Machine Learning Approaches for Diagnostics and Prognostics of Industrial Systems Using Open Source Data from PHM Data Challenges A Review

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 17, 2024
Hanqi Su Jay Lee

Abstract

In the field of Prognostics and Health Management (PHM), recent years have witnessed a significant surge in the application of machine learning (ML). Despite this growth, the field grapples with a lack of unified guidelines and systematic approaches for effectively implementing these ML techniques and comprehensive analysis regarding industrial open-source data across varied scenarios. To address these gaps, this paper provides a comprehensive review of ML approaches for diagnostics and prognostics of industrial systems using opensource datasets from PHM Data Challenge Competitions held between 2018 and 2023 by PHM Society and IEEE Reliability Society and summarizes a unified ML framework. This review systematically categorizes and scrutinizes the problems, challenges, methodologies, and advancements demonstrated in these competitions, highlighting the evolving role of both conventional machine learning and deep learning in tackling complex industrial tasks related to detection, diagnosis, assessment, and prognosis. Moreover, this paper delves into the common challenges in PHM data challenge competitions by emphasizing data-related and model-related issues and evaluating the limitations of these competitions. The potential solutions to address these challenges are also summarized. Finally, we identify key themes and potential directions for future research, providing opportunities and prospects for next-generation ML-PHM development in PHM domain.

Abstract 382 | PDF Downloads 162

##plugins.themes.bootstrap3.article.details##

Keywords

Prognostics and Health Management, Machine Learning, Deep Learning, Predictive Maintenance, Industrial Artificial Intelligence

References
Aguiar, G., Krawczyk, B., & Cano, A. (2023). A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. Machine learning, 1–79.
Aimiyekagbon, O. K., Lowen, A., Bender, A., Muth, L., & Sextro, W. (2023). Expert-informed hierarchical diagnostics of multiple fault modes of a spacecraft propulsion system. In Phm society asia-pacific conference (Vol. 4).
Aimiyekagbon, O. K., Muth, L., Wohlleben, M., Bender, A., & Sextro, W. (2021). Rule-based diagnostics of a production line. In Phm society european conference (Vol. 6, pp. 10–10).
Alfarizi, M. G., Vatn, J., & Yin, S. (2022). An extreme gradient boosting aided fault diagnosis approach: A case study of fuse test bench. IEEE Transactions on Artificial Intelligence.
Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., . . . Zimmermann, T. (2019). Software engineering for machine learning: A case study. In 2019 ieee/acm 41st international conference on software engineering: Software engineering in practice (icse-seip) (pp. 291–300).
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., . . . others (2020). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Information fusion, 58, 82–115.
Aydemir, G., Avcı, A., Kocakulak, M., & Bekiryazıcı, T. (2021). Ensemble of lstm networks for fault detection, classification, and root cause identification in quality control line. In Phm society european conference (Vol. 6, pp. 6–6).
Azari, M. S., Flammini, F., Santini, S., & Caporuscio, M. (2023). A systematic literature review on transfer learning for predictive maintenance in industry 4.0. IEEE access, 11, 12887–12910.
Baptista, M. L., Goebel, K., & Henriques, E. M. (2022). Relation between prognostics predictor evaluation metrics and local interpretability shap values. Artificial Intelligence, 306, 103667.
Beirami, H., Calza, D., Cimatti, A., Islam, M., Roveri, M., & Svaizer, P. (2020). A data-driven approach for rul prediction of an experimental filtration system. In Phm society european conference (Vol. 5).
Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd international conference on knowledge discovery and data mining (pp. 359–370).
Carley, R., Fuller, S., Bond, W., Jones, P., Allen, D., Jordan, A., & Falls, T. (2022). Data analytics and visualization application for asset health monitoring. In Annual conference of the phm society (Vol. 14).
Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2021). Phm society data challenge 2021. June.
Chen, J., Lin, C., Cui, J., & Ge, H. (2022). An fault diagnostic method based on drn-acgan for data imbalance. In 2022 prognostics and health management conference (phm-2022 london) (pp. 97–102).
Cheng, X., Chaw, J. K., Goh, K. M., Ting, T. T., Sahrani, S., Ahmad, M. N., . . . Ang, M. C. (2022). Systematic literature review on visual analytics of predictive maintenance in the manufacturing industry. Sensors, 22(17), 6321.
