Uncertainty Assessment Framework for IGBT Lifetime Models. A Case Study of Solder-Free Modules

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Dec 30, 2024
Ander Zubizarreta Markel Penalba David Garrido Unai Markina Xabier Ibarrola Jose Aizpurua

Abstract

Insulated gate bipolar transistors (IGBTs) are ubiquitous semiconductor devices used in diverse electronic power applications. The reliability and lifetime assessment of IGBTs is intricate and influenced by different ageing processes. One of the main ageing mechanisms is the bond wire lift-off failure mode. The model used to describe this failure mode and estimate the IGBT lifetime is influenced by different variables and factors, which are stochastic, and tend to be specifically adjusted for different IGBT modules and applications. However, unless these variables are not assessed with respect to potential sources of uncertainty, the IGBT lifetime estimate leads to a single-value deterministic estimate, which, frequently, results inaccurate. In this context, assessing the influence of the variability of these variables on the lifetime model is a crucial activity for an uncertainty-aware IGBT lifetime estimate and adoption of appropriate sensing technology. Accordingly, this paper presents a methodology to evaluate the impact of the uncertainty of IGBT lifetime parameters on the lifetime estimate. The approach is first validated on three different experimental IGBT operation profiles, demonstrating the impact of variations of certain variables on the damage estimation. The approach has been tested here for a single lifetime model, but it is generally applicable to other IGBT lifetime models.

