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ABSTRACT

In the field of Prognostics and Health Management (PHM),
recent years have witnessed a significant surge in the applica-
tion of machine learning (ML). Despite this growth, the field
grapples with a lack of unified guidelines and systematic ap-
proaches for effectively implementing these ML techniques
and comprehensive analysis regarding industrial open-source
data across varied scenarios. To address these gaps, this pa-
per provides a comprehensive review of ML approaches for
diagnostics and prognostics of industrial systems using open-
source datasets from PHM Data Challenge Competitions held
between 2018 and 2023 by PHM Society and IEEE Reliabil-
ity Society and summarizes a unified ML framework. This
review systematically categorizes and scrutinizes the prob-
lems, challenges, methodologies, and advancements demon-
strated in these competitions, highlighting the evolving role
of both conventional machine learning and deep learning in
tackling complex industrial tasks related to detection, diagno-
sis, assessment, and prognosis. Moreover, this paper delves
into the common challenges in PHM data challenge compe-
titions by emphasizing data-related and model-related issues
and evaluating the limitations of these competitions. The po-
tential solutions to address these challenges are also summa-
rized. Finally, we identify key themes and potential directions
for future research, providing opportunities and prospects for
next-generation ML-PHM development in PHM domain.

1. INTRODUCTION

In the era of Industry 4.0, the emphasis on the reliability, ef-
ficiency, and longevity of industrial systems has become cru-
cial (Lasi, Fettke, Kemper, Feld, & Hoffmann, 2014). Prog-
nostics and Health Management (PHM) integrates the detec-
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tion, diagnosis, assessment, and prognosis of system failures
to address the growing need for proactive system health man-
agement (Zio, 2022). This integrative approach can enhance
the reliability and safety of industrial systems, with minimal
unplanned downtimes and reduced maintenance costs.

The rise of the Internet of Things (Sisinni, Saifullah, Han,
Jennehag, & Gidlund, 2018), big data analytics (Tsui, Zhao,
& Wang, 2019), cyber-physical systems (J. Lee, Bagheri, &
Kao, 2015), machine learning (ML) (B. Huang, Di, Jin, &
Lee, 2017), deep learning (DL) (Rezaeianjouybari & Shang,
2020), and industrial artificial intelligence (Peres et al., 2020;
J. Lee et al., 2020) has paved the way for a transformative
shift in PHM. Historically, PHM methods largely relied on
physical-based methods, which derived their strength from
profound insights into system physics, material properties,
and failure mechanisms. These approaches, however, often
struggled with scalability, adaptability, and the ability to han-
dle the vast variability and uncertainties inherent in real-world
operations. In contrast, ML techniques present the capability
to model complex systems comprehensively, uncover intri-
cate patterns, and accurately diagnose and predict failures.
Yet, employing ML in PHM poses several challenges, in-
cluding the critical need for usable, useful, high-quality, and
extensive data sets, extensive computing resources, a solid
infrastructure for data collection and processing, as well as
the necessity for assembly of a team of professionals profi-
cient in artificial intelligence (AI) and ML (J. Lee, Davari,
Singh, & Pandhare, 2018; Amershi et al., 2019). Despite
these challenges, the momentum for implementing ML in in-
dustrial settings is evident. With the gradual move towards
digital transformation within the industry, incorporating ML
into PHM aligns with the principles of Industry 4.0 (Polverino
et al., 2023). It underscores the capability of data-driven
approaches to provide precise and adaptable diagnostic and
prognostic solutions and represents a strategic shift towards
leveraging ML techniques for enhanced predictive mainte-
nance.
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1.1. A Survey of Machine Learning Based PHM Reviews

A multitude of comprehensive reviews on AI/ML/DL meth-
ods applied in PHM domain are noted (Serradilla, Zugasti,
Rodriguez, & Zurutuza, 2022; Qiu et al., 2023; Kumar, Raouf,
& Kim, 2023; Ochella, Shafiee, & Dinmohammadi, 2022;
Yucesan, Dourado, & Viana, 2021; Nguyen, Medjaher, &
Tran, 2023; Polverino et al., 2023; Rezaeianjouybari & Shang,
2020; Hazra, Weiner, et al., 2024). These reviews evaluate the
existing literature both qualitatively and quantitatively, pre-
senting their distinct perspectives and pinpointing the trends
and new concepts of AI/ML/DL methods for PHM across var-
ious scenarios. (Serradilla et al., 2022) reviewed DL architec-
tures like a one-class neural network (OCNN), self-organizing
map (SOM), and generative techniques aligned with the in-
dustrial needs from a predictive maintenance perspective. (Qiu
et al., 2023) highlighted seven DL architectures, including
emerging DL methods such as graph neural networks, trans-
formers, and generative adversarial networks, addressing four
different challenges (imbalanced data, multimodal data fu-
sion, compound fault types, and edge device implementa-
tion). Additionally, (Kumar et al., 2023) provided a compre-
hensive examination of PHM methods in the context of smart
factories, spanning from traditional ML approaches to DL-
based approaches. An extensive review on modeling tech-
niques supporting PHM of industrial equipment, specifically
within onshore wind energy and civil aviation sectors, was
given by (Yucesan et al., 2021), wherein they discuss how
modeling approaches are shaped by industry-specific factors
(maintenance strategies, implementation aspects, and support-
ing technologies). Furthermore, (Nguyen et al., 2023) pro-
posed a general guideline under AI-based PHM for selecting
appropriate techniques to solve specific PHM problems.

1.2. Motivation

The aforementioned review papers in section 1.1 serve as
the groundwork for further PHM development. Currently,
a significant portion of the literature primarily examines al-
gorithms based on their capabilities and functionalities, with
numerous reviews covering various ML or DL methods like
CNN, RNN, GAN, GNN, Transformer, etc. However, many
researchers tend to rely on artificial datasets for algorithm
testing in their studies, rather than using real, industry-specific
datasets. Additionally, the focus of discussed data sets pre-
dominantly lies on mechanical components commonly used
in algorithm development, such as gears and bearings. Fur-
thermore, a considerable portion of the data sets mentioned
in these studies are not publicly accessible, and among the
available ones, most date back more than six years (before
2018). In PHM domain, organizations such as the PHM So-
ciety1 and the IEEE Reliability Society2 have played pivotal
roles in fostering innovation, research, and collaboration over

1https://phmsociety.org/
2https://rs.ieee.org/

the last fifteen years. It is worth noting that these organi-
zations provide participants with different real open-source
industrial datasets and pose real-world challenges by holding
PHM data challenge competitions. These competitions seek
to accelerate the development and validation of cutting-edge
PHM methodologies, bridging the gap between academia and
industry. Therefore, conducting in-depth analysis and review
of industrial open source datasets is necessary to propel the
evolution of data-centric techniques, ML, and AI within the
PHM domain.

1.3. Contributions

This study aims to conduct a comprehensive problem-challe-
nge-solution-application-oriented review using the industrial
open source data available in the last six years from PHM
Data Challenge. In pursuit of the objective, 59 research pa-
pers were reviewed, encompassing both competition winning
contributions and subsequent exploratory research undertaken
post competition. The detailed paper selection and investiga-
tion is discussed in section 2.1. Our contributions include the
following:

1. This study summarizes the problems and solutions pre-
sented in nine PHM data challenge competitions, eluci-
dating the tasks, challenges, ML or DL methods, and an-
alytical strategies employed to tackle these competitions.

2. We propose a unified ML framework for the PHM do-
main based on this review study, serving as a general
guideline for the development of future ML models.

3. We discuss common challenges associated with indus-
trial open source data, underscoring specific issues re-
lated to data issues (missing data, data imbalance, and
domain shift), and model issues (model selection, ma-
chine learning model interpretability, model robustness
and generalization) in data-driven approaches. Possible
solutions are also provided. Moreover, we evaluate the
limitations of these competitions and suggest future di-
rections.

4. We identify five further research directions for the ap-
plication of ML in PHM. These include: (1) a need for
open-source multi-modal datasets, (2) development of
multi-modal machine learning approaches, (3) further ex-
ploration in machine learning model interpretability, (4)
novel transfer learning and domain adaptation techniques
development for model robustness and generalization, and
(5) potential utilization of large language models and in-
dustrial large knowledge models.

The rest of this paper is organized as follows: Section 2 in-
troduces the methodology of how we select research papers,
an overview of PHM data challenge competitions, and un-
derscores major research tasks within PHM. Section 3 re-
spectively introduces the prevalent challenges associated with
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Figure 1. Research Paper Selection Process Using PRISMA Method

two parts: detection & diagnosis, and assessment & progno-
sis, subsequently detailing the solutions presented in various
PHM data competitions individually. A unified ML frame-
work for the PHM domain is proposed. Section 4 critically
summarizes and examines common challenges in the PHM
domain through the perspective of ML methodologies, ad-
dressing concerns related to data issues, and model issues.
The limitations of these competitions are also discussed. Sec-
tion 5 provides five research directions for future PHM de-
velopment. Section 6 concludes the paper, highlighting its
findings and contributions.

2. BACKGROUND

In this section, we first introduce the procedure for selecting
research papers using systematic reviews and meta-analyses
(PRISMA) method. Next, we provide an overview of the
PHM data challenge competition. Then, we outline the major
research tasks in the PHM field and provide respective expla-
nations.

2.1. Identification, Screening, and Inclusion of Studies

For paper selection and investigation, this review adheres to
the guidelines outlined in the PRISMA statement (Mallett,
Hagen-Zanker, Slater, & Duvendack, 2012). As shown in
Figure 1, the PRISMA flowchart illustrates a systematic way
of selecting papers. Initially, the search keywords were struc-
tured around three key aspects: data sources, industrial sys-
tems, and PHM/AI-related issues, with a focus on PHM re-
lated research using industrial open-source data from recent
PHM data challenges. The search scope was restricted to arti-

cles published between 2018 and 2023 across Google Scholar,
IEEE Xplore, Web of Science, Scopus, and ScienceDirect.
Then, the literature search was conducted on December 18,
2023, using the predefined keywords. Subsequently, the iden-
tified records from five databases were consolidated, and du-
plicates were removed. After that, based on the exclusion
criteria provided in Table 1, reviewers further reviewed and
evaluated the remaining articles and finally identified 59 rep-
resentative papers for analysis, as presented in this survey.

