External factors such as
load, temperature, and humidity,

* Maintenance interventions, X,,(t): Adjusting degra-
dation based on past corrective or preventive actions.

In addition, p can be formulated recursively, where the cur-
rent value depends on past values:

p(t) = ¢o + ¢p(t — 1) + f(X(8), X (1)) + & (64)

This recursive form allows for persistent effects and smoother
modeling of degradation memory or explicitly making p(¢, s).
Different functional forms of p(t, X(t), X,,,(t)) can be con-
sidered:

Linear growth in time:

p(t) =po +at (65)
where py is the initial exponent and o > 0 accounts for ac-
celerating degradation.

Environmental and operational influence:

p(t, X(t)) = po + fe(X (1)) (66)

where the effect of each operational condition X (t).

Maintenance-modulated behavior:

p(ta Xm) =po+[m (Xm(t)) (67)
where X, represents maintenance.

This generalization enhances the predictive power of HI mod-
els by accommodating real-world variability in degradation
behavior:

¢ Heterogeneous Degradation Paths: Each unit can ex-
hibit unique degradation trajectories based on its opera-
tional environment and maintenance history.

¢ Modeling Late-Stage Acceleration: By allowing p to
increase over time, the model can capture the rapid dete-
rioration often observed before failure.

* Dynamic Maintenance Integration: Maintenance can
now be incorporated as a factor that actively modifies the
degradation curve rather than simply resetting h;(¢).
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By introducing a time-varying exponent p, the proposed ap-
proach better captures the complexities of real-world degra-
dation, improving both predictive accuracy and maintenance
decision-making.

3. CASE STUDIES

To validate the proposed analytical health index framework,
we apply our methodology to two distinct datasets: one from
turbofan engine degradation and another from battery capac-
ity degradation. In both cases, we demonstrate how the de-
rived expressions for the time to reach intermediate degrada-
tion levels (T5) can be used to characterize the degradation
process and estimate key parameters such as the exponent p
under constant and variable scenarios.

3.1. Constant Degradation Exponent (p)
3.1.1. Turbofan

The New Commercial Modular Aero-Propulsion System Sim-
ulation (N-CMAPSS) dataset (Arias Chao et al., 2021) offers
comprehensive degradation trajectories of turbofan engines
until failure. Among the dataset’s eight subsets, we focus
on DS03, characterized by a failure mode impacting the effi-
ciency and flows of both low-pressure and high-pressure tur-
bines.

The N-CMAPSS dataset characterizes degradation at the com-
ponent level across initial, normal, and abnormal degradation
stages. Consequently, an HI is calculated through a non-
linear mapping of operational margins under reference con-
ditions. System failure is determined when the HI reaches 0.
The dataset also accounts for between-flight maintenance by
allowing improvements in engine health parameters within
specified limits. The ground truth HI is shown in Figure 2,
and will be used to verify the findings of Section 2.3 and 2.4.
Estimating the HI using condition monitoring data as high-
lighted in (Bajarunas et al., 2023) is also possible.

1.0
—e— Hl of Fleet of Units

0.8
0.6
T

0.4

0.2

0.0

Figure 2. Observed HI in N-CMAPSS DS03 Dataset

The Akaike Information Criterion (AIC) (Akaike, 1974) was
used to compare the goodness of fit with different probabil-
ity distributions (Weibull, Gamma, Exponential), see Table

1. When a statistical model is used to represent the process
that generated some data, some information is lost. The AIC,
based on information theory, estimates the amount of infor-
mation lost. It deals both with overfitting and underfitting by
taking model simplicity into account as well as goodness of
fit. The AIC is defined by

AIC = —2log(mazL) + 2P (68)

where the term log(maxL) denotes the maximum value of the
log-likelihood function, and P is the number of parameters in
the model (for instance, for Weibull or Gamma, P is equal to
2). In our example, the best value of the AIC was obtained
with the Gamma distribution for the time to failure as well as
the time to reach level s for s ranging from 0 to 0.8. The AIC
value for Weibull distribution is almost identical. In contrast,
the AIC value for the exponential distribution is much higher.

Using the Maximum Likelihood Estimation technique, we es-
timated the best-fit Gamma parameters for various s thresh-
olds. Figure 3 shows the estimated 55 and A, values for
s = 1[0,0.1,0.2,...,0.8]. The results validate the conclusion
presented in Section 2.3: the distribution of the first hitting
time T shares the same shape factor 5 = 52.83 as the distri-
bution of failure times 7". Additionally, the rate parameter A,
is a function of s and A of 7. We determined p = 3.35 fol-
lowing the description provided in Section 2.7. The wide con-
fidence intervals of 85 and As can be primarily attributed to
the limited number of observations (15 run-to-failure curves),
rather than to the choice of the Gamma distribution, which we
have demonstrated to be the most suitable among the alterna-
tive distributions investigated.