Abstract 102 | PDF Downloads 78

##plugins.themes.bootstrap3.article.details##

Keywords

Semiconductor, lifetime, IGBT, uncertainty, reliability, condition monitoring

References
Abuelnaga, A., Narimani, M., & Bahman, A. S. (2021). A review on igbt module failure modes and lifetime testing. IEEE Access, 9, 9643-9663. doi: 10.1109/ACCESS.2021.3049738
Aizpurua, J. I., McArthur, S. D. J., Stewart, B. G., Lambert, B., Cross, J. G., & Catterson, V. M. (2019). Adaptive power transformer lifetime predictions through machine learning and uncertainty modeling in nuclear power plants. IEEE Transactions on Industrial Electronics, 66(6), 4726-4737. doi: 10.1109/TIE.2018.2860532
Aizpurua, J. I., Papadopoulos, Y., Muxika, E., Chiacchio, F., & Manno, G. (2017). On cost-effective reuse of components in the design of complex reconfigurable systems. Quality and Reliability Engineering International, 33(7), 1387-1406. doi: 10.1002/qre.2112
Aizpurua, J. I., Stewart, B. G., McArthur, S. D. J., Jajware, N., Kearns, M., Garro, U., . . . Mendicute, M. (2021). A diagnostics framework for underground power cables lifetime estimation under uncertainty. IEEE Transactions on Power Delivery, 36(4), 2014-2024. doi: 10.1109/TPWRD.2020.3017951
Antonopoulos, A., D’Arco, S., Hernes, M., & Peftitsis, D. (2019). Challenges and strategies for a real-time implementation of a rainflow-counting algorithm for fatigue assessment of power modules. In 2019 ieee applied power electr. conf. and expo. (p. 2708-2713). doi: 10.1109/APEC.2019.8722284
Antonopoulos, A., D’Arco, S., Hernes, M., & Peftitsis, D. (2021). Limitations and guidelines for damage estimation based on lifetime models for high-power igbts in realistic application conditions. IEEE Journal Emerging and Selected Topics in Power Electr., 9(3), 3598-3609. doi: 10.1109/JESTPE.2020.3004093
ASTM. (2017). Standard Practices for Cycle Counting in Fatigue Analysis. ASTM E1049-85. doi: 10.1520/E1049-85R17
Bayerer, R., Herrmann, T., Licht, T., Lutz, J., & Feller, M. (2008). Model for power cycling lifetime of igbt modules - various factors influencing lifetime. In 5th int. conf. on integrated power electronics systems (p. 1-6).
Cai, Y., Zhao, Y., Ma, X., & Zhou, K. (2020). Reliability assessment in dynamic field environment incorporating multiple environmental effects. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 234(1), 3-14. doi: 10.1177/1748006X19879607
Changcong, Z., Mengyao, J., Haodong, Z., & Fei, C. (2021). Uncertainty analysis of motion error for mechanisms and kriging-based solutions. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(5), 731-743. doi: 10.1177/1748006X21999019
Chiacchio, F., Aizpurua, J. I., D’Urso, D., & Compagno, L. (2018). Coherence region of the priority-and gate: Analytical and numerical examples. Quality and Reliability Engineering International, 34(1), 107-115. doi: https://doi.org/10.1002/qre.2241
Degrenne, N., Ewanchuk, J., David, E., Boldyrjew, R., & Mollov, S. (2019). A prognostics framework for power semiconductor igbt modules through monitoring of the on-state voltage. In Annual conference of the phm society (Vol. 11). doi: 10.36001/phmconf.2019.v11i1.829
Degrenne, N., Kawahara, C., & Mollov, S. (2015). A review of prognostics and health management for power semiconductor modules. In Annual conference of the phm society (Vol. 7). doi: 10.36001/phmconf.2015.v7i1.2763
Elwakeel, A., Mcneill, N., Alzola, R. P., Surapaneni, R. K., Galla, G., Ybanez, L., . . . Yuan, W. (2023). Characterizing semiconductor devices for all-electric aircraft. IEEE Access, 11, 73490-73504. doi: 10.1109/ACCESS.2023.3279088
Fu, J., Peyghami, S., Núñez, A., Blaabjerg, F., & De Schutter, B. (2023). A tractable failure probability prediction model for predictive maintenance scheduling of large-scale modular-multilevel-converters. IEEE Transactions on Power Electronics, 1-12. doi: 10.1109/TPEL.2023.3241317
Górecki, K., Górecki, P., & Zarebski, J. (2019). Measurements of parameters of the thermal model of the igbt module. IEEE Transactions on Instrumentation and Measurement, 68(12), 4864-4875. doi: 10.1109/TIM.2019.2900144
Haque, M. S., Choi, S., & Baek, J. (2018). Auxiliary particle filtering-based estimation of remaining useful life of igbt. IEEE Transactions on Industrial Electronics, 65(3), 2693-2703. doi: 10.1109/TIE.2017.2740856
Held, M., Jacob, P., Nicoletti, G., Scacco, P., & Poech, M.-H. (1997). Fast power cycling test of igbt modules in traction application. In Proceedings of second international conference on power electronics and drive systems (Vol. 1, p. 425-430 vol.1). doi: 10.1109/PEDS.1997.618742
Hernes, M., D’Arco, S., Antonopoulos, A., & Peftitsis, D. (2021). Failure analysis and lifetime assessment of igbt power modules at low temperature stress cycles. IET Power Electr., 14(7), 1271-1283. doi: https://doi.org/10.1049/pel2.12083
Huang, H., & Mawby, P. A. (2013). A lifetime estimation technique for voltage source inverters. IEEE Transactions on Power Electronics, 28(8), 4113-4119. doi: 10.1109/TPEL.2012.2229472
Huang, Y., Luo, Y., Xiao, F., Liu, B., & Tang, X. (2023). Evaluation of the degradation in electrothermal characteristics of igbts during thermal cycling co-caused by solder cracking and al-wires lifting-off based on iterative looping. IEEE Transactions on Power Electronics, 38(2), 1768-1778. doi: 10.1109/TPEL.2022.3209331
IEC. (2019). Semiconductor devices discrete devices. Insulated-gate bipolar transistors (igbts). IEC 60747-9.
Infineon Technologies AG. (2013, 11). ”IGBT modules – FF200R12KT4” [Computer software manual]. (Rev. 2.0)
Liu, H., Chen, M., Du, C., Tang, J., Fu, C., & She, . (2021). A copula-based uncertainty propagation method for structures with correlated parametric pboxes. Int. J. Approximate Reasoning, 138, 89-104. doi: 10.1016/j.ijar.2021.08.002
Liu, J., Li, L., Chen, G., & Liu, Y. (2022). High precision igbt health evaluation method: Extreme learning machine optimized by improved krill herd algorithm. IEEE Trans. Device and Materials Reliability, 1-1. doi: 10.1109/TDMR.2022.3228253
Lu, Y., & Christou, A. (2017). Lifetime estimation of insulated gate bipolar transistor modules using two-step bayesian estimation. IEEE Trans. Device and Materials Reliability, 17(2), 414-421. doi: 10.1109/TDMR.2017.2694158
Lutz, J., Schlangenotto, H., Scheuermann, U., & De Doncker, R. (2018). Semiconductor power devices physics characteristics reliability (2nd ed. 2018). Springer Int. Publishing. doi: 10.1007/978-3-319-70917-8
Mandeya, R., Chen, C., Pickert, V., & Naayagi, R. T. (2018). Prethreshold voltage as a low-component count temperature sensitive electrical parameter without self-heating. IEEE Transactions on Power Electronics, 33(4), 2787-2791. doi: 10.1109/TPEL.2017.2749179
Matsuishi, M. (1968). Fatigue of metals subjected to varying stress. Japan Society of Mechanical Engineers. Miner, M. A. (1945, 03). Cumulative Damage in Fatigue. Journal of Applied Mechanics, 12(3), A159-A164. doi: 10.1115/1.4009458
Qin, F., Bie, X., An, T., Dai, J., Dai, Y., & Chen, P. (2021). A lifetime prediction method for igbt modules considering the self-accelerating effect of bond wire damage. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(2), 2271-2284. doi: 10.1109/JESTPE.2020.2992311
Scheuermann, U.,&Schmidt, R. (2013). Impact of load pulse duration on power cycling lifetime of al wire bonds. Microelectronics Reliability, 53(9), 1687-1691. doi: 10.1016/j.microrel.2013.06.019
Tu, C., Xu, H., Xiao, B., Lu, J., Guo, Q., & Long, L. (2022). Research on the influence of bond wire lift-off position on the electro-thermal characteristics of igbt. IEEE Transactions on Electron Devices, 69(3), 1271-1278. doi: 10.1109/TED.2022.3140689
Yang, S., Xiang, D., Bryant, A., Mawby, P., Ran, L., & Tavner, P. (2010). Condition monitoring for device reliability in power electronic converters: A review. IEEE Trans. Power Electr., 25(11), 2734-2752. doi: 10.1109/TPEL.2010.2049377
Yaqub, I., Li, J., & Johnson, C. M. (2015). Dependence of overcurrent failure modes of igbt modules on interconnect technologies. Microelectronics Reliability, 55(12, Part A), 2596-2605. doi: 10.1016/j.microrel.2015.09.020
Strbac, B., Acko, B., Havrlisan, S., Matin, I., Savkovíc, B., & Hadzistevíc, M. (2020). Investigation of the effect of temperature and other significant factors on systematic error and measurement uncertainty in cmm measurements by applying design of experiments. Measurement, 158, 107692. doi: 10.1016/j.measurement.2020.107692
Section
Technical Papers