Table 1. Exclusion Criteria for Screening Stage

Exclusion criteria
E1 Full text is not available

E2
The method of the paper is not
based on machine learning techniques

E3 The paper is not written in English

E4
The research does not utilize
industrial open source data for analysis

2.2. Overview of PHM Data Challenge Competitions

From 2018 to 2023, PHM Society and IEEE Reliability So-
ciety have initiated nine PHM data challenge competitions
which display challenges associated with analyzing indus-
trial data across diverse industrial sectors. The topics of these
competitions are extensive, encompassing different industrial
systems such as Ion Mill Etching Tools, Filtration Systems,
Manufacturing Production Lines, Turbofan Engines, Printed
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Table 2. Overview of PHM Data Challenge Competitions from 2018 to 2023

Competition Industrial Systems Research Task No. of Papers

2018 PHM NA Ion Mill Etching System Detection & Diagnosis & Assessment & Prognosis 12
2019 PHM NA Fatigue Crack Assessment & Prognosis 4
2020 PHM EU Filtration System Prognosis 8
2021 PHM EU Manufacturing Production Line Detection & Diagnosis 7
2021 PHM NA Turbofan Engine Prognosis 8
2022 PHM EU Printed Circuit Board Detection & Diagnosis 6
2022 PHM NA Rock Drill Detection & Diagnosis 5
2023 PHM AP Spacecraft Propulsion System Detection & Diagnosis 5

2023 IEEE Gearbox Detection & Diagnosis 4

Circuit Boards, Rock Drills, Spacecraft Propulsion Systems,
and Gearbox, among others. Furthermore, the range of prob-
lems posed covers the main tasks in PHM domain includ-
ing detection, diagnosis, assessment, and prognosis. These
tasks align with PHM’s ultimate goal: to accurately evaluate
and predict system health, degradation, and eventual failure,
thereby improving system reliability, safety, and operational
efficiency.

For ease of discussing different competitions, we’ve adopted
a condensed naming convention for the PHM data challenge
competition: ”YEAR ORGANIZATION” indicates the re-
spective year and organizer of the data challenge. Among
the challenges discussed, one is organized by the IEEE Re-
liability Society, while the remaining eight are organized by
the PHM Society. The PHM Society conducts an annual con-
ference in North America, an Asia-Pacific conference in odd
years, and a European conference in even years. We use
the abbreviations ”PHM NA”, ”PHM AP”, and ”PHM EU”
to represent the competitions held in North America, Asia-
Pacific, and Europe, respectively. For instance, ”2018 PHM
NA” refers to the challenge held in North America by the
PHM Society in 2018 while ”2023 IEEE” represents the com-
petition hosted by the IEEE Reliability Society in 2023. Ta-
ble 2 presents the systems, research tasks, and the number of
research papers discussed in nine data competitions. For an
in-depth overview of the PHM data challenge competitions
and their associated datasets, please refer to Appendix and
Section 3.

2.3. Major Research Tasks within PHM

By reviewing 9 PHM data challenge competitions, we sum-
marized four major research tasks: detection, diagnosis, as-
sessment, and prognosis.

Detection: It refers to identifying the presence of a fault,
anomaly, or abnormal condition in a system or component.

This is typically the first step in PHM, where sensors and
monitoring systems are used to detect deviations from nor-
mal operations that might indicate a problem.

Diagnosis: Upon detecting anomalies, the diagnostic phase
delves deeper to determine failure types or failure modes and
find out the root causes of the problem. In diagnostic scenar-
ios, detected failures often need to be classified into specific
failure types.

Assessment: In the assessment phase, the current operational
status and performance of the system is evaluated. Leverag-
ing either historical data or recent machinery behavior, this
phase evaluates potential risks or assesses the health status of
the system in its present condition.

Prognosis: Prognosis leverages both current and historical
data to forecast the future health of a system or the residual
life of a machine. Commonly, this is referred to as predict-
ing the Remaining Useful Life (RUL). This phase provides
estimates on potential system or machinery failure timelines,
thereby facilitating proactive maintenance planning.

3. METHODOLOGY & ANALYTICS

In Section 3, we categorize the competitions based on ”Detec-
tion & Diagnosis” task and ”Assessment & Prognosis” task,
and delve deeper into problems, challenges and ML method
analysis in Section 3.1 and Section 3.2, respectively. In Sec-
tion 3.3, we summarize a unified ML framework for the PHM
domain.

3.1. Detection & Diagnosis

In this subsection, we sequentially introduce the fundamental
competition information, including background, objectives,
challenges, and datasets, highlighting innovative approaches
for fault detection and diagnosis problems. A summarization
of the competition problems and their datasets is encapsu-
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Table 3. Overview of Detection and Diagnosis Problems in PHM Data Challenge Competitions

2021 PHM EU 2022 PHM EU 2022 PHM NA 2023 PHM AP 2023 IEEE

System Manufacturing Production Line Printed Circuit Boards Rock Drill Spacecraft Propulsion System Gearbox
Failure Mode 8 1+1+2 10 3 4

Sensor Number 50 NA 3 7 1
Asset NA NA 8 4 NA

Operating Condition 2 1+1+1 1 1 2
Data Type Time Series Tabular Pressure Signals Pressure Signals Vibration Signals

Volume of Data
Limited Medium Large Limited Large

(70 Train, 29 Test) (SPI:1924, AOI:1924) (37229 Train, 16396 Test) (177 Train, 46 Test) (Total 50000)
Sampling Rate 0.1 Hz NA 50 kHz 1 kHz 10 kHz

Sampling Interval 1-3 hours NA NA 1.2 s 5 minutes

lated in Table 3. Furthermore, we provided a comprehensive
summary of the methodologies utilized for detection and di-
agnosis problems, as outlined in Table 4.

3.1.1. 2021 PHM EU (Manufacturing Production Line)

In a collaborative effort with the Swiss Centre for Electron-
ics and Microtechnology (CSEM), 2021 PHM EU offered a
dataset derived from a real-world industrial manufacturing
line dedicated to testing electrical fuses. The objective of
this competition is to perform fault identification and clas-
sification, root cause analysis, and system operation param-
eter identification. The dataset showed eight unique system
failure modes under two distinct operating conditions. The
primary challenge with the training data was its class imbal-
ance, as the majority of samples represented healthy condi-
tions. Additionally, the dataset was quite small, with only
70 training samples and 29 testing samples. In the fuse test
bench dataset, about 10% of the data was missing, and it was
not evenly distributed across variables.

Against this background, the winning solution was a com-
bination of decision tree algorithms and a propagation sys-
tem (de Calle-Etxabe, Gómez-Omella, & Garate-Perez, 2021).
While the decision trees focused on diagnosis issue, the prop-
agation system tackled chronology by incoperating a Kalman-
style filter. To address data imbalance, the SMOTE (Synthetic
Minority Oversampling Technique) method was utilized. Ad-
ditionally, (İnce, Ceylan, Erdoğmuş, Sirkeci, & Genc, 2021)
incorporated the Leave One Feature Out Importance (LOFO-
Importance) package for capturing essential features. Subse-
quently, they applied linear discriminant analysis (LDA) for
dimensionality reduction. During the modeling phase, dif-
ferent ML methods were employed — gradient boosting al-
gorithms such as Extreme Gradient Boosting (XGBoost) and
Light Gradient Boosting Machine (LightGBM), LDA classi-
fier, and Gaussian process classifier. Especially for gradient
boosting algorithms, they used Genetic Algorithms to opti-
mize hyperparameters. A key observation was XGBoost’s su-
perior performance over the other algorithms. Differing from

their approach, (Aimiyekagbon, Muth, Wohlleben, Bender, &
Sextro, 2021) showcased a rule-based diagnostic technique,
comparing its performance with that of decision trees and ran-
dom forest methods. Additionally, (Aydemir, Avcı, Kocaku-
lak, & Bekiryazıcı, 2021) proposed a regularized LSTM for
sifting through vital features and then leveraged an ensemble
of binary LSTM classifiers for fault detection and classifica-
tion.

Moreover, the XGBoost algorithm found favor not just in
the aforementioned studies but also in three other distinct re-
search papers (Alfarizi, Vatn, & Yin, 2022; Ramezani, Amir-
latifi, Kirby, Seale, & Rahimi, 2021; Tian et al., 2022) out-
side the competition. The distinctions among these studies
were as follows: For instance, (Tian et al., 2022) relied on a
feature importance ranking (FIR) method, targeting enhanced
performance and simplification in complex industrial classifi-
cation scenarios, whereas (Ramezani et al., 2021) focused on
the challenge of missing value imputation, harnessing Par-
tial Least Squares (PLS-MV). A significant contribution of
Ramezani’s framework was its explainability, achieved by pin-
pointing key performance indicators for each fault family us-
ing the SHAP method (Lundberg & Lee, 2017).

3.1.2. 2022 PHM EU (Printed Circuit Boards)

The 2022 European PHME Data Challenge, hosted in col-
laboration with Bitron Spa, focused on a classification issue
within an actual industrial Printed Circuit Board (PCB) pro-
duction line. The challenge’s objectives contain three impor-
tant tasks: (1) Task 1: predicting Automatic Optical Inspec-
tion (AOI) defect detection based on Solder Paste Inspection
(SPI) data; (2) Task 2: predicting human-made visual inspec-
tion labels (OperatorLabel); (3) Task 3 predicting the human-
assigned repair label (RepairLabel). Task 1 and Task 2 are
binary classification problems, whereas Task 3 is a multi-
class classification problem. This explains why, in Table 3,
the ”Failure Mode” is listed as ”1+1+2”. In Table 3, the ”Op-
erating Condition” is listed as ”1+1+1”, which means each
task has its own operating condition. Meanwhile, the SPI
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dataset(2022 PHM EU) had missing information in specific
fields and 95% of the SPI data was classified as healthy, high-
lighting a significant imbalance issue.

