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ABSTRACT

Insulated gate bipolar transistors (IGBTs) are ubiquitous semi-
conductor devices used in diverse electronic power applica-
tions. The reliability and lifetime assessment of IGBTs is
intricate and influenced by different ageing processes. One
of the main ageing mechanisms is the bond wire lift-off fail-
ure mode. The model used to describe this failure mode and
estimate the IGBT lifetime is influenced by different vari-
ables and factors, which are stochastic, and tend to be specif-
ically adjusted for different IGBT modules and applications.
However, unless these variables are not assessed with respect
to potential sources of uncertainty, the IGBT lifetime esti-
mate leads to a single-value deterministic estimate, which,
frequently, results inaccurate. In this context, assessing the
influence of the variability of these variables on the lifetime
model is a crucial activity for an uncertainty-aware IGBT
lifetime estimate and adoption of appropriate sensing tech-
nology. Accordingly, this paper presents a methodology to
evaluate the impact of the uncertainty of IGBT lifetime pa-
rameters on the lifetime estimate. The approach is first val-
idated on three different experimental IGBT operation pro-
files, demonstrating the impact of variations of certain vari-
ables on the damage estimation. The approach has been tested
here for a single lifetime model, but it is generally applicable
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to other IGBT lifetime models.

1. INTRODUCTION

Insulated Gate Bipolar Transistors (IGBTs) are semiconduc-
tor devices used in power electronic converters for differ-
ent applications, ranging from low-power IGBTs used in few
kilowatts applications like induction cookers to high-power
IGBT modules for megawatts converters used in renewable
energy plants, such as photovoltaic and wind farms (Lutz,
Schlangenotto, Scheuermann, & De Doncker, 2018). IGBTs
are used as electronic switches due to their high-efficiency
and fast-switching properties (Elwakeel et al., 2023). How-
ever, they are often ranked as having the lowest reliability in
power converters (Yang et al., 2010). Recently, the grow-
ing interest in amortizing the initial capital investment of re-
newable energy plants and reducing their operational costs
through predictive maintenance has led to an extensive in-
terest and research focused on prognostics & health man-
agement (PHM) applications, specially focused on the life-
time assessment of IGBT-based power modules (Degrenne,
Kawahara, & Mollov, 2015; Abuelnaga, Narimani, & Bah-
man, 2021; Fu, Peyghami, Núñez, Blaabjerg, & De Schutter,
2023; Cai, Zhao, Ma, & Zhou, 2020).

The main failure modes of IGBTs can be classified into sud-
den and ageing failures (Abuelnaga et al., 2021). Sudden
failures are caused by random phenomena, such as cosmic
radiation or electric discharge. In contrast, ageing failures are
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caused by environmental or operational stress, which over-
come a failure threshold limit.

The main ageing failure causes of IGBTs are classified into
corrosion, electric migration, dielectric breakdown and fa-
tigue (Lutz et al., 2018). The focus of this work is on fa-
tigue damage, which is caused by an imbalanced coefficient
of thermal expansion (CTE) of the different materials within
the IGBT structure. Figure 1 shows a schematic view of the
internal lateral structure of an IGBT module and its materials.

Bond-wire
IGBT Chip

Ceramics
Solder

Base plate
Thermal 
greaseHeatsink

Copper

Bond-wire lift off
mechanism

Copper

Copper
Solder

Figure 1. Structure of IGBT module divided by layers indi-
cating bond wire lift-off mechanism — adapted from (Hernes
et al., 2021).

IGBTs operate in switching mode with different working power
profiles, which leads to repeated temperature oscillations that
cause damage in the joints of different material layers as they
have different CTEs. In turn, this damage is expressed mainly
as solder cracking failure modes (Lutz et al., 2018) and bond
wire lift-off (cf. Figure 1).

1.1. Motivation

The degradation of IGBTs can be measured directly using
expensive laboratory instrumentation, e.g. 3D x-rays (Yaqub,
Li, & Johnson, 2015), or indirectly, using internal chips where
temperature is modelled through the virtual junction tempera-
ture, Tj (Degrenne et al., 2015; Degrenne, Ewanchuk, David,
Boldyrjew, & Mollov, 2019). The junction temperature in-
creases as the current path area decreases due to the bond
wire lift-off phenomenon (Tu et al., 2022; Y. Huang, Luo,
Xiao, Liu, & Tang, 2023). The direct measurement of Tj is
not feasible because the inside of the chip is not reachable.
Accordingly, in order to monitor the fault-to-failure progres-
sion, it is needed to track different failure precursors, called
temperature-sensitive electrical parameters (TSEPs) (Degrenne
et al., 2019). These TSEPs have predefined temperature de-
pendencies, and they can be directly measured from the gate-
emitter circuit or collector-emitter circuit in order to deter-
mine Tj . Mandeya et. al compare several TSEPs for a given
IGBT module, showing where the sensor is placed, when the
measurement is performed and, finally, which sensor type is
required for each TSEP (Mandeya, Chen, Pickert, & Naayagi,
2018). Focusing on the bond wire lift-off failure mode, the
most widely used TSEP is the collector-emitter voltage, VCE(on).
As the bond wires age, the equivalent conduction resistance

increases and this leads to increasing the VCE(on).