We then estimated the best-fit Weibull parameters for vari-
ous s thresholds. In Figure 4, we estimated 35 and 7 using
s =[0,0.1,0.2,...,0.8]. The results validate the conclusion
presented in Section 2.4: the distribution of the first hitting
time T shares the same shape factor § = 7.32 as the distri-
bution of failure times 7'. Additionally, the scale parameter
7s is a function of s and n of T

Figure 5 illustrates the mean, median, and 90% quantile of
HI(t), as described by Equations (35) and (37). Notably, we
observe that the median closely aligns with the ground truth
HI within the dataset.

3.1.2. Battery

The methodology proposed in this study was further validated
using a dataset obtained from the NASA Ames Prognostics
Center of Excellence repository, specifically focusing on bat-
tery usage patterns (Bole et al., 2014). This dataset includes
information collected from individual 18650 LCO cells un-
dergoing various charging and discharging cycles following
randomized protocols.

Batteries commonly exhibit several physical aging mecha-
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Figure 3. The Gamma distribution shape factor 55 and the
rate parameter \s for various HI thresholds for N-CMAPSS
dataset.

Table 1. AIC of distribution fits for CMAPSS turbofan case
study.

s | AIC Gamma AIC Weibull AIC Exponential
0 18 120 16l
0.1 117 120 161
0.2 117 120 160
0.3 116 119 159
0.4 115 118 158
0.5 114 116 156
0.6 112 114 154
0.7 109 112 151
0.8 106 108 147
0.9 116 113 127

nisms such as graphite exfoliation, electrolyte loss, solid elec-
trolyte interface layer formation, continuous thickening, and
lithium plating, among others (Sui et al., 2021). These aging
processes lead to two primary changes in battery behavior:
capacity degradation and increased internal resistance. In this
analysis, our focus will be on capacity degradation as the key
health index for the batteries under investigation.

The HI of a battery is defined as the ratio between its cur-
rent capacity and the nominal capacity (Q/Qnomina)- The
battery’s capacity can be determined by reference discharge
cycles conducted at a constant current (/). The current ca-
pacity is calculated as the integral of current over the entire
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Figure 4. The Weibull distribution shape factor s and the
scale factor ns for various HI thresholds for N-CMAPSS
dataset.
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Figure 5. The mean, median, and 90% quantile of the health
index obtained from Weibull distribution.

reference discharge cycle, denoted as ft 1.

In this work, the failure of a battery (HI = 0) is defined once
the capacity ratio is less than 60%. The initial HI of the bat-
tery is equal to the initial capacity ratio. Figure 6 shows the
estimated HI of the NASA battery dataset.

The AIC values of three different distribution fits are shown
in Table 2. The best fit was obtained with Gamma distribu-
tion for the time to failure as well as the time to reach level s
for s ranging from 0 to 0.9. The AIC value for Weibull dis-
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Figure 6. Observed HI in NASA battery dataset

tribution is almost identical,in contrast with the exponential
distribution AIC, much higher.

We used the Maximum Likelihood Estimation (MLE) method
to estimate the Gamma distribution parameters correspond-
ing to different threshold levels s of the Health Index (HI).
Specifically, we computed the shape () and rate (\;) param-
eters for thresholds s = [0,0.1,0.2,...,0.8], where s = 0
denotes failure. For each value of s, the estimation was based
on the first hitting times—i.e., the time at which each unit’s
HI trajectory crossed the threshold s. The results are shown
in Figure 7, with the horizontal blue line indicating the value
of 3 estimated at failure (s = 0), as also seen in Figures 3
and 4.

Confidence intervals were computed using the Fisher Infor-
mation Matrix, leveraging the fact that the MLE is asymp-
totically normally distributed. These results confirm that the
shape parameter 3, of the first hitting time remains close to
the shape parameter (3 of the original TTF distribution across
the range of s, supporting the validity of the analytical for-
mulation. Additionally, using the previously estimated value
p = 0.94, we show that the rate parameter \s varies system-
atically with both s and A. The condition p < 1 results in a
convex degradation curve for the HI, consistent with the ob-
served behavior.