Cicak, S., & Avci, U. (2023). Handling imbalanced data in predictive maintenance: A resampling-based approach. In 2023 5th international congress on humancomputer interaction, optimization and robotic applications (hora) (pp. 1–6).
Cofre-Martel, S., Lopez Droguett, E., & Modarres, M. (2021). Big machinery data preprocessing methodology for data-driven models in prognostics and health management. Sensors, 21(20), 6841.
Cohen, J., Byon, E., & Huan, X. (2023). To trust or not: Towards efficient uncertainty quantification for stochastic shapley explanations. In Phm society asia-pacific conference (Vol. 4).
Cohen, J., Huan, X., & Ni, J. (2023a). Fault prognosis of turbofan engines: Eventual failure prediction and remaining useful life estimation. arXiv preprint arXiv:2303.12982.
Cohen, J., Huan, X.,&Ni, J. (2023b). Shapley-based explainable ai for clustering applications in fault diagnosis and prognosis. arXiv preprint arXiv:2303.14581.
Corrˆea, D., Polpo, A., Small, M., Srikanth, S., Hollins, K., & Hodkiewicz, M. (2022). Data-driven approach for labelling process plant event data. International Journal of Prognostics and Health Management, 13(1).
Dablain, D., Krawczyk, B., & Chawla, N. V. (2022). Deepsmote: Fusing deep learning and smote for imbalanced data. IEEE Transactions on Neural Networks and Learning Systems.
de Calle-Etxabe, K. L., G´omez-Omella, M., & Garate-Perez, E. (2021). Divide, propagate and conquer: Splitting a complex diagnosis problem for early detection of faults in a manufacturing production line. In Phm society European conference (Vol. 6, pp. 9–9).
Dempster, A., Petitjean, F., & Webb, G. I. (2020). Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5), 1454–1495.
DeVol, N., Saldana, C., & Fu, K. (2021). Inception based deep convolutional neural network for remaining useful life estimation of turbofan engines. In Annual conference of the phm society (Vol. 13).
DeVol, N., Saldana, C., & Fu, K. (2022). Evaluating image classification deep convolutional neural network architectures for remaining useful life estimation of turbofan engines. International Journal of Prognostics and Health Management, 13(2).
Ding, N., Li, H., Xin, Q., Wu, B., & Jiang, D. (2023). Multisource domain generalization for degradation monitoring of journal bearings under unseen conditions. Reliability Engineering & System Safety, 230, 108966.
Ding, Y., Jia, M., Cao, Y., Ding, P., Zhao, X., & Lee, C.-G. (2023). Domain generalization via adversarial outdomain augmentation for remaining useful life prediction of bearings under unseen conditions. Knowledge-Based Systems, 261, 110199.
Eekhout, I., de Boer, R. M., Twisk, J. W., de Vet, H. C., & Heymans, M. W. (2012). Missing data: a systematic review of how they are reported and handled. Epidemiology, 23(5), 729–732.
Falcon, A., D’Agostino, G., Lanz, O., Brajnik, G., Tasso, C., & Serra, G. (2022). Neural turing machines for the remaining useful life estimation problem. Computers in Industry, 143, 103762.
Fan, Y., Atoui, A., Nowaczyk, S., & Rognvaldsson, T. (2023). Evaluation of multi-modal learning for predicting coolant pump failures in heavy duty vehicles. In Phm society asia-pacific conference (Vol. 4).
Gaffet, A., Roa, N. B., Ribot, P., Chanthery, E., & Merle, C. (2022). A hierarchical xgboost early detection method for quality and productivity improvement of electronics manufacturing systems. In 7th european conference of the prognostics and health management society 2022.
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Griffiths, T., Correa, D., Hodkiewicz, M.,& Polpo, A. (2022). Managing streamed sensor data for mobile equipment prognostics. Data-Centric Engineering, 3, e11.
Hazra, I., Chatterjee, A., Southgate, J., Weiner, M. J., Groth, K. M., & Azarm, S. (2024). A reliability-based optimization framework for planning operational profiles for unmanned systems. Journal of Mechanical Design, 146(5), 051704.
Hazra, I., Weiner, M. J., Yang, R., Chatterjee, A., Southgate, J., Groth, K. M., & Azarm, S. (2024). Prognostics and health management of unmanned surface vessels: Past, present, and future. Journal of Computing and Information Science in Engineering, 24(8).