There are pre-defined threshold values for TSEPs, which de-
fine end-of-life limits, e.g. 5% increase of VCE(on) with re-
spect to initial conditions (Abuelnaga et al., 2021). Figure 2
shows the output characteristics of an IGBT collector-emitter
voltage during the conduction phase of the IGBT, VCE(on),
as a function of conduction currents, IC(on). It can be ob-
served that it is directly related with temperature, from 25→C
to 150→C.

Figure 2. IGBT data from Infineon’s manufacturer datasheet
(Infineon Technologies AG, 2013).

However, TSEP measurements are prone to errors and un-
certainties due to the measurement resolution of probes and
circuits. For example, high voltage withstand is needed dur-
ing blocking state of the IGBT, yielding to a low-resolution
during conduction state. In addition, current measurements
are needed because VCE(on) depends on IC(on), as shown in
Figure 2. A characterization of each IGBT is needed, even
for the same IGBT reference, as is highlighted in bold font in
Table. 1, where disparity of VCE(on) values can be observed
for the same temperature and current value using the same
manufacturer IGBT reference.

Table 1. Collector-emitter saturation voltage values (Infineon
Technologies AG, 2013).

Ic [A] VGE [V] Tvj [→C] VCE,sat [V]

200 15
25 Typical = 1.75,

Maximum = 2.15
125 Typical = 2.05
150 Typical = 2.1

In this context, the lifetime modelling process for the bond
wire lift-off failure mode of IGBTs focuses on the estimation
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of the remaining number of cycles as a function of junction
temperature profiles, among other parameters that influence
the degradation (Abuelnaga et al., 2021).

The junction temperature (Tj) profile estimation has a di-
rect dependency on the data acquisition of TSEPs and related
measurements. Mainly on the VCE(on), but also on other
measurements like IC(on), case temperature (Tc) and ambi-
ent temperature (Ta). Note that the Tc and Ta can only be
considered if heatsink is characterized for the bond wire lift-
off failure mode. As a consequence, these measurements are
prone to different sources of uncertainty and measurement er-
rors. From the junction temperature, the associated thermal
cycles are estimated, !Tj , which are processed through cy-
cle counting methods. Again, the relationship between the
measurement errors and uncertainties is accentuated due to
the post-processing applied to the Tj signal. Figure 3 shows
the functional relationship between precursor-tracking exper-
iments, measurements, processing activities including life-
time influencing variable estimation, and lifetime modelling
activities.

Experiment Measurements Processing Lifetime
Modelling

Figure 3. Conceptual block diagram showing relation be-
tween precursors, experimentation and lifetime modelling.

1.2. Related Work

Different IGBT lifetime models for bond wire lift-off failure
mode assessment have been proposed and evaluated in the
literature (Abuelnaga et al., 2021). Due to the lack of accu-
racy and consistency of the obtained IGBT lifetime estimates,
there have been proposed extensions and variations for spe-
cific contexts and applications. For example, Hernes et al.
evaluated the IGBT lifetime at low temperature stress cycles
(Hernes et al., 2021). Huang and Mawby presented a life-
time estimation model for die-attach solder fatigue through
Weibull-based curve fitting adjusted on the accelerated ageing
tests (H. Huang & Mawby, 2013), which is subsequently con-
nected with the damage model to estimate the IGBT lifetime.
Yizhou et al. presented a lifetime estimation approach using
a Bayesian estimation approach combining Coffin-Manson
models with finite element simulations (Lu & Christou, 2017).
Fei et al. developed a novel IGBT lifetime prediction model
based on the collector-emitter on-resistance (Qin et al., 2021).
Haque et al. presented a remaining useful life (RUL) assess-
ment method based on tracking the evolution of VCE(on) and
estimating the time to reach a voltage limit (Haque, Choi,
& Baek, 2018). Astigarraga evaluated the implementation
of Prognostics and Health Management (PHM) technologies
for IGBT RUL estimation for electric vehicle applications
(Trespaderne, 2016).

With the proliferation of data-driven intelligent solutions, dif-

ferent machine-learning based health-state estimation meth-
ods have been proposed. In this direction, for example, Jiaqi
et al. presented an IGBT health assessment approach based
on machine learning methods, through health-state diagnos-
tics based on accelerated ageing tests (J. Liu, Li, Chen, &
Liu, 2022). Similarly, Rigamonti et al. used an unsupervised
learning strategy to diagnose the health state of IGBTs based
on an experimental dataset which includes collector-emitter
voltage, case temperature and current measurements.