The best-fit Weibull parameters for various s thresholds are
shown in Figure 8. Once again, we show that a reasonably
good approximation for the shape parameter of the first hit-
ting time [, is the shape parameter 3 of the failure time T and
that the scale parameter 1, varies with s and 7 as expected.

3.2. Sensitivity Analysis

Sensitivity analysis has been conducted on the N-CMAPSS
dataset, to investigate the effect of the exponent p in the para-
metric model of the health index.

For the Gamma case, it is immediate from (15) that, for given
S, As is a decreasing function of p (for p greater than, or equal
to 1). In the limit of p going to infinity, A\s converges to .
For the Weibull case, a similar conclusion is drawn, but in-
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Figure 7. The Gamma distribution shape factor 35 and the

rate parameter A for various HI thresholds for NASA battery
dataset.

Table 2. AIC of other distribution fits for NASA battery case
study.

s | AIC Gamma AIC Weibull AIC Exponential
0.0 118 121 151
0.1 111 118 146
0.2 104 112 140
0.3 102 108 135
0.4 97 102 128
0.5 84 93 118
0.6 67 75 109
0.7 62 70 99
0.8 54 60 89
0.9 44 50 71

stead from (31) it follows that, for given s, 7, is an increasing
function of p.

From Eq.(17) and Eq.(33) it follows that for both considered
distributions the average time to reach threshold s, E(T5), is
an increasing function of p, as illustrated in Figure 9.

For both distributions, when p increases, the average value of
the HI is first higher than, and subsequently (for greater val-
ues of the time variable t), lower than, the HI corresponding
to a lower value of p. Increasing p corresponds to delaying
the decrease in HI, i.e., delaying the onset of the degradation;
but, once the degradation occurs, it is more sudden. See Fig-

10
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Figure 8. The Weibull distribution shape factor 35 and the
scale factor 7, for various HI thresholds for NASA battery
dataset.

ure 10 for an illustration.
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Figure 9. Gamma and Weibull distribution F[T}] as a func-
tion of s for three values of p. N-CMAPSS dataset.

3.2.1. Relationship Between shape factor and Exponent p

Let us focus on the Weibull case, although a similar reason-
ing could be carried out with other distributions. If we com-
pare two data sets with different shape factors g , the corre-
sponding health indices will have different exponents p. One
can ask the question: what is the relationship between those
two parameters? As seen in the previous subsection, a higher
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0.8 — p=6.00
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(a) Gamma distribution F[H I(t)] as a function of ¢ for three values
of p. N-CMAPSS dataset.
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(b) Weibull distribution E[H(t)] as a function of ¢ for three values
of p.

Figure 10. Sensitivity to various p for the turbofan case study.
N-CMAPSS dataset.

value of p provides a better fit to data that correspond to a
faster degradation, therefore a higher shape factor. One can
quantity that relationship. To do so, consider the g-percent
quantile, B4, which can be expressed in terms of the Weibull
parameters (see Eq.(37)). Namely:

1
nP(—lng)®
Therefore the health index trajectory corresponding to the g-
percent quantile is described by:

1

HI,(#)=1-BtP =1— (———
q(t) q (np(—lnq)F

) (69)

This trajectory reaches O (failure ) at time ¢ o1, (q), where

tror(q) = n(—In(q))? (70)

Clearly, tgor,(q) is independent of the exponent p. As ex-
pected, the failure time depends only on the parameters of the
Weibull distribution, and on where in the population the par-
ticular sample is situated, i.e., which quantile it corresponds
to. Those parameters determine when the asset will fail, but
not how fast it degrades. That indication is given by the ex-

11
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ponent p, as seen in Figure 11.
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Figure 11. HI for various quantiles and p exponents

Indeed, to determine the time ¢, at which the HI reaches the
level s, one solves
HI,(t)=s (71)

for ¢, which provides ¢,:

to=(1-5)7n(~In(g)* (72)

From this equation, one can answer the following question:
for a different shape factor 3, how must the exponent p in the
health index be adapted so that the HI keeps reaching level
s at the same time, i.e., t, remains the same. This defines a
relationship between p and S for a given threshold s:

In(=In(q))
In(l—s)

1 1

wg Y

As an illustration, let us compare, for the 20-percent quantile,
two health indices that cross the threshold 0.5 at the same
point in time, corresponding respectively to, for the first, a
shape factor of 2 and an exponent equal to 1.52, and, for the
second, a shape factor of 4 and an exponent equal to 2.06.
This case is illustrated in Figure 12. After crossing the thresh-
old, it is seen that the curve corresponding to a higher shape
factor (faster degradation) reaches level O earlier. The HI cor-
responding to a higher value of p lies above the other one
before crossing the threshold and below it afterwards;