In 2022 PHM EU, Gaffet’s team got 1st place using XGBoost
method based on encoding and feature engineering (Gaffet,
Roa, Ribot, Chanthery, & Merle, 2022). Notably, they har-
nessed the SHAP method for model interpretation. Simi-
larly, (Taco et al., 2022) leveraged two tree-based algorithms
(LightGBM and XGBoost). Their approach centered on solv-
ing classification problems by extracting significant statistical
data during the feature engineering phase. The importance
of feature engineering was further emphasized by (H. Tang
et al., 2022). They introduced a novel statistical feature ex-
traction method coupled with a PinNumber-based technique.
This method aimed to compress pin-level data into component-
level information. When predicting automatic inspection de-
fects, they integrated a neural network model, factoring in
feeding imbalance control to navigate data imbalance chal-
lenges. Additionally, a random forest model was developed
for both human inspection and repair predictions. Apart from
feature engineering, (Schmidt, Dingeldein, Hünemohr, Simon,
& Weigert, 2022) applied a multi-layer perceptron (MLP)
neural network for defect predictions in automated inspec-
tions. For human inspection outcomes, a random forest algo-
rithm was their choice, while decision trees were favored for
predicting human repair labels.

Outside of competition, Mirzaei’s team delved deep into the
challenge of imbalanced data. They proposed a data-level
technique that integrated recursive feature elimination (RFE)
for feature selection and oversampling methods. This ensured
balanced representation for minority classes, enhancing the
performance of multiple ML algorithms, from decision trees
and random forests to SVMs and 1dCNNs (Mirzaei, Sadat, &
Naderkhani, 2023). Additionally, (J. Lee et al., 2022) intro-
duced a new quality management paradigm termed Stream-
of-Quality (SoQ) tailored for multi-stage manufacturing pro-
cesses. By leveraging this dataset, they showcased the ef-
fectiveness of their methodology, offering promising avenues
for refining industrial AI algorithms and methodologies in a
systematic manner.

3.1.3. 2022 PHM NA (Rock Drill)

Rock drills play a pivotal role in sectors like mining, tun-
neling, and construction. Due to the potential economic and
human costs from work interruptions caused by rock drill
faults, ensuring accurate fault diagnosis is necessary. 2022
PHM NA aimed to address fault classification problem un-
der various product configurations. The main challenges is
domain-shift problem, caused by data being collected from
different rock drill machines. The dataset encompassed train-
ing data from five rock drill machines, validation data from
another machine, and test data from two additional machines,

highlighting potential domain shift issues between training,
validation, and test data. This leads to heterogeneous sig-
nal distributions, which can negatively impact classification
accuracy. The dataset (Jakobsson, Frisk, Krysander, & Pet-
tersson, 2022) encompasses ten distinct fault modes and one
health mode, with training, validation, and testing data sizes
of 34,045, 3,184, and 16,396, respectively.

In the competition, (Oh et al., 2023) won the first place. They
deployed a hybrid strategy, combining data-driven techniques
with various signal-processing methods. Their approach har-
nessed domain adaptation, metric learning, and pseudo-label-
based deep learning to construct an ensemble DL model for
comprehensive fault classification. For samples that posed
challenges for DL, they deployed signal processing methods
like Dynamic Time Warping (DTW), and Cross-correlation,
and used SVM for supervised learning. The runner-up solu-
tion introduced a data-cropping technique, employing a con-
volutional neural network (CNN) as a feature extractor to
bridge data length discrepancies. (Y. C. Kim, Kim, Ko, Lee,
& Kim, 2023) innovatively addressed the domain-shift issue
through a domain-adaptation-based scheme that harnessed a
domain adversarial learning neural network for extracting do-
main invariant features while using maximum mean discrep-
ancy (MMD) minimization for bridging distribution discrep-
ancy, and a soft voting ensemble to reduce model uncertainty.
Moreover, Minami’s team proposed an ensemble approach,
appending specialized models onto a baseline model. This
ensemble incorporated domain adaptation strategies to ac-
commodate domain fluctuations. The baseline model em-
ployed conventional ML algorithms like SVM, Random For-
est, and XGBoost for whole multi-class classification, whereas
the specialized sub-models, leveraging CNN for feature ex-
traction and classification, concentrated on binary classifi-
cations targeting specific classes that poorly performed on
the baseline model (Minami, Suer, Kundu, Siahpour, & Lee,
2023).

Outside the competition, (Ling, Gao, Gong, Wu, & Zou, 2023)
deployed an end-to-end fault classification framework derived
from X-Vectors (Snyder, Garcia-Romero, Sell, Povey, & Khu-
danpur, 2018), achieving integrated optimization of both fea-
ture extraction and classification phases. (Taco, Kundu, &
Lee, 2023) proposed a novel deep forest algorithm that fused
multi-grained scanning for feature extraction and a cascade
forest for layered predictions to perform failure model classi-
fication.

3.1.4. 2023 PHM AP (Spacecraft Propulsion System)

The Japan Aerospace Exploration Agency (JAXA) initiated
a competition centered on the advancement of PHM technol-
ogy for spacecraft propulsion systems. The primary objec-
tive was to accurately diagnose various states ranging from
normal conditions to bubble anomalies, solenoid valve faults,
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Table 4. Overview of Detection and Diagnosis Methodologies in PHM Data Challenge Competitions

Methodology
Deep Learning Conventional Machine Learning Feature Engineering

2021 PHM EU Regularized LSTM
Ensemble LSTM

XGBoost, Decision Trees
Random Forest
LDA, Rule-based Method
Gaussian Process

FIR
PLS-MV
FCM
SMOTE

2022 PHM EU 1D-CNN
Decision Trees, Random Forest
XGBoost, LightGBM
SVM, MLP

RFE
Statistical Feature Extraction

2022 PHM NA

Domain Adaption
DANN, X-Vectors
Metric Learning
Pseudo Label Technique

Ensemble Learning
XGBoost
SVM
Deep Forest Algorithm

MMD
RFE
DTW

2023 PHM AP NA

Similarity-based Method
K-means clustering, KNN
Decision Trees, XGBoost
Rule-based method
Ensemble Learning

Physical Feature Extraction
DTW

2023 IEEE

ROCKET, LSTM-FCN
1D-CNN with ResNet
Deep Residual Network
Residual-based CNN

Ensemble Learning
Data Augmentation
Data Regularization
STFT

and unknown faults. Simulation data was sourced from four
distinct spacecraft, resulting in a dataset comprising 177 train-
ing samples and 46 test samples (Tominaga et al., 2023). The
paucity of data posed a challenge for data-driven approaches.

In the competition, the champions (Minami & Lee, 2023),
introduced a novel two-step approach. Initially, a similarity-
based model was proposed for the categorization of data into
four distinct states. Subsequently, for data corresponding to
the solenoid valve fault, a model incorporating physic in-
spired features was employed to pinpoint the fault location
and estimate the valve opening ratio. They also deployed
DTW (Berndt & Clifford, 1994) on the training dataset which
was instrumental in quantifying the variability across various
segments of the sensor data. Standing in the second posi-
tion, (S. K. Lee et al., 2023) devised a hybrid approach com-
bining the XGBoost-based method and the rule-based method.
While the XGBoost-based approach primarily addressed com-
prehensive fault classification, the rule-based method was em-
ployed to formulate the solenoid valve opening ratio equation.
This was accomplished through polynomial fitting, rooted in
intrinsic physical characteristics, enabling a precise estima-
tion of the solenoid valve opening ratio.

Additionally, (Kato, Kato, & Tanaka, 2023) utilized the K-
NN algorithms to classify faults and pinpoint the location of
anomalies. Prior to the classification, a differentiation be-
tween normal and anomalous data was executed based on a
similarity-based approach. Their estimation metrics for valve

opening ratio were hinged upon the similarity of time se-
ries waveforms. Moreover, (Aimiyekagbon, Lowen, Bender,
Muth, & Sextro, 2023) employed an ensemble framework, in-
tegrating K-means clustering and decision trees. This model,
enriched by domain-specific expertise, exhibited good preci-
sion in both anomaly detection and fault diagnosis. Various
approaches in 2023 PHM AP underscore the importance of
similarity-based methods and the extraction of physical fea-
tures , when the dataset size is small.

3.1.5. 2023 IEEE (Gearbox)

The objective of 2023 IEEE is to develop ML-based models
that can efficiently detect faults in the planetary gearboxes
of industrial machinery using vibration signals. The dataset
covers four prevalent sun gear faults: surface wear, chipped
teeth, cracks, and missing teeth. Vibration signals have been
recorded for a duration of five minutes each, with a sampling
rate of 10 kHz, under two distinct operational conditions.
Given the substantial dataset, comprising 50,000 samples, the
deployment of DL techniques is feasible.

In 2023 IEEE. (X. Y. Lee et al., 2023) utilized ensemble-
based CNN techniques to address fault detection via time-
series vibration data. Their findings underscored robust per-
formance of integrating three convolution kernel-based meth-
ods such as ROCKET (RandOm Convolutional KErnel Trans-
form) method (Dempster, Petitjean, & Webb, 2020), one di-
mensional convolutional neural networks (1dCNN) integrated
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Table 5. Overview of Assessment and Prognosis Problems in PHM Data Challenge Competitions

2018 PHM NA 2019 PHM NA 2020 PHM EU 2021 PHM NA

System Ion Mill Etching System Fatigue Crack Filtration System Turbofan Engine
Failure Mode 3 1 1 7

Sensor Number 5 2 3 14
Asset 20 8 NA NA

Operating Condition Multiple Variable Loading Conditions 12 4
Data Type Time Series Time Series Time Series Time Series

Volume of Data
Limited Samples Limited Samples Limited Samples Limited Samples
(20 Train, 5 Test) (74 Train, 36 Test) (24 Train, 8 Validation, 16 Test) (90 Train Units, 38 Test Units)

Sampling Rate 0.25 Hz 5 Hz 10 Hz 1 Hz
Sampling Interval Above 70 million seconds 14000-100774 cycles 200-350 s 1-3 hours, 3-5 hours, Above 5 hours

with ResNet, and a fusion of LSTM and Fully Convolutional
Network (FCN) in delivering classification results for multi-
variate time-series data. Similarly, both (Shen, Wang, Fu, &
Xiong, 2023) and (Kreuzer & Kellermann, 2023), designed
residual-based CNN models to address fault classification chal-
lenges. On the one hand, (Shen et al., 2023) incorporated
the Short-Time Fourier Transform (STFT) (Z. Huang, Zhu,
Lei, Li, & Tian, 2021), transforming frequency domain sig-
nals into time-frequency domain signals using Fourier analy-
sis - an useful tool for interpreting time-evolving signals. On
the other hand, (Kreuzer & Kellermann, 2023) leveraged data
augmentation and regularization techniques, enabling model
construction with fewer parameters without sacrificing per-
formance quality. Additionally, (Sobha, Xavier, & Chandran,
2023) harnessed a tree classifier to select valuable features
from raw vibration signals, subsequently developing a se-
quential neural network model tailored for the concurrent de-
tection of multiple gear faults.