In general, it can be observed that existing IGBT lifetime
estimation models and their applications do not account for
the inherent sources of uncertainty in the lifetime estimation
process (Antonopoulos, D’Arco, Hernes, & Peftitsis, 2021).
There are exceptions that consider the uncertainty associated
with the thermal modeling process through curve fitting strate-
gies (H. Huang & Mawby, 2013), however, the different sources
of uncertainty are not modeled and propagated to the damage
estimation result to assess their impact on the lifetime estima-
tion error. However, this is an important stage for the lifetime
assessment of IGBT, as it is surrounded by different sources
of uncertainty, and this assessment supports the health assess-
ment under uncertainty (Changcong, Mengyao, Haodong, &
Fei, 2021).

1.3. Contribution & Organization

Accordingly, the contribution of this research is the develop-
ment of a damage uncertainty assessment methodology for
IGBTs including different sources of uncertainty and deter-
mination of the influence of the error of different parameters
on the IGBT lifetime estimation error. That is, the novelty of
the work lies in the analysis of the explicit propagation of er-
rors across lifetime estimation stages, and the quantification
of its impact on lifetime estimation.

Lifetime model parameters are derived from device degra-
dation experiments through a data fitting process. The pa-
rameter calculation is then directly dependent on the adjusted
model. In this context, independent of the fitted variable val-
ues, the proposed approach provides a methodology to evalu-
ate the impact of variables on the lifetime. The proposed ap-
proach estimates relative error values dependent on the struc-
ture of the model, not absolute values of variables. Therefore,
it can be adapted to different device degradation experiments.
Obtained results have broader implications for sensing and
measurement equipment, as an explicit relation is obtained
between the individual parameter uncertainty and overall life-
time uncertainty. The proposed framework can be used to
weigh the impact of measurement technology improvements
with respect to the lifetime estimation accuracy.

The remainder of this article is organized as follows. Sec-
tion 2 reviews IGBT lifetime modelling methods. Section 3
presents the proposed sensitivity and lifetime assessment ap-
proach. Section 4 defines the case study. Section 5 presents
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Table 2. Synthesis of IGBT lifetime models for different applications.

Model Failure Modes Variables Precursors Context Limitations Refs.
LESIT —

Eq. (2) Bond wire lift-off !Tj , Tj,m VCE Al2o3 tON not
considered

(Held, Jacob, Nicoletti, Scacco, & Poech,
1997; Hernes et al., 2021)

SKiM63 —
Eq. (3) Bond wire lift-off !Tj , Tj,m,

ton, fdiode
VCE

Solder-free
modules

Only
solder-free (Scheuermann & Schmidt, 2013)

CIPS2008 —
Eq. (4)

Bond wire lift-off,
Solder fatigue

!Tj ,
Tj,min, ton,

I, V,D
VCE Al2o3 Applicable in

the test range
(Bayerer, Herrmann, Licht, Lutz, & Feller,
2008; Hernes et al., 2021; Antonopoulos,

D’Arco, Hernes, & Peftitsis, 2019)

an extensive discussion, and finally, Section 6 concludes.

2. IGBT LIFETIME MODELLING

IGBT lifetime modelling is largely based on field experience
and available datasets collected over a long period of time for
different IGBT technologies (Lutz et al., 2018). IGBT life-
time is generally expressed in the form of number of remain-
ing cycles, Nf , and lifetime modelling approaches are in-
spired from the Coffin-Manson empirical model (IEC, 2019):

Nf = a!T↑n (1)

where a and n are empirical parameters obtained from exper-
imental tests, and !T is the temperature cycle.

A well-known and widely used model is the LESIT model
introduced by Held et al. (Held et al., 1997). In this work
a number of different modules were employed with Al2O3
ceramics leading to the estimation of Nf as a function of the
mean junction temperature (Held et al., 1997):

Nfi = A!Tω

j
.e

Ea

kB(Tj,m) (2)

where A and ω are constant model parameters, kB is the
Boltzmann’s constant (1.38x10↑23 J/K), Ea is the activation
energy, !Tj is the junction temperature variation, and Tj,m

is the mean junction temperature.

The LESIT model in Eq. (2) has been extended for different
modules and applications. As the junction temperature Tj

has a direct dependency on the activation time, ton, which is
caused by the transient response of Tj , the present study uses
validated empirical models which integrate activation time in-
formation.

Namely, the lifetime model defined by Semikron is consid-
ered (Scheuermann & Schmidt, 2013), known as SKiM63
lifetime model, which is designed for skim modules, i.e. a
module without solder and baseplate, and an improved ge-
ometry for the wire bonds. This isolates the occurrence of
the bond wire lift-off failure mode. The model includes addi-
tional factors to the Eq. (2):

Nfi = A!T↑ω

j
e

Ea

kBTj,max arε1!Tj+ε0(
c+ tϑ

on

c+ 1
)fdiode (3)

where A is a constant scaling factor as defined immediately
above, ton is the activation time [s], ar is a geometry param-
eter defined as the bond wire aspect ratio, fdiode is the effect
of the width difference between IGBT and diode, Tj,max is
the maximum junction temperature, c is a constant model pa-
rameter, and ε, ϑ0 and ϑ1 are additional constant model pa-
rameters determined through experimentation and parameter
fitting process (Scheuermann & Schmidt, 2013).