(73)

3.3. Variable Degradation Exponent (p)

The formulation as in Eq. (31) implies that, for any fixed
degradation level s (i.e., horizontal cuts along the degrada-
tion curves), the parameter p influences the probability distri-
bution of the crossing times ¢, which represents the moments
when individual units reach the given degradation level. Fur-
thermore, p affects the distribution of the random variable b,
as seen e.g. in the Weibull case, the time ¢, can be expressed
as shown in Eq. (72), where ¢ is the cumulative probability of
the random variable b, and 1 and 3 are the Weibull scale and
shape parameters, respectively. This relationship highlights

1.0

—— Hn,B=2,p=1.52
Hl,B=4,p=2.06
o84 NN Degradation Level s = 0.5

0.6

0.4 4

Health Index

0.2 4

0.0
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Figure 12. HI5(t) (orange), faster degradation, reaches fail-
ure earlier than H I (¢t) (blue)

that p and q together influence the timing to cross a degrada-
tion level and hence the degradation trajectory.

The assumption of fixed values B, per unit as in Eq. (37) im-
plies that the degradation curves described by the stochastic
health index HI(t) = 1 — bt? should not intersect. How-
ever, as illustrated in Figure 13, crossings are observed in the
N-CMAPSS dataset between degradation curves of units 1
and 7, and units 3 and 8. Such crossings challenge the as-
sumption of fixed B, and p parameters for each unit. If p is
truly fleet-wide and g (or equivalently B,) is unit-specific and
fixed, crossings should not occur.
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Figure 13. Crossing of degradation curves

To address this discrepancy, we propose following approach:
introducing time variability in p and hence in B, as well. If
we assume that ¢ is unit-specific and fix, we can calculate ¢
from the end-of-life (EOL) time points tgor:

_tpoL )ﬁ

gpor = e~ (74)

The corresponding B, values can be expressed as in Eq. (37).
Inserting B, into the health index formula ¢, for specific degra-

12
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dation levels, yields:

_ log(1l — s)
log(ts) — log(n) — glog(~log(gpor))

p(ts, s) (75)
By substituting the expression for ggor, in Eq. (74) derived
from the Weibull distribution, we obtain a simplified formu-
lation that is independent of the Weibull parameters:

_ log(1—s)
log(727)

teoL

p(ts,s) (76)
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Figure 14. Degradation Exponent p varying in time
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Figure 15. Degradation Exponent p varying per degradation
level

Note that the last two samples of each unit is not plotted, as
the p exponent goes to O when t approaches tpor, which is
consistent with Eq. 76. This evolution of p can also be vi-
sualized as a function of the degradation level s, as shown
in Figure 15. Using this approach, Figure 14 illustrates unit-
specific p values computed from degradation data. These p
values deviate from the initial fleet-wide p. The following is
a heuristic approach; we assume linear growth as in Eq.(65)
following observations from Figure 14 and also account for

differences between units:
p(t) =po + at + €(t), (77)

where pg and « are fleet-wide parameters and €(t) is an asset-
specific parameter and can be a function of e.g. environmen-
tal or operational influence X (¢) or dependent on mainte-
nance interventions X, as elaborated in section 2.9. This in-
dividual contribution to the parameter p makes crossings pos-
sible. Fitting this formula to the N-CMAPSS dataset yields
values for py = 0.913 and o« = 0.053.

We assume that Eq. (59) still holds for variable p (it was
shown in 2.8 that it does if p depends on ¢ only through
s). Furthermore, we replace, in the exponent, the value p,
for constant p, with the conditional expectation of p given s.
We estimate that expectation from ground truth degradation
curves by the empirical mean, i.e. the arithmetic mean of the
values taken by p on all the samples when the respective Hls
cross different degradation levels s = [0,0.1,0.2, ...,0.8]:

1 &
Elpls) = 5 d_pilts), (78)
S i=1

where p; (t;) are the respective individual p values calculated
with Eq.(76). To illustrate the improved fit of the varying p
value compared to the constant p value, two Q-Q plots are
presented. The theoretical quantiles are obtained from the
2P Fréchet distribution, with shape parameter 3, and scale
parameter \p, as defined in Eq.(25) and Eq.(26), respectively.
For the theoretical quantiles, the cumulative probabilities g
are evenly spaced across the sample, excluding the boundary
cases 0 and 1. Specifically, g; is given by:

i
,L' = 7, 79

e n+1 (79

where ¢ is the index of the sample, and n is the total number
of samples. The corresponding quantiles are then determined

using Eq. (37).