He, A., & Jin, X. (2019). Failure detection and remaining life estimation for ion mill etching process through deep-learning based multimodal data fusion. Journal of Manufacturing Science and Engineering, 141(10), 101008.
Hsu, C.-Y., Lu, Y.-W., & Yan, J.-H. (2022). Temporal convolution-based long-short termmemory network with attention mechanism for remaining useful life prediction. IEEE Transactions on Semiconductor Manufacturing, 35(2), 220–228.
Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063.
Huang, B., Di, Y., Jin, C., & Lee, J. (2017). Review of data-driven prognostics and health management techniques: lessions learned from phm data challenge competitions. Machine Failure Prevention Technology, 2017, 1–17.
Huang, W., Khorasgani, H., Gupta, C., Farahat, A., & Zheng, S. (2018). Remaining useful life estimation for systems with abrupt failures. In Annual conference of the phm society. september (pp. 24–27).
Huang, Y., Tang, Y., VanZwieten, J., & Liu, J. (2022). Reliable machine prognostic health management in the presence of missing data. Concurrency and Computation: Practice and Experience, 34(12), e5762.
Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2021). Tool wear monitoring with vibration signals based on short-time fourier transform and deep convolutional neural network in milling. Mathematical Problems in Engineering, 2021, 1–14.
Ince, K., Ceylan, U., Erdogmus, N. N., Sirkeci, E., & Genc, Y. (2021). Fault detection and classification for robotic test-bench. In Phm society european conference (Vol. 6, pp. 7–7).
Ince, K., & Genc, Y. (2023). Joint autoencoder-regressor deep neural network for remaining useful life prediction. Engineering Science and Technology, an International Journal, 41, 101409.
Ince, K., Sirkeci, E., & Genc¸, Y. (2020). Remaining useful life prediction for experimental filtration system: A data challenge. In Phm society european conference (Vol. 5).
Jakobsson, E., Frisk, E., Krysander, M., & Pettersson, R. (2022). A dataset for fault classification in rock drills, a fast oscillating hydraulic system. In Annual conference of the phm society (Vol. 14).
Jiang, G., Zhao, J., Jia, C., He, Q., Xie, P.,&Meng, Z. (2019). Intelligent fault diagnosis of gearbox based on vibration and current signals: a multimodal deep learning approach. In 2019 prognostics and system health management conference (phm-qingdao) (pp. 1–6).
Karimian, S. F., Moradi, R., Cofre-Martel, S., Groth, K. M., & Modarres, M. (2020). Neural network and particle filtering: a hybrid framework for crack propagation prediction. arXiv preprint arXiv:2004.13556.
Kato, Y., Kato, T., & Tanaka, T. (2023). Anomaly detection in spacecraft propulsion system using time series classification based on k-nn. In Phm society asia-pacific conference (Vol. 4).
Kim, S., Choi, J.-H., & Kim, N. H. (2021). Challenges and opportunities of system-level prognostics. Sensors, 21(22), 7655.
Kim, Y. C., Kim, T., Ko, J. U., Lee, J., & Kim, K. (2023). Domain adaptation based fault diagnosis under variable operating conditions of a rock drill. International Journal of Prognostics and Health Management, 14(2).
Kong, H. B., Jo, S.-H., Jung, J. H., Ha, J. M., Shin, Y. C., Yoon, H., . . . Jeon, B. C. (2020). A hybrid approach of data-driven and physics-based methods for estimation and prediction of fatigue crack growth. International Journal of Prognostics and Health Management, 11(1).
Kreuzer, M., & Kellermann,W. (2023). 1-d residual convolutional neural network coupled with data augmentation and regularization for the icphm 2023 data challenge. In 2023 ieee international conference on prognostics and health management (icphm) (pp. 186–191).
Kumar, P., Raouf, I., & Kim, H. S. (2023). Review on prognostics and health management in smart factory: From conventional to deep learning perspectives. Engineering Applications of Artificial Intelligence, 126, 107126.
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6, 239–242.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18–23.
Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing letters, 18, 20–23.
Lee, J., Gore, P., Jia, X., Siahpour, S., Kundu, P., & Sun, K. (2022). Stream-of-quality methodology for industrial internet-based manufacturing system. Manufacturing Letters, 34, 58–61.
Lee, J., et al. (2020). Industrial ai. Applications with sustainable performance.