There are other lifetime models, such as the CIPS 2008 model,
which includes additional testing parameters (Bayerer et al.,
2008):

Nfi = K!T↑ε1
j

e
(

ω2
Tj,min+273 )tε3

on
Iε4V ε5Dε6 (4)

where K is a constant model parameter, I is the wire cur-
rent, V is the breakage voltage, D is the bond wire diameter
and {ϑ1, . . . ,ϑ6} are fitting constants as defined immediately
above.

Table 2 synthesizes the main lifetime models, their failure
modes, considered variables, precursors, application context,
limitations, and application reference examples (Abuelnaga
et al., 2021).

From Table 2 it can be observed that there are different pa-
rameters that have been fitted to adjust the lifetime models.
However, to the best of authors’ knowledge, the uncertainty
of these parameters and their impact on lifetime estimation
has not been evaluated. Parameter-specific uncertainty infor-
mation can be used to adapt experimentation activities, e.g.
reduction of uncertainty through improving measuring equip-
ment, and improve health monitoring and lifetime assessment
activities. Therefore, the focus of this paper is on the uncer-
tainty assessment of the SKiM63 model.

3. IGBT LIFETIME ASSESSMENT APPROACH

Figure 4 shows the classical IGBT lifetime assessment ap-
proach. The process starts from the power loss model,
which calculates the losses of the IGBT module from the in-
put loading data, and through a thermal model calculates
the corresponding junction temperature, Tj .

The cycle count module estimates damage cycles, !T
through the application of the rainflow algorithm (ASTM,
2017). The rainflow counting algorithm is a fundamental

4
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Figure 4. Classical IGBT lifetime assessment approach block diagram.

method in fatigue analysis, applied to evaluate the effects of
complex loading patterns on material durability (Matsuishi,
1968). Inspired by how rain flows down a pagoda roof, this
approach breaks down a load sequence into distinct stress
ranges with corresponding cycle counts. By assessing stress
levels and cycle durations, it quantifies the fatigue impact of
each loading cycle, enabling accurate predictions of material
degradation under variable-amplitude loading.

Subsequently, the remaining number of cycles, Nf is esti-
mated from the lifetime model and its corresponding
parameters. Finally, damage Dj is estimated through the
Miner’s cumulative damage law, which considers the
stress contribution of each cycle to the total damage, and it is
linearly accumulated as follows (Miner, 1945):

D =
J∑

i=1

ni

Nfi

(5)

where J is the total number of cycles, ni is the identified ther-
mal cycles, and Nfi

is the total number of cycles calculated
through empirical lifetime modes.

3.1. Uncertainty Assessment Approach

The classical lifetime assessment approach described in Fig-
ure 4, however, does not consider sources of uncertainty. Ac-
cordingly, the main contribution of the proposed lifetime as-
sessment approach is the integration of different sources of
uncertainty, which impact on the damage estimation, such as
the thermal estimate, Tj , and lifetime model parameters.

Accordingly, in order to estimate the impact of the error of
different parameters on the lifetime (damage) estimate, Fig-
ure 5 shows the flowchart of the proposed uncertainty assess-
ment approach.

The proposed framework starts from junction temperature es-
timate Tj and integrates different sources of uncertainty, high-
lighted in red in Figure 5. On the one hand, uncertainties
of junction temperature values are considered, modelling the
variance and errors associated with the junction temperature
estimation. Errors on Tj are propagated through subsequent
analysis stages, including the cycle count, lifetime model, cu-
mulative ageing and lifetime (damage) estimation stages.

This is characterized by adding an error term (Aizpurua et al.,
2019, 2021), defined as follows:

Tj(t) = Tj(t) + eTj
(t) = Tj(t) + Tj(t)→ p (6)

where eTj
(t) is the considered error term at instant t and p is

the error percentage.

This error modelling strategy enables controlling the input
uncertainty of a process and evaluating the impact on the out-
put of the process. It is true that interactions among variables
are not captured with this modelling process. However, this
rationale enables the integration of specific errors, e.g. mea-
surement errors due to calibration or quantization, and their
impact on the process outcome.

Figure 6 shows the junction temperature error example for
different error values on Tj .

The obtained junction temperature estimate including uncer-
tainties is subsequently propagated to the cycle count algo-
rithm, quantifying the cycle range and its impact through the
rainflow algorithm. That is, it is subsequently converted into
!T versus cycles through post-processing with the rainflow
algorithm including the considered error terms. Note that this
step, enables the step-wise error propagation throughout the
lifetime estimation process, instead of simply adding error
terms to late stages after calculating !T .

As for the uncertainty surrounding lifetime model variables,
this is considered by redefining the lifetime equations includ-
ing the corresponding error terms, which is modelled as pa-
rameter uncertainty in Figure 5. Note that the parameter un-
certainty is directly connected with the lifetime modelling
stage, and therefore, compared with Tj the uncertainty mod-
elling process is simpler.