In contrast, for the observed quantiles, the B, values are di-
rectly calculated from the N-CMAPSS dataset by rearranging
Eq. 21):
1-s
7
where p was either the constant p value or the E[p| s], where
at different degradation levels s = [0,0.1,0.2,...,0.8], the
mean of the respective p values according to Eq.(76) was cal-
culated:
Comparing Figure 16, where the p exponent is a fixed value of
3.35 as described in section 3.1.1 and Figure 17 with varying
p exponent as described in this section, the fit of the variable p
seems better visually. When calculating the MSE to the ideal
reference line, we observe 4.11e — 5 for fixed p and 4.80e — 6
for the varying p exponent. Figure 18 shows the analytical

B, = (80)
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Q-Q Plot for 2P Fréchet Distribution
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Figure 16. Q-Q plot with constant p value
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Figure 17. Q-Q plot with varying p value

curves with the varying p values according to Eq. (77), omit-
ting the e(¢). Therefore, these curves can be interpreted as
the behavior of the unit in case it would observe mean oper-
ational and external conditions as well as mean maintenance
interventions:

4. DISCUSSION

It is fully realized that the case studies considered in this
paper involve data sets which are either synthetic or labo-
ratory data. Real-world data sets will be characterized by
additional complexity; in particular, censored data, multiple
failure modes, possibly interaction between failure modes.
This added complexity will call for pre-processing methods
such as data segmentation, outlier detection, and data impu-
tation, all of which may affect parameter estimation quality.

Figure 18. Ground truth health index curve and correspond-
ing analytical health index curves

It should be noted that the proposed method can be applied
at both system and component levels. Also, more complex
probability distributions can be addressed.

In applying the maximum likelihood estimation method, it
was noticed that the data corresponding to a HI value of 0.9
appeared a little as ’outliers’, as shown for instance in Ta-
ble 1 where the AIC value corresponding to s=0.9 does not
follow the decreasing trend from O to 0.8. This may be ex-
plained by the fact that s = 0.9 is encountered after just a
few cycles, i.e. corresponds to a small sample. Also, for the
battery case (laboratory data) it was observed that the HI is
not totally monotonic (Fig.6) and that fluctuations about the
average (Fig.7 and Fig. 8) are more important than in the tur-
bofan case. In general, the question of missing data points
and outliers is the same as can be encountered in most data
processing situations. Outlier detection methods, interpola-
tion and imputation methods for missing points will help deal
with such situations, much as in any statistical data process-
ing situation.

We would like to point out that the variable degradation ex-
ponent model described in Section 3.3 provides several ways
of handling increasing complexity. One way consists of in-
corportating more variability in the p exponent; another, of
modifying ¢q. As explained in Section 3.2, modifying p af-
fects the speed of degradation, while modifying q impacts the
end of life.

Real-world variability in the operating conditions could be
incorporated into the p(s) or g parameters by using Eq.(69):

. p(s)
HI{t) =1- T (81)
n (_ IOg(q + QOperational)) B
or equivalently
. P(8)+Poperational
HI(t)=1- (82)
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Depending on the interpretation one can choose to incorpo-
rate the operational condition in the exponent (degradation
shape) or the ¢ value (change in population behaviour due to

operational conditions) as shown in Figure 19. Both p,perational

and goperational are related via the following equation, which

states the equality of HI(t) as expressed by Eq. (81) or

Eq.(82):

pope"‘ational+1
)y

—(—1lo P
(( g q) (83)

Qoperational = €
A third way of fitting the health index to a more-complex dy-
namic situation would of course be to complexify the power
law by adding another term to the current HI definition.

Observed HI
— Unit 6
=== A0S = Poperational

=== AC= Qoperational

AC = Qoperational

AS = Poperational

Health Index

30 32 34 36 38 40 42 44
cycles

Figure 19. Residual of analytical curve and ground truth

Integration of Analytical Health Indices with Deep Learn-
ing for Hybrid Prognostics.

Recent advances in hybrid prognostics have highlighted the
benefits of integrating reliability-based health modeling with
deep learning architectures (Bajarunas et al., 2024). The prob-
abilistic Health Index (HI) framework introduced in this work
serves not only as an interpretable model of degradation but
also as a structural prior that can be embedded into deep learn-
ing models, particularly autoencoders (AEs), to support con-
strained and meaningful latent representation learning.