3.2. Assessment & Prognosis

Similar to the structure of subsection 3.1, we detail specifics
of each competition, including the problems, challenges, and
data-driven approaches applied. We also provide a consol-
idated summary of both the problems with their associated
datasets and the proposed solutions in Table 5 and Table 6,
respectively.

3.2.1. 2018 PHM NA (Ion Mill Etching System)

The 2018 PHM NA emphasized the analysis of fault behavior
within the ion mill etch tool, tasking participants to develop a
model from the sensor-derived time series data capable of ac-
curately detecting, diagnosing, and prognosticating the time-
to-failure for three principal failure modes—Flowcool leak
(F1), Flowcool Pressure Too High Check Flowcool Pump
(F2), and Flowcool Pressure Dropped Below Limit (F3). Ad-
ditionally, the Ion Mill Etching (IME) dataset faced an im-
balance issue, where the faulty data is much less than normal
operation data.

For this dataset, (S. Wu, Jiang, Luo, & Yin, 2021; W. Huang,
Khorasgani, Gupta, Farahat, & Zheng, 2018; L. Zhao, Zhu,
& Zhao, 2022; He & Jin, 2019)have each proposed strate-
gies based on random forest algorithms for early degradation
mode detection and diagnosis. Extending the exploration of
ML techniques, (Singh, Selvanathan, Zope, Nistala, & Runk-
ana, 2018) evaluated an assortment of models, including Gen-
eralized Linear Models, MLP, Multivariate Adaptive Regres-
sion Splines, Support Vector Regression (SVR), random for-
est, etc. Among these, the random forest model distinguished
itself with superior performance. Meanwhile, (Zheng, Liu,
& Zhang, 2021) utilized a knowledge distillation approach
towards fault detection across various modes, aiming to im-
prove detection performance of infrequent but critical faults.

Recent advancements in RUL prediction (S. Kim, Choi, &
Kim, 2021) have predominantly hinged on the application of
DL algorithms to analyze complex multivariate time series
data. (S. Wu et al., 2021; W. Huang et al., 2018; He & Jin,
2019) have all utilized Long Short-Term Memory (LSTM)
networks and their variations, such as Gated Recurrent Units
(GRU) and LSTM-based Metric Regression (LSTM-MR), to
capture important features from the raw data. (Hsu, Lu, &
Yan, 2022) expanded upon this approach by integrating a
Temporal Convolutional Network (TCN) with LSTM with at-
tention mechanisms, which facilitated refined feature extrac-
tion from sensor data for accurate RUL prediction. Moreover,
Liu et al.’s two-stage deep transfer learning framework aimed
at achieving accurate RUL prediction. In the first stage, the
developed model leveraged TCN for initial temporal feature
learning, followed by domain adversarial learning for data
alignment based on one fault mode. Then in the second stage,
the first-stage model was fine-tuned based on other fault mode
data to handle multiple fault modes and enhance the RUL pre-
diction performance (Liu, Zhang, Li, Zheng, & Wu, 2021).
Distinct from these methods, (L. Zhao et al., 2022) explored
transformer networks, focusing solely on data from abnormal
operation phases, while (Lorenti et al., 2023) provided a com-
prehensive comparison of state-of-the-art methods, including
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TCN, LSTM, attention-based mechanisms, CNN, and Trans-
former. Moreover, (Singh et al., 2018) introduced a novel ap-
proach using DTW for RUL estimation, leveraging a library
of truncated degradation curves and health score models to
refine the final RUL predictions.

3.2.2. 2019 PHM NA (Fatigue Crack)

2019 PHM NA focused on the task of fatigue crack length
estimation and prediction within aluminum structures at dif-
ferent points. The challenge harnessed wave signal data col-
lected by piezoelectric sensors subjected to both static and
dynamic tensile stresses. Given that the test dataset was lim-
ited to wave signals from several initial loading cycles, partic-
ipants were challenged to estimate crack lengths where signal
data were present and predict future crack growth for speci-
fied cycles lacking signal data. The complexity of the prob-
lem is that data-driven methodologies were viable when sig-
nals existed, whereas scenarios lacking wave data required
exploration into physics-based strategies. Therefore, solu-
tions derived from this challenge have predominantly em-
ployed a hybrid approach of data-driven and physics-based
techniques.

Regarding the estimation of fatigue crack length with acces-
sible wave signals, a variety of data-driven models and fea-
ture engineering strategies emerged, both within and beyond
the competition’s scope. (Karimian, Moradi, Cofre-Martel,
Groth, & Modarres, 2020) proposed a neural network archi-
tecture reliant on features manually derived from raw signals,
such as the Pearson correlation coefficient, phase shifts, en-
ergy, and information entropy, to train models for accurate
crack length estimation. Similarly, (Kong et al., 2020) initi-
ated their approach with signal preprocessing, utilizing tech-
niques like band-pass filtering and phase alignment to miti-
gate noise and uncertainty before applying physically insight-
ful feature extraction methods. Thereafter, they harnessed a
random forest algorithm, optimizing it through feature selec-
tion and grid search for hyperparameter fine-tuning, to es-
timate crack lengths. Additionally, (Youn, Kim, Lee, Cho,
& Youn, 2020) also leveraged a band-pass filter for feature
extraction from raw wave signals, subsequently construct-
ing an SVR model with hyperparameters optimized via grid
search. Rao and collaborators, meanwhile, designed an en-
semble learning regression model to improve estimation per-
formance with four useful extracted features (root mean square
value, correlation coefficient, first peak value, and the loga-
rithm of kurtosis) (Rao et al., 2020).

Predictive modeling for scenarios lacking wave signal data
required a pivot towards physics-based techniques, often in
conjunction with data-driven insights, to forecast crack pro-
gression. (Karimian et al., 2020) devised a Particle Filter (PF)
strategy, integrating the Paris Law and outputs from the pre-
viously developed neural network as observational inputs to

refine and update the crack propagation pathway. (Kong et
al., 2020) suggested an ensemble prognostics framework un-
der consistent loading conditions, constructing a probability
density function (PDF) for each instance. This was followed
by a computation of weights derived from each PDF to output
the final crack length prediction. Furthermore, when different
loading conditions prevailed, Walker’s equation was utilized
to forecast crack lengths. Innovatively, (Youn et al., 2020)
introduced a trans-fitting approach, aimed at extracting the
crack growth trend from training data and extrapolating it to
the test data predictions. Additionally, Rao’s group advanced
a variation version of Paris’ Law, aiming to elucidate the cor-
relation between crack progression and the number of loading
cycles (Rao et al., 2020).

3.2.3. 2020 PHM EU (Filtration System)

In the domain of industrial maintenance, filtration systems are
crucial for helping process pollutants from industrial equip-
ment, ensuring seamless system operation. A predominant
challenge encountered within these systems is filter clogging
- a phenomenon where accumulated pollutants impede flow
rates, thereby disrupting standard industrial workflows. To
address this issue, 2020 PHM EU concentrated on the pre-
diction of filtration systems’ RUL. RUL, in this context, is
delineated as the time until the pressure differential across
the filter breaches a threshold of 20 psi. The challenge pro-
vided the PHME20 dataset, collected from a controlled ex-
perimental setup designed to simulate filter clogging at var-
ious contamination levels. Twelve distinct conditions were
established influenced by two operational parameters: solid
ratio (%) and particle size (µm). Additionally, the 2020 PHM
EU dataset demonstrated domain shift problem, with train-
ing data featuring small and large particle sizes, while the test
data included medium particle sizes.