Redefinition of Eq. (3) including error terms, is as follows:

Nfi
= (A+AeA

)!T↑ω+ωeε

j
e

Ea+EaeEa

kB(Tj,m+Tj,meTj,m
)

(ar + arear)
(ε1+ε1eω1

)!Tj+(ε0+ε0eω0
)

(
(c+ cec) + (ton + toneton)

(ϑ+ϑeϑ)

(c+ cec)

)
(fdiode + fdiodeefdiode)

(7)

where eA denotes error of A, eω denotes error of ω, eEa
de-

notes error of Ea, eTj,m
denotes error of Tj,m, ear denotes

error of ar, eε1 denotes error of ϑ1, eε0 denotes error of ϑ0,
ec denotes error of c, eton denotes error of ton, efdiode denotes
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Figure 5. Flowchart of the proposed uncertainty assessment approach for IGBT lifetime assessment.
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Figure 6. Error modelling example on the junction tempera-
ture.

error of fdiode.

Subsequently, the estimate of the number of remaining cy-
cles, Nf , is obtained which is converted into damage cycles
via cumulative ageing defined in Eq. (5).

Finally, in order to compare lifetime estimation models for
damage models without uncertainty, D, and with uncertainty,
De, the error on the damage estimate is calculated as the ra-
tio between the damage without errors [cf. Eq. (5)] and the
damage with error:

eD = De/D (8)

For example, eD=0.5 would mean that there is an underesti-
mation error of 50%, while eD=1.5 would mean that there is
an overestimation error of 50%. This ratio enables the quick
comparison with respect to the model without errors and iden-
tification of underestimation or overestimation errors.
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Figure 8. Junction temperature profiles, numbered #1, #2 and #3, from left to right.

Accordingly, the main objective of the proposed framework is
the evaluation of the influence of different errors on the IGBT
damage estimation. This information is crucial to understand
the influence of parameters on damage estimation and infer
their relevance for the lifetime estimation process.

4. CASE STUDY

Three different junction temperature profiles have been tested
in three different scenarios, which have been obtained from
monitoring the corresponding precursors and post-processing
through a power loss model developed for the IGBT under
study.

Figure 7 shows the workflow of the junction temperature pro-
file conversion. The process starts with the operation
profiles as inputs, which can correspond to different power
electronic applications, and it is connected to the grid &
machine models, which include parameters of the grid
and the corresponding machine, e.g. wind turbines for wind
energy applications. This is then fed into the control &
modulations block, which includes a detailed description
of the converter. Subsequently, this is connected with the
power loss and thermal models, that using electri-
cal and thermal characterizations, calculate power and ther-
mal losses, respectively.

Grid & Machine
models

Control &
Modulations

Power Losses
Model

Thermal
Model

Operation
Profiles

Tj(t)

Figure 7. Operation profile to junction temperature profile
conversion workflow.

The outcome of the process is the junction temperature, Tj(t).
Figure 8 shows the three junction temperature profiles as-
sessed in this research, which show considerably different
thermal properties, providing a comprehensive case study for
the suggested lifetime models. These profiles have been pro-
vided by an industrial partner and were deliberately selected
to assess the impact on uncertainty of diverse junction tem-
perature profiles, with low, mild and high thermal cycles.
They reflect different IGBT operation settings, including nor-

mal and extreme operation environments.

It can be observed that the temperature profile #1 includes
different temperature variations, with temperature values be-
low 100 →C. In contrast, temperature profile #2 shows fewer
variations in temperature, although it has peaks above 100 →C.
Finally, the temperature profile #3 includes periods of highest
junction temperature with temperatures above 100 →C.

4.1. Damage Assessment

Using the damage estimation process explained in Section 3,
firstly the junction temperature is post-processed through the
rainflow algorithm. Figure 9 shows the cycle counting algo-
rithm outcome for the junction temperature profile #3.

Figure 9 shows the number of cycles per cycle range (!T )
and cycle average (Tj,m). The algorithm also provides the
bounds of each cycle so that it is possible to post-process and
infer activation times (tON ) for lifetime estimation purposes.

Subsequently, the deterministic damage assessment is imple-
mented using lifetime equations and corresponding parame-
ters and temperature values. Figure 10 shows the damage as-
sessment results obtained with the following constant values
(Scheuermann & Schmidt, 2013): A=3.4368e14, ω=-4.923,
Ea=6.606e-2, ϑ1=-9.012e-3, ϑ0=1.942, C=1.434, ε =-1.208,
fdiode=0.6204, kb=8.6173e-5 and ar=0.31. Firstly, the load
profile is passed through the rainflow algorithm and load cy-
cles are estimated, !t. Then, the damage estimation is calcu-
lated from Eq. (3) using Tj , and previously defined constants.
Finally, the cumulative damage is calculated via Eq. (5).