In conventional unsupervised learning approaches, AE latent
spaces are often optimized solely for reconstruction fidelity,
leading to abstract embeddings that may not correlate with
actual degradation. By contrast, our HI formulation, which
models degradation trajectories using interpretable parame-
ters such as initial condition, degradation rate, and reliabil-
ity parameters of the failure time, introduces a health-aware
constraint that can be directly incorporated into the AE train-
ing process. This can be implemented through latent an-
choring strategies, where the AE is regularized to produce
latent curves that resemble reliability-consistent HI progres-
sions over time.

This integration not only increases the robustness and inter-

pretability of the learned representations but also enables struc-
tured extrapolation for remaining useful life prediction. By

calibrating the probabilistic HI parameters on inferred latent

trajectories, future HI evolution can be analytically forecasted,
offering uncertainty-aware RUL estimates even in data-sparse

or label-scarce environments. Furthermore, since this analyt-

ical HI contains random coefficients, it can easily describe

random variations from asset to asset in a fleet. Adaptation

to different systems or different operating conditions is per-

formed naturally through adaptation of the coefficients.

The feasibility and effectiveness of these hybrid strategies, in-
tegrating analytical health modeling with deep learning, have
been evaluated in recent studies. Bajarunas et al. (Bajarunas
et al., 2024) showed that integrating analytical HI structures
with unsupervised learning yields improved interpretability
and transferability across systems. Furthermore, (Goglio, Ba-
jarunas, Dersin, Santos, & Arias Chao, 2024) explored the
use of quantile regression built on HI trajectories to forecast
RUL under uncertainty, providing an example of how these
structured degradation representations can directly support
predictive maintenance applications in aviation.

These results collectively support the argument that the pro-
posed analytical HI modeling is not an isolated theoretical
tool, but a foundation for robust hybrid prognostics systems.
It enables deep learning models to retain flexibility while in-
corporating structural knowledge essential for reliability and
decision-making in industrial contexts.

5. CONCLUSION AND PERSPECTIVES

This study has established an analytical framework for mod-
eling health indices in cases where the time-to-failure follows
a known probability distribution such as a Gamma, Weibull,
or Pareto. By leveraging observed health index trajectories
over time and specifically the failure times, we have derived
an analytical form for the health index that is consistent with
these observations. Additionally, we provided an analytical
expression for the distribution of the time to reach any inter-
mediate degradation level.

The key contributions of this work are summarized as fol-
lows:

* A systematic methodology to derive analytical, proba-
bilistic HIs from TTF and degradation data.

e Closed-form derivations of the distribution of times re-
quired to reach intermediate degradation thresholds.

e Detailed analysis for widely-used TTF models, specifi-
cally Gamma, Weibull, and Pareto distributions.

e Demonstration of the methodology on public datasets,
including turbofan engines and battery cells.

* Introduction of a heuristic extension to model heteroge-
neous degradation paths, late-stage acceleration, or main-
tenance events.
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The availability of closed-form HI expressions is highly ben-
eficial for predictive maintenance. In particular, it facilitates
accurate remaining useful life estimation and enhances model
explainability compared to black-box approaches that derive
RUL estimates directly from sensor measurements. More-
over, once an analytical HI is established for a given asset, it
can be adapted to similar assets or to the same asset operating
under different conditions, reducing the need to re-learn the
HI from scratch for each new dataset.

Looking ahead, several avenues for future work are promis-
ing. First, the current approach can be extended to incorpo-
rate other TTF distributions and alternative HI formulations
by applying the general methodology outlined in Section 2.2.
Second, integrating quantile regression techniques and ex-
trapolating Hls from individual degradation trajectories (as
discussed in Section 3.3) could further enhance prognostic ac-
curacy. Finally, the analytical health index framework opens
new opportunities for merging machine learning — particu-
larly deep survival methods — with traditional reliability en-
gineering, thereby advancing the state of the art in survival
analysis and prognostics.

MAIN CONCEPTS
Symbol / Term Definition

HI Health Index

TTF Time to Failure

MTTF Mean Time to Failure

T Random variable representing the TTF

F(t) Cumulative Distribution Function: P[T < ¢

R(t) Reliability Function: P[T > t]

T First hitting time of health level s

h(t) Health Index at time ¢

B, g-percent Quantile

CI Confidence Interval

MLE Maximum Likelihood Estimation

AIC Akaike Information Criterion
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