Lee, J., & Su, H. (2024). A unified industrial large knowledge model framework in industry 4.0 and smart manufacturing. International Journal of AI for Materials and Design, 3681.
Lee, S., Lee, S., Lee, K., Lee, S., Chung, J., Kim, C.-W., & Yoon, J. (2021). Data-driven health condition and rul prognosis for liquid filtration systems. Journal of Mechanical Science and Technology, 35, 1597–1607.
Lee, S. K., Lee, J., Lee, S., Kim, B., Kim, Y. C., Lee, J., & Youn, B. D. (2023). Hybrid approach of xgboost and rule-based model for fault detection and severity estimation in spacecraft propulsion system. In Phm society asia-pacific conference (Vol. 4).
Lee, X. Y., Kumar, A., Vidyaratne, L., Rao, A. R., Farahat, A., & Gupta, C. (2023). An ensemble of convolution-based methods for fault detection using vibration signals. arXiv preprint arXiv:2305.05532.
Li, Y.-F., Wang, H., & Sun, M. (2023). Chatgpt-like large-scale foundation models for prognostics and health management: a survey and roadmaps. Reliability Engineering & System Safety, 109850.
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18.
Ling, H., Gao, T., Gong, T., Wu, J., & Zou, L. (2023). Hydraulic rock drill fault classification using x- vectors. Mathematics, 11(7), 1724.
Liu, C., Zhang, L., Li, J., Zheng, J., & Wu, C. (2021). Two-stage transfer learning for fault prognosis of ion mill etching process. IEEE Transactions on Semiconductor Manufacturing, 34(2), 185–193.
Łomowski, R., & Hummel, S. (2020). A method to estimate the remaining useful life of a filter using a hybrid approach based on kernel regression and simple statistics. In Phm society european conference (Vol. 5).
Lorenti, L., Dalle Pezze, D., Andreoli, J., Masiero, C., Gentner, N., Yang, Y., & Susto, G. A. (2023). Predictive maintenance in the industry: A comparative study on deep learning-based remaining useful life estimation. In 2023 ieee 21st international conference on industrial informatics (indin) (pp. 1–9).
Lövberg, A. (2021). Remaining useful life prediction of aircraft engines with variable length input sequences. In Annual conference of the phm society (Vol. 13).
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Mallett, R., Hagen-Zanker, J., Slater, R., & Duvendack, M. (2012). The benefits and challenges of using systematic reviews in international development research. Journal of development effectiveness, 4(3), 445–455.
Mansimov, E., Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2015). Generating images from captions with attention. arXiv preprint arXiv:1511.02793.
Marti-Puig, P., Blanco-M, A., Cárdenas, J. J., Cusidó, J., & Solé-Casals, J. (2018). Effects of the pre-processing algorithms in fault diagnosis of wind turbines. Environmental modelling & software, 110, 119–128.
Minami, T., & Lee, J. (2023). Phm for spacecraft propulsion systems: Similarity-based model and physics-inspired features. In Phm society asia-pacific conference (Vol. 4).
Minami, T., Suer, A., Kundu, P., Siahpour, S., & Lee, J. (2023). Novel ensemble domain adaptation methodology for enhanced multi-class fault diagnosis of highly-connected fleet of assets. In Phm society asia-pacific conference (Vol. 4).
Mirzaei, M., Sadat, M. H., & Naderkhani, F. (2023). Application of machine learning for anomaly detection in printed circuit boards imbalance date set. In 2023 IEEE international conference on prognostics and health management (icphm) (pp. 128–133).
Molnar, C. (2020). Interpretable machine learning. Lulu.com.
Moradi, M., Komninos, P., Benedictus, R., & Zarouchas, D. (2022). Interpretable neural network with limited weights for constructing simple and explainable hi using shm data. In Annual conference of the phm society (Vol. 14).
Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.
Nguyen, K. T., Medjaher, K., & Tran, D. T. (2023). A review of artificial intelligence methods for engineering prognostics and health management with implementation guidelines. Artificial Intelligence Review, 56(4), 3659–3709.
Ochella, S., Shafiee, M., & Dinmohammadi, F. (2022). Artificial intelligence in prognostics and health management of engineering systems. Engineering Applications of Artificial Intelligence, 108, 104552.
Oh, H. J., Yoo, J., Lee, S., Chae, M., Park, J., & Youn, B. D. (2023). A hybrid approach combining data-driven and signal-processing-based methods for fault diagnosis of a hydraulic rock drill. International Journal of Prognostics and Health Management, 14(1).
Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access, 8, 220121–220139.
Polverino, L., Abbate, R., Manco, P., Perfetto, D., Caputo, F., Macchiaroli, R., & Caterino, M. (2023). Machine learning for prognostics and health management of industrial mechanical systems and equipment: A systematic literature review. International Journal of Engineering Business Management, 15, 18479790231186848.
Qiu, S., Cui, X., Ping, Z., Shan, N., Li, Z., Bao, X., & Xu, X. (2023). Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: A review. Sensors, 23(3), 1305.
Ramachandram, D., & Taylor, G. W. (2017). Deep multimodal learning: A survey on recent advances and trends. IEEE signal processing magazine, 34(6), 96–108.
Ramezani, S. B., Amirlatifi, A., Kirby, T., Seale, M., & Rahimi, S. (2021). Explainable machinery faults prediction using ensemble tree classifiers: Bagging or boosting? In Annual conference of the phm society (Vol. 13).
Rao, M., Yang, X., Wei, D., Chen, Y., Meng, L., & Zuo, M. J. (2020). Structure fatigue crack length estimation and prediction using ultrasonic wave data based on ensemble linear regression and paris’s law. International Journal of Prognostics and Health Management, 11(2).
Rezaeianjouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement, 163, 107929.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ” why should i trust you?” explaining the predictions of any classifier. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 1135–1144).
Schmidt, I., Dingeldein, L., H¨unemohr, D., Simon, H., & Weigert, M. (2022). Application of machine learning methods to predict the quality of electric circuit boards of a production line. In Phm society european conference (Vol. 7, pp. 550–555).
Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. Applied Intelligence, 52(10), 10934–10964.
Shen, H.,Wang, X., Fu, L., & Xiong, J. (2023). Gear fault diagnosis based on short-time fourier transform and deep residual network under multiple operation conditions. In 2023 ieee international conference on prognostics and health management (icphm) (pp. 166–171).
Sim, J., Kim, S., Park, H. J., & Choi, J.-H. (2020). A tutorial for feature engineering in the prognostics and health management of gears and bearings. Applied Sciences, 10(16), 5639.
Singh, K., Selvanathan, B., Zope, K., Nistala, S. H., & Runkana, V. (2018). Concurrent estimation of remaining useful life for multiple faults in an ion etch mill: a data-driven approach. In Annual conference of the phm society (Vol. 10).
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE transactions on industrial informatics, 14(11), 4724–4734.
Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018). X-vectors: Robust dnn embeddings for speaker recognition. In 2018 ieee international conference on acoustics, speech and signal processing (icassp) (pp. 5329–5333).
Sobha, P., Xavier, M., & Chandran, P. (2023). A comprehensive approach for gearbox fault detection and diagnosis using sequential neural networks. In 2023 ieee international conference on prognostics and health management (icphm) (pp. 180–185).
Solis-Martin, D., Galán-Páez, J., & Borrego-Diaz, J. (2021). A stacked deep convolutional neural network to predict the remaining useful life of a turbofan engine. arXiv preprint arXiv:2111.12689.
Solís-Martín, D., Galán-Páez, J., & Borrego-Díaz, J. (2023). On the soundness of xai in prognostics and health management (phm). Information, 14(5), 256.
Souza, M. L. H., da Costa, C. A., & de Oliveira Ramos, G. (2023). A machine-learning based data-oriented pipeline for prognosis and health management systems. Computers in Industry, 148, 103903.
Su, H., Song, B., & Ahmed, F. (2023). Multi-modal machine learning for vehicle rating predictions using image, text, and parametric data. In International design engineering technical conferences and computers and information in engineering conference (Vol. 87295, p. V002T02A089).
Sundararajan, M., & Najmi, A. (2020). The many shapley values for model explanation. In International conference on machine learning (pp. 9269–9278).
Taco, J., Gore, P., Minami, T., Kundu, P., Suer, A., & Lee, J. (2022). A novel methodology for health assessment in printed circuit boards. In Phm society european conference (Vol. 7, pp. 556–562).
Taco, J., Kundu, P., & Lee, J. (2023). A novel technique for multiple failure modes classification based on deep forest algorithm. Journal of Intelligent Manufacturing, 1–15.