It can be observed that the damage profile is different for dif-
ferent junction temperature profiles. Namely, thermal cycles
(!T ) are located below 50 →C for profile #1, above 50 →C
for #2, and around 100 →C for #3. Table 3 displays the total
damage estimate based upon the SKiM63 lifetime model [cf.
Eq. (5)] and consumed life, assuming that a damage value of
1 would mean end of life.

It can be observed that the profile #3 causes the most damage
and profile #1 causes the least. From Figure 10, comparing

7
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Figure 9. Rainflow algorithm outcome for the profile #3 — cf. Figure 8 right.
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Figure 10. Damage using the lifetime model in (3) for the profiles #1, #2 and #3 in Figure 8.

Table 3. Damage estimate for the SKiM63 lifetime model.

Name Damage Consumed life
Profile #1 1.4123e-10 1.4123e-08%
Profile #2 9.0391e-09 9.0391e-07%
Profile #3 4.5613e-07 4.5613e-05%

profile #1 with #2, it can be observed that high temperature
cycles cause more damage than low temperature cycles.

4.2. Uncertainty Assessment

The main goal of this research is not the precise lifetime es-
timation. Instead, the main interest and contribution of this
work is on the uncertainty assessment of lifetime estimation
parameters. Accordingly, the estimated lifetime values are
now post-processed and compared with variations of input
parameters to evaluate their impact on lifetime.

An extended range of possible error values are assessed to
examine the impact on damage estimation error. Although the

adopted error range may be excessive for certain sources of
uncertainty, this is a deliberate decision to examine the impact
of errors in different scales.

Based on the similar structure of different lifetime models in
Eqs. (1)-(4), the main focus of the uncertainty assessment
is on junction temperature Tj , activation time tON , and key
constant parameters such as A and ω, which are common to
the different lifetime models.

4.2.1. Junction Temperature Uncertainty

Focusing on the uncertainty assessment of the junction tem-
perature, a constant error has been added to each point of the
signal so that the original signal is not modified and the de-
sired controlled error is added (cf. Figure 6). Note that the
modified Tj signal is first processed through the rainflow cy-
cle count algorithm, and subsequently, the SKiM63 lifetime
model is applied by propagating the error of the Tj , and quan-
tifying the effect on damage estimation. This impact is then
divided with respect to the damage without error, and the dif-
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Figure 12. Impact of the error of Tj on damage assessment for the profiles #1, #2 and #3 shown in Figure 8.

ference is quantified as illustrated in Figure 10 for each pro-
file. Additionally, Figure 11 shows the effect of the junction
temperature error on the damage estimation.
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Figure 11. Effect of junction temperature error (eTj
) on dam-

age estimation error (eD).

It can be observed in Figure 11 that the damage model is very
sensitive to the errors made in junction temperature estima-
tions. Note that the Tj affects directly the Nf calculation, but
also it impacts on the cycle count !T .

In fact, the changing influence of the cycle counting algorithm
can be observed in the results. Namely, the error variation al-
ready incorporated in profile #3 is not as much affected as
profiles #1 and #2. The original signals for profiles #1 and
#2 are smoother than profile #3 (cf. Figure 8), meaning that
the implied error affects more, resulting in a greater differ-
ence with respect to the original damage estimation without
errors. Figure 12 shows the extreme case of up to 30% error
on the junction temperature Tj applied to the three different
temperature profiles. As for negative error variations, the im-
pact is negligible due to the exponential nature of eTj,m

in
Eq. (7).

If the sum of the damage with errors is divided with the sum
of the damage without errors in Figure 12, the last values
shown in Figure 11 are obtained, that is 35.316 for profile

#1, 26.5345 for profile #2 and 19.3758 for profile #3. Notice
that these error terms are in relative units [cf. Eq. (8)].

4.2.2. Activation Time Uncertainty

The activation time is inferred from the duration of the cycles
obtained from the rainflow cycle-count algorithm. The es-
timated activation time values are further post-processed in-
cluding an error by repeating the uncertainty evaluation pro-
cess. This stage is adopted at the end of the rainflow algo-
rithm, so the cycle-count algorithm does not have an impact
on the error quantification outcome. Figure 13 shows the im-
pact of the activation time error on damage assessment.
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Figure 13. Effect of activation time error (eTON
) on damage

estimation error (eD).

It can be observed in Figure 13 that the damage estimation is
sensitive to the errors in activation time. In this case, the most
penalizing junction temperature profile #3 shows an increased
damage estimation error. In contrast, junction temperature
profiles #1 and #2 do not show a relevant impact on damage
estimation error.

4.2.3. Uncertainty of the Constant Parameters

Subsequently, the uncertainty quantification process is ap-
plied to the constant parameters in Eq. (7). The errors in
constant variable terms model the uncertainty associated with
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the variable fitting process. Generally, constant variables are
adjusted from experimental results, including the mean value
and errors or residuals (Hernes et al., 2021). The error terms
of constant variables in Eq. (7) denote this variation. Fig-
ure 14 shows the impact of the exponential error on the dam-
age estimation.
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Figure 14. Effect of exponential parameter ω error (eω) on
damage estimation error (eD).