The champion solution (Łomowski & Hummel, 2020) em-
ployed a novel hybrid approach, combining kernel regression
with fundamental statistical methodologies. Meanwhile, the
runner-up, (Beirami et al., 2020), adopted different cutting-
edge feature engineering, and ML methods. Their process be-
gan with the extraction of features through a rolling window
technique and proceeded with feature selection informed by
the linear kernel Support Vector Machine (SVM) coefficients,
RFE, correlation matrix, and monotonicity testing. A four-
layer sequential neural network was their model of choice,
supported by K-fold cross-validation throughout the training
and validation stages. Capturing the third position, (Ince,
Sirkeci, & Genç, 2020) conducted a comparative study of
tree-based algorithms and the Bayesian approach. Specif-
ically, random forest, gradient boosting, and Gaussian pro-
cess regression were utilized to estimate the RUL of the fil-
tration system, supplemented by a novel fault-based RUL as-
signment that integrated ”Piecewise RUL Assignment” and
”Linear RUL Assignment”.
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Table 6. Overview of Assessment and Prognosis Methodologies in PHM Data Challenge Competitions

Methodology
Deep Learning Conventional Machine Learning Feature Engineering

2018 PHM NA

Transfer Learning
LSTM, LSTM-MR, GRU
Transformer
CNN
TCN, TCN-LSTM, TCN-DANN

Random Forest, Gradient Boosting
Logistic Regression
Generalized Linear Model
SVR, MLP
MASR

DTW
SVR-RFE
Degradation Curve Library

2019 PHM NA NA

Random Forest, Gaussian Process
SVR
Neural Network
Ensemble Learning
Linear Regression

Grid Search
Genetic Algorithm
Paris’s Law
Walker’s Equation
Particle Filter

2020 PHM EU

Neural Turing Machine
Transfer Ensemble Learning
LSTM, Bi-LSTM, TEL-Bi-LSTM
Autoencoder-Regression Network
Deep CNN

Random Forest, Gradient Boosting
Gaussian Process
Kernel Regression
SVR
Ensemble Learning

Simple Statistics Method
Linear SVM Coefficient
Correlation Metric
RFE, Health Index
Monotonicity Test

2021 PHM NA
Deep CNN, FCN, VGG
ResNet(Residual Block)
GoogLeNet(Inception Module)

Random Forest, XGBoost
Extreme Random Forest
ANN

PCA
XAI,SHAP, LIME

Contrasting with the feature engineering and conventional ML
strategies, some researchers explored some DL methods. (Vu,
Chandra-Sekaran, & Stork, 2021) introduced a CNN-based
DL methodology for RUL prediction, marked by two archi-
tectural innovations: a Parameterized Fully Connected Layer
that adjusts network weights in response to operational pa-
rameter shifts, and a multi-head predictor tailored to distinct
degradation process stages. Additionally, (Tian, Jiang, Zhang,
Wu, & Luo, 2023) presented a new transfer ensemble learn-
ing (TEL) framework, leveraging metric learning alongside
domain dissimilarity metric and Kullback–Leibler (KL) di-
vergence, to enhance model generalization from source to
target domains. This TEL framework amalgamated with a
bidirectional long short-term memory (Bi-LSTM) algorithm,
coined as TEL-Bi-LSTM, was offered for RUL estimation
under different operating conditions. In another innovative
approach, (İnce & Genc, 2023) proposed a joint autoencoder-
regression network, a deep neural architecture that fused a
CNN autoencoder with an LSTM network regressor in an
end-to-end training paradigm. Genetic algorithms were in-
strumental in optimizing hyperparameters for this architec-
ture. Additionally, Lee’s team developed a distinct strategy
by first establishing a health assessment criterion (S. Lee et
al., 2021). They defined a Health Index (HI) for the filter sys-
tem and utilized K-means clustering for the categorization of
the system’s health stages. Subsequent HI predictions were
facilitated by the Bi-LSTM algorithm, thus determining the
system’s RUL. Lastly, Falcon et al. introduced an innova-
tive sequence modeling technique termed the Neural Turing
Machine (NTM) (Falcon et al., 2022). Conceptualized as a

computational architecture, the NTM leverages available data
to interact with an external memory component, an approach
that facilitates enhanced accuracy in predictions. This model
stands out for its ability to generate more precise outcomes
when benchmarked against the prevalent LSTM-based solu-
tions that dominate the field.

3.2.4. 2021 PHM NA (Turbofan Engine)

2021 PHM NA was primarily focused on the prediction of
RUL for turbofan engines (Chao, Kulkarni, Goebel, & Fink,
2021), specifically under four distinct flight conditions and
seven failure modes. Participants were required to create pre-
dictive models leveraging the N-CMAPSS dataset, aiming to
accurately forecast RUL using complex condition monitoring
data. The dataset, a collection consisting of 90 synthetic run-
to-failure trajectories for training and an additional 38 trun-
cated datasets for testing, served as a comprehensive foun-
dation for developing robust predictive algorithms to predict
RUL accurately.

During the competition, the winning team, led by Lovberg,
put forward an innovative approach leveraging a deep con-
volutional neural network (DCNN) (Lövberg, 2021). This
network was distinguished by its use of dilated convolutions
complemented by gated linear unit activations and integration
of residual skip connections. Those techniques were designed
to expand the network’s receptive field and enhance flexibil-
ity, so as to reduce the complexity of the neural network ar-
chitecture by using less number of parameters, but still hav-
ing comparable performance. Additionally, they adopted a
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Figure 2. Distribution of ML Approaches Across PHM Data Challenge Competitions

strategic sequence sampling method, minimizing less infor-
mative samples while retaining enough degradation signals
for the network’s input. Moreover, Solis-Martin et al. and
DeVol’s team pursued advancements in DCNNs as well. The
former developed a two-level DCNN system where the first-
level DCNN focused on extracting important features from
raw data and the second-level DCNN leverages the output
from the first level to accurately estimate the RUL (Solis-
Martin, Galán-Páez, & Borrego-Diaz, 2021). The latter drew
upon established DL architectures, deploying the basic blocks
or modules from the VGG, GoogLeNet, and ResNet designs
into their DCNN framework. This enabled a comparative
analysis of model performances using a variety of well-known
architectural features (DeVol, Saldana, & Fu, 2021, 2022).

Outside of the competition, (Cohen, Huan, & Ni, 2023a) ad-
dressed concerns regarding the uncertain and poor interpretabil-
ity of deep learning models by integrating principal compo-
nent analysis (PCA) to refine time-domain feature sets and
subsequently applying four supervised learning techniques,
including artificial neural network, random forest, extreme
random forest and XGBoost, to estimate RUL. Their innova-
tive use of a custom loss function in conjunction with tradi-
tional ANN models got the best results in both Area Under the
Receiver Operating Characteristic (AUROC) and Area Un-
der the Precision-Recall (AUPR) metrics. Moreover, the do-
main of PHM has witnessed an upsurge in the application of
XAI techniques to enhance the interpretability and trustwor-

thiness of ML models. Various methods, including LIME,
SHAP, LRP, Image-Specific Class Saliency Maps, and Gradi-
ent weighted Class Activation Mapping (Grad-CAM), have
been reported in recent literature (Cohen, Byon, & Huan,
2023; Cohen, Huan, & Ni, 2023b; Solı́s-Martı́n, Galán-Páez,
& Borrego-Dı́az, 2023). These techniques are useful in eluci-
dating the decision-making processes of complex models.

3.3. Comprehensive Summarization of Data-Driven Ap-
proaches in Recent PHM Data Challenge Competi-
tions

After conducting an in-depth review of data competitions from
the last six years, Figure 2 provides details into the publi-
cation count and the frequency of particular ML approaches
within each competition. Furthermore, Figure 3 illustrates the
density of specific ML or DL approaches discussed in this pa-
per. It is important to note that we count the occurrences of
distinct ML methods mentioned in a research paper. Given
that some articles employ multiple ML methods, the aggre-
gate count of methods exceeds the total number of publica-
tions.

Moreover, we have summarized a unified ML framework that
concludes ML approaches for PHM data competitions dur-
ing this period. As shown in Figure 4, it encompasses five
primary components: Data Collection, Data Processing, Data
Visualization, Conventional Machine Learning & Deep Learn-
ing, and Model Interpretability.
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Figure 3. The Density of Various ML Approaches in PHM
Data Challenge Competitions from 2018 until December
2023

Data Collection: Data collection is the foundation of these
open-source data challenge competitions (PHM Society and
IEEE Reliability Society). Companies across various indus-
tries contribute datasets to encourage PHM community to de-
velop innovative solutions to address real-world challenges.
Typically, these industrial datasets encompass a diverse range
of data types, including but not limited to time-series data,
tabular data, images, sensor readings, and simulation data.

Data Processing: An important stage before ML model de-
velopment is data processing, which is crucial for enhanc-
ing data quality and ensuring effective model training (Cofre-
Martel, Lopez Droguett, & Modarres, 2021; S. Tang, Yuan,
& Zhu, 2020; Corrêa et al., 2022; Griffiths, Corrêa, Hod-
kiewicz, & Polpo, 2022). This stage can be further subdivided
into two aspects: data preprocessing and feature engineer-
ing. Data preprocessing addresses raw data challenges, typi-
cally including missing data, noise, outliers, data imbalance,
and scaling issues. Techniques like imputation (Eekhout, de
Boer, Twisk, de Vet, & Heymans, 2012), denoising (de Calle-
Etxabe et al., 2021), outlier detection (Marti-Puig, Blanco-M,
Cárdenas, Cusidó, & Solé-Casals, 2018), resampling (Cicak
& Avci, 2023), and normalization & standardization (LeCun,
Bengio, & Hinton, 2015; Goodfellow, Bengio, & Courville,
2016) are commonly applied. Feature engineering follows,
refining data representation post-preprocessing. This step of-
ten uncovers hidden insights and deepens understanding of
data, therefore significantly enhancing model performance and
predictive capabilities in the later stage (Sim, Kim, Park, &
Choi, 2020).

Data Visualization: Data visualization is another important
aspect of the ML process. It involves transforming data into
intuitive graphical representations, such as graphs or charts.
Researchers can use these charts to better observe trends, pat-
terns, or outliers in data, which further help people have a bet-
ter understanding of data and generate some useful insights.
In the PHM domain, effective visualization can help initial

data exploration and analysis, and accelerate data processing
and ML modeling development (Carley et al., 2022; Cheng et
al., 2022).

Conventional Machine Learning & Deep Learning Tech-
niques: Post data processing, various conventional ML, and
DL methods are developed to solve the competition problems
using useful and usable data, as shown in Figure 4. This
segment includes ”model training and testing” and ”model
prediction and classification”. During the training and test-
ing phase. ML/DL techniques are diverse, including Tree-
Based Methods, CNNs, RNNs and their variants, Transform-
ers, DANN, SVMs, Unsupervised Learning, Ensemble Learn-
ing, Similarity-Based Methods, Rule-Based Methods, Trans-
fer Learning, Domain Adaptation, etc. (Serradilla et al., 2022;
Qiu et al., 2023) Once the ML models are trained and tested
well, they could be deployed into various PHM applications
which include detecting abnormal performance or faults, clas-
sifying different faults, assessing the current health state of
systems, or predicting the RUL of components.