Tang, H., Tian, Y., Dai, J., Wang, Y., Cong, J., Liu, Q., . . . Fu, Y. (2022). Prediction of production line status for printed circuit boards. In Phm society european conference (Vol. 7, pp. 563–570).
Tang, S., Yuan, S., & Zhu, Y. (2020). Data preprocessing techniques in convolutional neural network based on fault diagnosis towards rotating machinery. IEEE Access, 8, 149487–149496.
Tian, J., Jiang, Y., Zhang, J., Wang, Z., Rodríguez-Andina, J. J., & Luo, H. (2022). High-performance fault classification based on feature importance ranking-xgboost approach with feature selection of redundant sensor data. Current Chinese Science, 2(3), 243–251.
Tian, J., Jiang, Y., Zhang, J., Wu, S., & Luo, H. (2023). A novel transfer ensemble learning framework for remaining useful life prediction under multiple working conditions. IEEE Transactions on Instrumentation and Measurement.
Tominaga, K., Daimon, Y., Toyama, M., Adachi, K., Tsutsumi, S., Omata, N., & Nagata, T. (2023). Dataset generation based on 1d-cae modeling for fault diagnostics in a spacecraft propulsion system. In Phm society asia-pacific conference.
Tsanousa, A., Bektsis, E., Kyriakopoulos, C., González, A. G., Leturiondo, U., Gialampoukidis, I., . . . Kompatsiaris, I. (2022). A review of multisensor data fusion solutions in smart manufacturing: Systems and trends. Sensors, 22(5), 1734.
Tsui, K. L., Zhao, Y., & Wang, D. (2019). Big data opportunities: System health monitoring and management. IEEE Access, 7, 68853–68867.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Vishnu, T., Gupta, P., Malhotra, P., Vig, L., & Shroff, G. (2018). Recurrent neural networks for online remaining useful life estimation in ion mill etching system. In Proceedings of the annual conference of the phm society, philadelphia, pa, usa (Vol. 22).
Vollert, S., Atzmueller, M., & Theissler, A. (2021). Interpretable machine learning: A brief survey from the predictive maintenance perspective. In 2021 26th ieee international conference on emerging technologies and factory automation (etfa) (pp. 01–08).
Vu, C. T., Chandra-Sekaran, A., & Stork, W. (2021). A deep learning first approach to remaining useful lifetime prediction of filtration system with improved response to changing operational parameters using parameterized fully-connected layer. In Phm society european conference (Vol. 6, pp. 9–9).
Wang, D., Li, Y., Jia, L., Song, Y., & Liu, Y. (2021). Novel three-stage feature fusion method of multimodal data for bearing fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 70, 1–10.
Wang, P. E., & Russell, M. (2020). Domain adversarial transfer learning for generalized tool wear prediction. In Annual conference of the phm society (Vol. 12, pp. 8–8).
Wang, Z., Yang, F., Zhao, P., Wang, L., Zhang, J., Garg, M., . . . Zhang, D. (2023). Empower large language model to perform better on industrial domain-specific question answering. arXiv preprint arXiv:2305.11541.
Wu, J., Zhao, Z., Sun, C., Yan, R., & Chen, X. (2020). Ss-infogan for class-imbalance classification of bearing faults. Procedia Manufacturing, 49, 99–104.
Wu, S., Jiang, Y., Luo, H., & Yin, S. (2021). Remaining useful life prediction for ion etching machine cooling system using deep recurrent neural network-based approaches. Control Engineering Practice, 109, 104748.
Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., & He, X. (2018). Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 1316–1324).
Youn, M., Kim, Y., Lee, D., Cho, M., & Youn, B. D. (2020). Fatigue crack length estimation and prediction using trans-fitting with support vector regression. International Journal of Prognostics and Health Management, 11(1).
Yucesan, Y. A., Dourado, A., & Viana, F. A. (2021). A survey of modeling for prognosis and health management of industrial equipment. Advanced Engineering Informatics, 50, 101404.
Zhao, L., Zhu, Y., & Zhao, T. (2022). Deep learning-based remaining useful life prediction method with transformer module and random forest. Mathematics, 10(16), 2921.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., . . . others (2023). A survey of large language models. arXiv preprint arXiv:2303.18223.
Zheng, J., Liu, C., & Zhang, L. (2021). Cross-modal knowledge distillation for fault detection under multiple failure modes. In 2021 china automation congress (cac) (pp. 7714–7719).
Zio, E. (2022). Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218, 108119.
Section
Technical Papers