It can be observed in Figure 14 that the damage estimation is
very sensitive to the errors in the exponential parameter, and
it is directly related to the junction temperature. Namely, the
higher the damage to the junction temperature, the higher is
the effect on the damage estimation error. As for negative
error variations, the impact is negligible due to the nature of
eω in Eq. (7).

Finally, for the constant error parameters, Figure 15 shows
the effect on the damage estimation.
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Figure 15. Effect of constant parameter A error (eA) on dam-
age estimation error (eD).

It can be observed in Figure 15, that, the damage model is
very sensitive to the errors in the constant parameter A. How-
ever, as opposed to previous cases, it can be observed that
this is not dependent on the temperature, as this constant is

an adaptation constant with no influence on the junction tem-
perature.

4.2.4. Comparison of the Sources of Uncertainty

In order to cross-compare the different sources of uncertainty,
Table 4 synthesizes the impact of the error of different vari-
ables on the damage estimation for the analysed profiles #1,
#2 and #3. Note that each grid of the table is a normalized
damage estimation with respect to the damage model without
uncertainty, i.e. Table 4 synthesizes 120 normalized lifetime
estimation error values.

All in all, it is observed that the most penalizing factor is the ω
parameter, due to its exponent impact on the damage. Among
the rest of the parameters, it can be observed that the next
most penalizing parameter is the Tj value. Both parameters
show a direct relationship with a positive error causing an
increase in the damage estimation error. However, it can be
observed that there is the inverse effect as well, an increase in
A leads to a decrease in the damage estimate. Finally, it can
be concluded that the effect of the activation time error on the
damage assessment is the least penalizing factor.

Among the tested junction temperature profiles, it can be ob-
served that the higher the temperature, i.e. profile #3, the
greater the impact on the damage estimation error of variable
errors of ω and tON . In contrast, the effect of the impact of the
errors of Tj on damage estimation depend on the variations
of the original Tj signal. Namely, the impact of the added
uncertainties is greater when the original Tj signal has fewer
cycles. In this case, the temperature profile #1 shows fewer
variations than #3 (cf. Figure 8). However, when uncertain-
ties are added, the resulting number of cycles are greater for
the profile #1, and accordingly, the damage estimation error
is higher. Finally, for the constant variable, A, the effect is
constant across all the temperature profiles.

5. DISCUSSION

A practical conclusion of this research is the identification
and ranking of the impact of the error of parameters and vari-
ables on the final lifetime estimation. Constant parameters
that have been extracted from historic experimentation tests
directly impact the lifetime assessment error. Namely, linear
variations in ω yield exponential lifetime assessment errors,
while linear deviations in A lead to linear errors on lifetime
assessment.

Similarly, junction temperature measurement errors impact
negatively on the lifetime assessment. This indicates that a
small measurement error, may be propagated and cause in-
correct lifetime estimates. Finally, errors in activation time
measurement are shown to be less relevant resulting in very
mild differences in lifetime estimation.

Therefore, it is crucial to pay special attention to ω and Tj
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Table 4. Ordered damage error uncertainty for different parameters and for the profiles #1, #2 and #3 [%].

Error ω Tj A tON

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
2% 38.3 52.6 52.5 33.9 30 27 -1.9 -1.9 -1.9 0.06 0.08 0.39
4% 91.6 127 130.6 77.6 70 61 -3.8 -3.8 -3.8 0.13 0.16 0.7
6% 165.9 243 255.6 133.4 118.8 102 -5.6 -5.6 -5.6 0.19 0.24 1.1
8% 269.5 418.9 443.7 204.1 179.4 151 -7.4 -7.4 -7.4 0.25 0.32 1.5
10% 409 685 731.9 293.1 254 211 -9.1 -9.1 -9.1 0.3 0.4 1.8
-2% -27.6 -33.5 -34.1 -26.1 -24.4 -23 2.1 2.1 2.1 -0.06 -0.08 -0.4
-4% -47.5 -55.7 -56.4 -45.9 -43 -40 4.1 4.1 4.1 -0.14 -0.17 -0.81
-6% -61.8 -70 -71.2 -60.9 -58.1 -55 6.4 6.4 6.4 -0.21 -0.25 -1.3
-8% -72.1 -80.3 -80.9 -72.1 -69.3 -66 8.7 8.7 8.7 -0.27 -0.34 -1.7
-10% -79.6 -88 -88.3 -80.3 -78 -74 11.1 11.1 11.1 -0.34 -0.4 -2.1

values, as it has been observed that their impact on lifetime
estimation is considerable.

It should be noted that the considered error variables have
been considered in isolation, with no joint influence of uncer-
tainties. This may be addressed in future research through
probabilistic uncertainty modelling methods (H. Liu et al.,
2021).