Model Interpretability: Except for the pursuit of accuracy in
prediction and classification problems, model interpretability
is becoming more and more important. Model interpretabil-
ity refers to interpreting ML model outputs (Molnar, 2020)
which helps humans understand the ’why’ behind a model’s
predictions, facilitating collaboration and more informed de-
cision making. Many explainable artificial intelligence (XAI)
methods such as Local Interpretable Model-Agnostic Expla-
nations (LIME) (Ribeiro, Singh, & Guestrin, 2016) and SHap-
ley Additive exPlanations (SHAP) (Lundberg & Lee, 2017)
are utilized in the PHM data challenge competitions to ex-
plain model outputs in PHM (Solı́s-Martı́n et al., 2023).

4. CHALLENGES AND POSSIBLE SOLUTIONS

In this section, we summarize common challenges regarding
data-related issues and model-related issues and analyze rel-
evant solutions applied to solve these challenges, shown in
Table 7. Data-related challenges encompass issues such as
missing data, data imbalance, and domain shift while model-
related challenges include the critical aspects of model se-
lection, interpretability of ML models, and their robustness
and generalization capabilities. These challenges highlight
the complexities of developing effective ML methods to solve
various PHM problems.

Moreover, the limitations of current PHM competitions re-
veal a gap in adopting systematic approaches for building ef-
fective PHM systems, and a need for multi-modal machine
learning analysis. We also suggest further steps, aiming to ac-
celerate the development of next-generation ML-driven PHM
solutions.
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Figure 4. A Unified Machine Learning Framework in Prognostics and Health Management Domain

4.1. Data-related Issues

4.1.1. Missing Data

Handling missing data in ML, especially in the context of
the PHM is necessary, as incomplete data can significantly
impact the model performance and prediction accuracy. The
strategies to address missing data in PHM have evolved, en-
compassing a range of techniques from basic deletion to ad-
vanced imputation methods. A straightforward strategy is
the deletion of data points with missing values, such as list-
wise or pairwise deletion. For example, in the 2022 SPI
dataset, instances having missing values in crucial identifiers
like ”Panel ID”, ”Figure ID”, and ”Component ID” were elim-
inated (Taco et al., 2022). However, this approach can lead to
the loss of valuable information to some degree. Regarding
imputation methods, several innovative methods were used
in 2021 PHM EU. (de Calle-Etxabe et al., 2021) applied the
Last Observation Carried Forward (LOCF) method, coupled
with backward filling, to address the gaps, while (Ramezani
et al., 2021) introduced a novel approach, PLS-MV, a par-
tial least squares-based method for imputing missing values.
Interpolation was another technique used to estimate miss-
ing values, ensuring that cases with absent data did not skew
the results. In addition to various imputation methods high-
lighted in the competitions, there remains scope for explo-
ration in future research such as mean/median/multiple, K-
Nearest Neighbors(KNN), regression imputation, maximum
likelihood estimation, and ML-based approaches (Y. Huang,
Tang, VanZwieten, & Liu, 2022).

4.1.2. Data Imbalance

Data imbalance arises when the distribution of classes in a
dataset is uneven. This issue is evident in PHM due to the
rarity of failure events in comparison to data representing nor-
mal conditions. Data imbalance can significantly undermine
the performance of ML models, particularly in classification
tasks. When trained on imbalanced data, models may be-
come biased towards the majority class (normal operation)
and may not effectively recognize the minority class (failure).
This leads to poor performance in predicting failures, which
may bring ineffective maintenance planning and unexpected
downtimes.

To counteract data imbalance in PHM, various strategies have
been adopted. Resampling techniques are commonly used
to adjust the dataset to balance the class distribution, either
by oversampling the minority class or downsampling the ma-
jority class. Synthetic data generation is another approach,
as demonstrated by a team in 2021 PHM EU that used the
SMOTE to create synthetic samples of the minority class to
balance the dataset (de Calle-Etxabe et al., 2021). Advanced
algorithms also play a crucial role in addressing data imbal-
ance. For instance, Tang’s team in 2022 PHM EU used the
FIR to control the imbalance ratio in each mini-batch during
neural network training (H. Tang et al., 2022). Liu et al. em-
ployed transfer learning and domain adaptation techniques in
2018 PHM NA to facilitate knowledge transfer across differ-
ent fault modes, addressing the issue of insufficient data in
specific faults (Liu et al., 2021). Moreover, during the 2018
PHM NA competition, many teams utilized Random Forest,
an ensemble learning method known for its proficiency in
handling imbalanced data, by constructing a forest of deci-

13



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Table 7. Summary of Common Challenges Regrading Data-related and Model-related Issues

Common Challenges Potential Solutions Related Competitions

Missing Data
(1) Listwise or Pairwise Deletion
(2) Imputation (LOCF, PLS-MV)
(3) Other

2021 PHM EU
2022 PHM EU

Data Issue Data Imbalance

(1) Resampling
(Oversampling or Downsampling)
(2) Synthetic Data Generation
(SMOTE and Variants)
(3) Transfer Learning Techniques

2018 PHM NA
2021 PHM EU
2022 PHM EU

Domain Shift
(1) Transfer Learning Techniques
(2) Domain Adaptation Techniques
(3) DANN

2020 PHM EU
2022 PHM NA

Model Selection

(1) Need to Consider Volume and Quality
of Data
(2) A Trade-off Between Computational
Cost and Performance

All Competitions

Model Issue Model Interpretability (1) Explainable Artificial Intelligence
(XAI) methods like LIME, SHAP, etc.

No Competition
Required

Model Robustness
& Generalization

(1) Data Augmentation
(2) Regularization Techniques
(3) Ensemble Methods
(4) Transfer Learning & Domain Adaptation

All Competitions

sion trees.

Beyond the techniques showcased in the competitions, new
DL approaches are proposed, such as the semi-supervised in-
formation maximizing generative adversarial network (J. Wu,
Zhao, Sun, Yan, & Chen, 2020), the integration of deep resid-
ual networks with auxiliary classifier generative adversarial
networks (Chen, Lin, Cui, & Ge, 2022), the combination of
DL with SMOTE (Dablain, Krawczyk, & Chawla, 2022), etc.
Furthermore, a standardized experimental framework is pro-
posed by Aguiar’s team in order to evaluate 24 state-of-the-art
data stream algorithms across 515 imbalanced data streams
(Aguiar, Krawczyk, & Cano, 2023). Going forward, there is
a need for the exploration of additional DL-based strategies to
enhance the handling of data imbalance in the PHM domain.

4.1.3. Domain Shift

Domain shift refers to the changes in the data distribution be-
tween the training phase (source domain) and the real-world
application phase (target domain) of the ML models. This
phenomenon frequently occurs when models, initially trained
on data from a specific set of machines or under certain con-
ditions, are subsequently applied to different machines or var-
ied operating conditions. Such a shift can markedly affect the
performance and reliability of ML models in PHM, making
tackling with domain shift problem essential for maintaining
the robustness and effectiveness of PHM systems. Transfer
learning has emerged as a primary solution to domain shift

challenges, as it can achieve the adaptation of models from
one domain to be effective in another through fine-tuning and
domain adaptation techniques. For instance, Kim et al. uti-
lized domain adversarial neural networks (DANN) along with
the minimization of MMD to tackle domain discrepancies in
2022 PHM NA (Y. C. Kim et al., 2023). Meanwhile, Oh
et al. employed the deep CORAL method, calculating coral
loss to diminish domain discrepancy effects by aligning the
covariance of the six training domains with that of the test
domain (Oh et al., 2023). Moreover, Tian’s team developed
a novel TEL framework, facilitating knowledge transfer from
the source to the target domain in 2020 PHM EU (Tian et
al., 2023). Additionally, robust modeling approaches and the
ability to continuously update models with new data are also
useful and imperative for mitigating the impact of domain
shift.

4.2. Model-related Issues

4.2.1. Model Selection: Conventional Machine Learning
or Deep Learning?

In PHM data challenge competitions, participants often grap-
ple with the difficult decision of whether to use conventional
ML algorithms or advanced DL models. This choice is influ-
enced by various factors: the volume and quality of available
data, and a trade-off between computational cost and perfor-
mance. An analysis of research papers from the past six years
reveals insightful trends and preferences in model selection:
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(1) The volume and quality of training data play a sig-
nificant role in determining the choice of modeling ap-
proach. Research teams often choose DL for building data-
driven models when training data are abundant. Conversely,
in scenarios with limited training data, conventional ML meth-
ods, augmented by feature engineering, are more commonly
employed.

This trend is clear when addressing classification problems
within PHM competitions. As depicted in Table 4 and Fig-
ure 2, 2022 PHM NA and 2023 IEEE competitions, because
of their large datasets, have facilitated the application of DL
techniques. In 2023 IEEE, various deep CNN models are
proposed, including ensemble-based CNNs (X. Y. Lee et al.,
2023) and residual-based CNNs (Shen et al., 2023; Kreuzer
& Kellermann, 2023). Additionally, in 2022 PHM NA, many
teams integrate diverse DL approaches with transfer learn-
ing such as metric learning + pseudo label-based DL (Oh
et al., 2023), CNN + DANN (Y. C. Kim et al., 2023), X-
Vectors (Ling et al., 2023). However, the scenario differed
for the 2022 PHM EU competition, which provided approx-
imately 2000 samples and encountered data imbalance chal-
lenges. Given these constraints, many teams leaned towards
tree-based methods known for their robustness and ability
to address data imbalance, deploying algorithms like XG-
Boost (Gaffet et al., 2022; Taco et al., 2022), LightGBM (Taco
et al., 2022), decision trees (Mirzaei et al., 2023), and random
forest (H. Tang et al., 2022; Mirzaei et al., 2023). In compe-
titions with significantly fewer data samples, such as 2021
PHM EU and 2023 PHM AP, where the dataset sizes were
around 100-200 samples, the deployment of DL was imprac-
tical due to its requirement for a large volume of data. Instead,
conventional ML methods proved more effective. In 2021
PHM EU, tree-based methods were predominantly used (de
Calle-Etxabe et al., 2021; İnce et al., 2021; Alfarizi et al.,
2022), while in 2023 PHM AP, similarity-based (Minami &
Lee, 2023; Kato et al., 2023), rule-based (S. K. Lee et al.,
2023), KNN/K-means (Kato et al., 2023; Aimiyekagbon et
al., 2023), and tree-based methods (S. K. Lee et al., 2023;
Aimiyekagbon et al., 2023) are proposed, emphasizing the
adaptability of traditional methods to limited data scenarios.