Uncertainty Modelling Alternatives

A conscious decision has been adopted to model the junction
temperature uncertainty with a constant error, which provides
traceability, and it is possible to estimate the impact of er-
rors on the overall lifetime. In contrast, if non-constant error
terms were adopted, these stochastic variations should then be
post-processed through the rainflow algorithm. However, the
relative thermal cycles estimated from the rainflow algorithm
affects the error traceability, and consequently, the impact on
overall lifetime estimation is lost.

Other error modelling alternatives were tested in this research
so as to model the error term eTj

in Eq. (6) including:

(i) a worst-case constant error term inferred from the maxi-
mum Tj value to each temperature value, eTj

= max(Tj)→
p, where p is the error percentage. This results in off-
setting the junction temperature signal, and in the end,
cancelling the error effect in the rainflow counting algo-
rithm.

(ii) a worst-case random error term inferred from the maxi-
mum Tj value to each temperature value, eTj

= max(Tj)→
R, where R = u[L,U ] is a random uniform number
specified in the limits between U and L, which are de-
limited by the error percentage p. This approach results
in oscillations of the junction temperature signal, leading
to counting multiple low temperature cycles.

Measurements for Validation

A more robust alternative to elicit the relationship between
variable and uncertainty would require an extensive set of

measurements, for which the design of new experimental cam-
paigns is necessary (Štrbac et al., 2020).

A possible set of measurements may focus on repeated ther-
mal measurements under different operation profiles and em-
pirical inference of the underlying probability distribution of
measurements (Górecki, Górecki, & Zarebski, 2019). This
controlled measurement process would enable the character-
ization of measurement uncertainty, which includes calibra-
tion and quantization errors.

However, such experimental results are limited at the stage of
the completion of this work. Therefore, this alternative is left
as future work.

As for commercial modules, they may have been character-
ized with standard measurement practices and associated mea-
surement errors. Accordingly, it is possible to use the pro-
posed approach to infer the effect of the quoted error refer-
ence to infer the potential impact on damage estimation.

Generalization of the Proposed Approach

As for the generalization of the framework, the goal of this
paper is to demonstrate how to include uncertainties on vari-
ables and assess their impact on lifetime error. The validity
of the framework has been here demonstrated for SKiM63
modules based on empirical formulations validated in the lit-
erature. However, it is possible to apply the framework to
other physical lifetime estimation models with different ana-
lytic formulations. To this end, the key constraint would be
that the ageing process under study should be characterized
by a cycling stress and a cumulative ageing process. Accord-
ingly, the cycle count and cumulative ageing models would
be applicable as outlined in Figure 5.

Fidelity of the Cycle Counting Algorithm

Finally, the fidelity and uncertainty of the cycle counting al-
gorithm used to assess the damage of the junction temperature
should be further examined. On the one hand, the adopted cy-
cle counting process assumes that the bounds inferred from
the rainflow algorithm correspond to individual thermal cy-
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cles. However, if the nature of the junction temperature does
not adhere to the underlying creep type mechanism adopted
by the rainflow, e.g. long-lasting events, that may cause the
bias of the counting process. On the other hand, the rain-
flow algorithm counts the cycles, but it does not take into
account the order of events. This has a direct impact on life-
time estimation, as mild or severe cycles have a completely
different impact on the IGBT lifetime. Similar concepts are
evaluated in other reliability engineering areas through time-
ordered models (Aizpurua, Papadopoulos, Muxika, Chiac-
chio, & Manno, 2017; Chiacchio, Aizpurua, D’Urso, & Com-
pagno, 2018).

6. CONCLUSIONS

Insulated Gate Bipolar Transistors (IGBTs) are key semicon-
ductor based power elements for various power-electronic sys-
tems. There are different failure modes associated with the
lifetime of IGBTs. Focusing on the bond wire lift-off, it has
been observed the lifetime models include a number of pa-
rameters that are prone to different sources of uncertainty. In
this context, this research presents a methodology that en-
ables the evaluation of the impact of the sources of uncer-
tainty on lifetime and damage assessment. The uncertainty
assessment process has been here applied to the SKiM63 mod-
ule. However, it may be applicable to other modules with
similar ageing mechanisms. However, for different physi-
cal lifetime models the ageing model may be different and,
therefore, the approach may not be directly applicable. In
these cases, it may be necessary to adapt the lifetime model in
agreement with the underlying physical ageing process. This
may include additional sources of uncertainty and different
lifetime stress factors which need to be analyzed with respect
to the damage estimation process.

Obtained results show that there are crucial parameters and
variables, whose tiny error variations can imply a large impact
on damage error estimation. Accordingly, developing sens-
ing technology that reduces measurement errors associated
to these variables directly contributes to the error reduction
on IGBT lifetime estimation. Therefore, the present work
demonstrates that it is important to consider these sources of
uncertainty when estimating the IGBT lifetime.

Future lines may address the use of error measurements to
limit the damage estimation error and extend the experiments
with more extensive measurement campaigns.
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