In the realm of RUL prediction tasks, the inherent long-time
series nature of the datasets, even when datasets are smaller
(less than 100 samples), allows for different approaches to
data utilization and data augmentation. By considering each
time point or a sequence of time points (data window) as an
independent training sample, the effective size of the dataset
can be substantially increased. This is evident from Table 6
and Figure 2, which indicate the application of both DL and
conventional ML methods across various competitions such
as CNN-based (Vu et al., 2021; Solis-Martin et al., 2021;
DeVol et al., 2021), RNN-based (S. Wu et al., 2021; Tian
et al., 2023), transfer learning (Liu et al., 2021; Tian et al.,
2023), Autoencoder-based (İnce & Genc, 2023), transformer-

based (L. Zhao et al., 2022; Lorenti et al., 2023) methods, and
conventional ML with physics-based approaches (Kong et al.,
2020; Youn et al., 2020) to tackle RUL prediction challenges.

(2) When selecting DL models, there is often a trade-off
between computational cost and performance. In the com-
petitions, participants may choose highly complex DL mod-
els that require substantial computational resources to achieve
even a small improvement in accuracy. While this approach
might secure a higher position on the leaderboard, it may not
be the most practical choice for real-world implementation.
In practice, the value of such a small accuracy improvement
needs to be weighed against the increased computational cost
and potential scalability issues.

(3) When datasets become publicly accessible, there is a
clear shift towards the adoption of more sophisticated DL
approaches in PHM data challenge competitions over time.
Taking the 2018 PHM NA competition as a case study, our
review of 12 published papers utilizing this dataset reveals
that the methodologies initially favored by the competition
teams largely comprised tree-based methods, SVMs, and ba-
sic LSTM algorithms (W. Huang et al., 2018; Singh et al.,
2018). However, as time goes by, there is a discernible trend
towards the development of more complex DL algorithms.
This includes but is not limited to, GRU (S. Wu et al., 2021),
knowledge distillation (Zheng et al., 2021), a two-stage deep
transfer learning framework utilizing TCN and DANN (Liu
et al., 2021), TCN combined with LSTM (Hsu et al., 2022),
attention mechanisms (Hsu et al., 2022; Lorenti et al., 2023),
and transformers (L. Zhao et al., 2022; Lorenti et al., 2023).
This trend underscores a growing need for continuous inno-
vation and refinement of DL methods in the PHM domain.

4.2.2. Machine Learning Model Interpretability

In PHM data challenge competitions, accuracy in prediction
and classification is still the primary goal. However, with
the advance of ML and DL, emphasizing the importance of
model interpretability is becoming as crucial as their accuracy
in prediction and classification, because it helps to illustrate
the model decision-making process and plays an important
role in error analysis and further model refinement in PHM.

While only a few teams in competitions have used model
interpretability methods to explain the output of their mod-
els, outside of competitions, various techniques have been
developed and applied to enhance ML model interpretabil-
ity (Linardatos, Papastefanopoulos, & Kotsiantis, 2020; Ar-
rieta et al., 2020). As the complexity of deep neural net-
work models, often referred to as ”black boxes”, some pre-
vious research utilized interpretable methods like Layer-wise
Relevance Propagation (LRP), Gradient-weighted Class Ac-
tivation Mapping in CNNs, and attention mechanisms in se-
quential models to shed light on model decision-making pro-
cesses (Solı́s-Martı́n et al., 2023). Additionally, model agnos-
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tic methods like SHAP (Lundberg & Lee, 2017; Sundararajan
& Najmi, 2020) and LIME (Ribeiro et al., 2016)have been
instrumental in offering insights into model behavior. For in-
stance, Baptista et al. applied the SHAP model to evaluate the
outcomes of three different algorithms (Linear Regression,
MLP, and Echo State Network) using the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) dataset
(jet engines) (Baptista, Goebel, & Henriques, 2022). More-
over, Moradi et al. introduced an interpretable artificial neu-
ral network designed for the automatic selection and fusion of
features to develop optimal health indicators from data gath-
ered through structural health monitoring (SHM) (Moradi,
Komninos, Benedictus, & Zarouchas, 2022). Furthermore,
in an era increasingly focused on ethical and responsible AI,
transparent and interpretable models are key to not only en-
hancing the technical aspects of AI solutions in PHM but
also extending to ensuring their successful integration and ac-
ceptance in real-world applications (Vollert, Atzmueller, &
Theissler, 2021).

4.2.3. Model Robustness and Generalization

Model robustness is defined as the ability of a model to main-
tain its performance when facing diverse challenges like noise,
outliers, and adversarial examples. Techniques such as data
augmentation, where training data can be expanded by cre-
ating modified versions of existing data or synthesizing new
data, have become commonplace. For instance, in 2023 IEEE
competition, Kreuzer’s team employed methods like additive
white Gaussian noise, circular shift, and random amplitude
scaling to increase the volume of training data (Kreuzer &
Kellermann, 2023). Moreover, regularization techniques like
L1 and L2 regularization have been instrumental in prevent-
ing overfitting and enhancing stability, making the model less
sensitive to small fluctuations in input data. What’s more,
ensemble methods have been increasingly recognized for the
contribution to model robustness in PHM. A comprehensive
analysis of recent studies shows that out of 59 research pa-
pers, nine utilized various ensemble techniques - including
tree-based methods, ensemble LSTM (Aydemir et al., 2021),
soft voting ensemble (Y. C. Kim et al., 2023), transfer ensem-
ble learning (Tian et al., 2023), ensemble regression (Rao et
al., 2020), and ensemble CNN-based (X. Y. Lee et al., 2023)
approaches - across six different PHM data challenge com-
petitions. Additionally, adversarial training, which involves
training models on both regular and adversarial data, has been
recognized for its potential to fortify models against adversar-
ial attacks (J. Wu et al., 2020; Y. C. Kim et al., 2023; Qiu et
al., 2023). Moreover, it is also important to consider prob-
abilistic machine learning techniques, such as Bayesian net-
works, Gaussian processes, and probabilistic graphical mod-
els, which incorporate probability theory into the modeling
process to handle uncertainty issues. They are crucial for
dealing with uncertainties and improving the robustness of

PHM models (Ghahramani, 2015; Murphy, 2022; Hazra, Chat-
terjee, et al., 2024).

Alongside robustness, model generalization refers to develop
models that perform reliably on new, unseen data. One of
techniques for improving generalization is cross-validation,
which involves dividing the training data into several subsets
and each time using one of the subsets as the validation data
and others as the training data for model validation during
the training process. In 2021 PHM NA, researchers opted for
k-fold repeated random subsampling validation to address its
limitation, wherein the size of the validation set diminishes as
the number of folds (k) increases (Solis-Martin et al., 2021).
In addition to cross-validation, transfer learning and domain
adaptation methods have been crucial in maintaining model
effectiveness and generalization when data from target do-
main differs from source domain. The specific implemen-
tations in PHM competitions have been detailed in the ear-
lier subsubsection titled “Domain Shift”. Outside of PHM
data challenges, some novel approaches are proposed to deal
with model generalization issues. Matthew Russell and Peng
Wang adopted a domain adversarial transfer learning method
inspired by generative adversarial networks, utilizing a 1D
CNN architecture to predict tool wear on unseen domains us-
ing NASA’s milling dataset (P. E. Wang & Russell, 2020).
Ding et al. developed a multi-source domain generalization
learning approach (GRU + Transformer) that can effectively
learn useful degradation feature representations from various
run-to-failure datasets of internal combustion engine journal
bearings across different conditions and predict unseen work-
ing conditions well (N. Ding, Li, Xin, Wu, & Jiang, 2023).
Furthermore, Ding et al. proposed an adversarial out-domain
augmentation (AOA) framework for predicting the RUL of
bearings under unseen conditions. The effectiveness of this
AOA-based RUL prediction was validated using IEEE PHM
Challenge 2012 and XJTU-SY run-to-failure datasets, illus-
trating its robustness in domain generalization for predictive
maintenance (Y. Ding et al., 2023).

4.3. Limitations of Current PHM Competitions and Op-
portunities

4.3.1. A Lack of Multi-Modal Machine Learning Analy-
sis

Our review of PHM data challenge competitions reveals a re-
liance on single-modality data in the competitions, such as
pressure signals, currents, vibrations, or images, without in-
corporating multi-modal datasets for fault diagnosis and prog-
nosis. Multi-modal machine learning (MMML) in PHM refers
to capturing complementary information from multiple data
sources (different types) to achieve a more comprehensive
and precise evaluation of PHM tasks (Ramachandram & Tay-
lor, 2017; Tsanousa et al., 2022). Despite its potential, it is
still underexplored in the PHM domain.
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Figure 5. Interactions of PHM Phases of Design, Development, and Decision (DE3) (Hu et al., 2022)

Recently, Jiang et al. leveraged two modality data (vibration
and current signals) to develop deep belief networks (DBNs)
for diagnosing wind turbine gearbox faults (Jiang et al., 2019).
Su et al. proposed an MMML model using parametric spec-
ifications, text descriptions, and images of vehicles to pre-
dict five vehicle rating scores (Su, Song, & Ahmed, 2023).
Additionally, Fan et al. evaluate several MMML strategies
to create a comprehensive PHM system for coolant pumps
in commercial heavy-duty vehicles, utilizing data from on-
board signals, multi-dimensional histograms, and categorical
variables (Fan, Atoui, Nowaczyk, & Rognvaldsson, 2023).
Wang et al. proposed a novel method for feature fusion in
multimodal data (vibration and torque signals), applying it
to diagnose the bearings faults (D. Wang, Li, Jia, Song, &
Liu, 2021). For future PHM data challenges, the provision of
open-source multi-modal datasets would empower researchers
to investigate and apply more advanced MMML techniques,
potentially leading to advancements in the context of PHM.

4.3.2. A Lack of Adopting Systematic Approaches for Ef-
fective PHM Systems Construction

Our analysis of ML and DL methods across nine open-source
industrial datasets has revealed the advantages of ML meth-
ods applied in PHM. Nevertheless, the nature of the com-

petition tends to prioritize solutions that chiefly enhance ac-
curacy, potentially at the expense of a systematic approach,
reusability, and methodological inheritance. It is therefore vi-
tal to pursue systematic methodologies for constructing effec-
tive PHM systems that go beyond the competitive framework.
This should involve thorough research and analysis of open-
source datasets to advance ML and DL strategies, aiming not
just for competition success but also for benchmarking and
comparative analysis.

Souza et al. devised an ML-based, data-oriented pipeline
for constructing a Prognosis and Health Management System
(PHMS) focused on RUL prediction, utilizing semi-supervised
ML with Autoencoder, XGBoost, and SHAP method (Souza,
da Costa, & de Oliveira Ramos, 2023). As shown in Fig-
ure 5, Hu et al. offered a new perspective on reviewing PHM
efforts by proposing a division of the PHM lifecycle into DE-
sign, DEvelopment, and DEcision (DE3) phases, and show-
casing the important activities and challenges within these
stages (Hu et al., 2022). Additionally, Lee et al. introduced
a novel SoQ methodology for multi-stage manufacturing pro-
cesses. It can help to analyze multi-parameter influences on
product quality and model inter-process relationships in multi-
stage manufacturing systems (J. Lee et al., 2022). Moving
forward, developing novel, systematic approaches for PHM
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systems should be encouraged in future PHM data challenge
competitions. These efforts can augment the systematiza-
tion and applicability of ML and DL approaches, thereby ex-
panding their utility beyond the confines of the competition-
centric paradigm. Such advancements promise to narrow the
divide between academic research and industrial practice, fa-
cilitating the broader adoption of data-driven ML across var-
ious industrial contexts.

5. PROSPECTS

There are still some research directions that deserve deeper
investigation and exploration by the research community go-
ing forward.

(1) A Need for Open-Source Multi-Modal Datasets. In
the PHM domain, the availability of multi-modal datasets is
notably limited. While prior research has leveraged diverse
modal information, including vibration, current, or torque sig-
nals for diagnosing issues in wind turbine gearboxes, bear-
ings, or other industrial products (Jiang et al., 2019; D. Wang
et al., 2021; Fan et al., 2023), these datasets are all private.
This restriction to some extent hampers the capacity for broad-
based development of MMML approaches. To overcome this
challenge, there is a need for the PHM community to collabo-
ratively establish and maintain multi-modal industrial datasets,
enriched with high-quality data and labels. This would in-
volve the collection, alignment, and annotation of multi-modal
data with PHM-centric attributes. Moreover, providing la-
tent representations or pre-trained embeddings, if possible,
can also accelerate and efficiently train new MMML models
and facilitate knowledge transfer across various PHM tasks,
ultimately benefiting the whole PHM community.

(2) Development of Multi-Modal Machine Learning Ap-
proaches. Furthermore, the investigation of a broader range
of MMML techniques is highly encouraged. On the one hand,
for time series data of a single modality, it may be feasible
to extract features representative of different modalities from
the time series data itself, such as the time domain (origin
signal), frequency domain (FFT), PSD, STFT, etc. This ap-
proach could lead to the preliminary training of unimodal ML
models on each single modality, followed by the exploration
of MMML strategies. On the other hand, MMML methodolo-
gies necessitate more effective representation learning and in-
formation alignment techniques—the former concerning the
efficient encoding of single modality data, and the latter fo-
cusing on the enhanced analysis and fusion of multimodal in-
formation for effective PHM prediction or classification tasks.
Although simple concatenation is a common method for data
fusion in MMML, emerging fusion techniques, such as atten-
tion based or transformer based mechanisms (Vaswani et al.,
2017), deserve further exploration. These advanced meth-
ods have the potential to effectively capture implicit feature
alignments across modalities and facilitate cross-modal syn-

thesis (Mansimov, Parisotto, Ba, & Salakhutdinov, 2015; Xu
et al., 2018). Yet, research on MMML within the PHM field
remains underexplored, highlighting a significant opportunity
to explore.

(3) Further Exploration in Machine Learning Model In-
terpretability. The adoption of DL in PHM has underscored
the need for models that are not only high-performing but also
interpretable. Techniques such as advanced data visualization
and XAI methods are emerging as key tools in explaining the
outputs of ML models (Linardatos et al., 2020; Arrieta et al.,
2020). These methods are anticipated to provide industries
and academia with clearer insights into the decision-making
processes of PHM models, thereby building trust and facil-
itating more informed decision-making (Solı́s-Martı́n et al.,
2023). However, current XAI methods predominantly ad-
dress the interpretability of models using tabular data, text,
and images as inputs, leaving a gap in methods tailored for
time series data. Moreover, most of the current interpretabil-
ity methods are applied to unimodal ML models, and the in-
terpretability of MMML models has not been explored. Ad-
dressing these gaps can help to balance the performance and
interpretability of ML models.

(4) Novel Transfer Learning and Domain Adaptation Tech-
niques Development for Model Robustness, and General-
ization. Alongside interpretability, the robustness and gener-
alization of ML models are also important. Novel approaches
in transfer learning and domain adaptation can be further de-
veloped to ensure models are resilient to data variability and
operational uncertainties and capable of adapting to the new,
unseen scenarios (Azari, Flammini, Santini, & Caporuscio,
2023). Currently, research on transfer learning in the PHM
domain predominantly addresses fault diagnosis, with only
a few studies exploring prognosis. Looking forward, how
to utilize the power of transfer learning for prediction prob-
lems is still a critical issue. Additionally, cross-modal trans-
fer learning (CMTL) emerges as a critical area of interest in
PHM, aiming to improve the knowledge transfer between dis-
tinct domains. Moreover, the challenge of collecting a suffi-
ciently large, labeled dataset is a significant barrier in practi-
cal applications. The development of unsupervised and semi-
supervised transfer learning techniques may help to address
this issue.

(5) Potential Utilization of Large Language Models (LLMs)
and Industrial Large Knowledge Models (ILKMs). Re-
cent advancements in large language model technologies have
shown remarkable abilities in natural language processing and
related tasks, hinting at the potential for general artificial in-
telligence applications (W. X. Zhao et al., 2023). Leveraging
these cutting-edge technologies could lead to new changes
in PHM domain. Yang et al. introduced a novel benchmark
dataset focused on Question Answering (QA) in the indus-
trial domain and proposed a new model interaction paradigm,
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Figure 6. Industrial Large Knowledge Model Framework (J. Lee & Su, 2024)

aimed at enhancing the performance of LLMs in domain-
specific QA tasks (Z. Wang et al., 2023). This approach
signifies a substantial stride in customizing LLMs for more
specialized, industry-oriented applications. Meanwhile, Li’s
team systematically reviewed the current progress and key
components of ChatGPT-like large-scale foundation (LSF)
models, and provided a comprehensive guide on adapting these
models to meet the specific needs of PHM, underscoring the
challenges and opportunities for future development (Li, Wang,
& Sun, 2023). Moreover, as shown in Figure 6, Lee’s team
proposed an Industrial Large Knowledge Model (ILKM) frame-
work that aims to solve complex challenges in intelligent man-
ufacturing by combining LLMs and domain-specific knowl-
edge (J. Lee & Su, 2024). Therefore, integrating specialized
domain knowledge with LLM technology presents a good op-
portunity to develop more effective ML models, potentially
leading to better solutions for challenges in PHM.

6. CONCLUSION

In summary, ML gradually becomes a cornerstone in PHM,
reflecting the potential for innovative advancements in fu-
ture PHM development. This paper serves as a valuable re-
source for both academic and industry professionals in the
PHM domain, offering a unified ML framework in PHM and

a comprehensive overview of the current state-of-the-art ML
approaches for diagnostics and prognostics of industrial sys-
tems using industrial open-source data from recent PHM data
challenge. Based on two primary research task categories:
”Detection & Diagnosis” and ”Assessment & Prognosis”, we
provide a detailed explanation of the problems, tasks, chal-
lenges, and relevant ML approaches to each competition. Fur-
thermore, we summarize common challenges, including data-
related and model-related issues, and analyze the solutions to
address these challenges. Moreover, we evaluate the limita-
tions of these PHM data challenge competitions and suggest
future directions that PHM data challenge competition could
focus on. Finally, we prospect five potential research direc-
tions in the application of data-driven ML within PHM, en-
compassing a need for open-source multi-modal datasets, de-
velopment of MMML approaches, further exploration of ML
model interpretability, improving the robustness, and gener-
alization of ML models and utilization the potential of LLMs
and ILKMs.
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NOMENCLATURE

AI Artificial Intelligence
Bi� LSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
DANN Domain Adversarial Neural Networks
DL Deep Learning
DTW Dynamic Time Warping
FCM Fuzzy C-Means
FCN Fully Convolutional Network
FIR Feature Importance Ranking
GAN Generative Adversarial Networks
GRU Gated Recurrent Units
ILKM Industrial Large Knowledge Model
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LightGBM Light Gradient Boosting Machine
LKL Large Knowledge Library
LLM Large Language Model
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
MMD Maximum Mean Discrepancy
PCA Principal Component Analysis
PDF Probability Density Function
PHM Prognostics and Health Management
PLS Partial Least Squares
PSD Power Spectral Density
QA Question Answering
RNN Recurrent Neural Network
RUL Remaining Useful Life
SHAP SHapley Additive exPlanations
SMOTE Synthetic Minority Oversampling TEchnique
SoQ Stream-of-Quality
STFT Short-Time Fourier Transform
SVM Support Vector Machine
SV R Support Vector Regression
TCN Temporal Convolutional Network
XAI Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting
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İnce, K., Ceylan, U., Erdoğmuş, N. N., Sirkeci, E., & Genc,

Y. (2021). Fault detection and classification for
robotic test-bench. In Phm society european confer-

ence (Vol. 6, pp. 7–7).
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