Knowledge-based and Expert Systems in Prognostics and Health Management: a Survey

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 16, 2024
Kalil Bouhadra Florent Forest

Abstract

Prognostics and Health Management (PHM) has become increasingly popular in recent years, and data-driven methods and artificial intelligence have emerged as dominant tools within the PHM field. This trend is mainly due to the increasing use of sensors and the ability of machine learning techniques to leverage condition monitoring data. However, despite their utility and effectiveness, these techniques are not without drawbacks. One major issue is that data-driven methods often lack transparency in their reasoning, which is crucial for understanding fault occurrences and diagnostics. Additionally, the availability of data can be a challenge. In some cases, data are scarce or hard to obtain, either due to the cost of installing necessary sensors or the rarity of the required information. Lastly, the insights derived from data can sometimes diverge from those obtained through expert analysis and established norms. This contrasts with knowledge-based approaches such as expert systems, which formally organize the knowledge acquired from norms and experts, and then deduce the desired conclusion. While research is increasingly exploring data-driven techniques, industry tends to still frequently employ knowledge-based methods. To fill this gap, this paper offers a detailed survey of knowledge-based and expert systems in PHM, examining methodologies such as propositional logic, fuzzy logic, Dempster-Shafer theory and Bayesian networks. It assesses the integration and impact of these techniques in PHM for fault detection, diagnosis and prognosis, highlighting their strengths, limitations, and potential future developments. The study provides a thorough evaluation of current developments and contributes significant insights into the current capabilities and future directions of knowledge-based techniques in enhancing decision-making processes in PHM.

Abstract 31 | PDF Downloads 12

##plugins.themes.bootstrap3.article.details##

Keywords

Knowledge-based, Expert, Rule-based, Prognostics and Health Management, PHM, Fault detection, Fault diagnostics, Fault prognostics

References
Abid, A., Khan, M. T., & Iqbal, J. (2021, June). A review on fault detection and diagnosis techniques: basics and beyond. Artificial Intelligence Review, 54(5), 3639–3664. Retrieved 2024-08-29, from https://doi.org/10.1007/s10462-020-09934-2 doi: 10.1007/s10462-020-09934-2
Ahmad, R., & Kamaruddin, S. (2012, August). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135–149. Retrieved 2023-12-14, from https://linkinghub.elsevier.com/retrieve/pii/S0360835212000484 doi: 10.1016/j.cie.2012.02.002
Akerkar, R., & Sajja, P. (2009). Knowledge-based systems. Jones & Bartlett Publishers.
Al-Ajlan, A. (2015, April). The Comparison between Forward and Backward Chaining. International Journal of Machine Learning and Computing, 5(2), 106–113. Retrieved 2023-12-19, from http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=56&id=554 doi: 10.7763/IJMLC.2015.V5.492
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016, July). Concrete Problems in AI Safety. arXiv. Retrieved 2023-10-09, from http://arxiv.org/abs/1606.06565 (arXiv:1606.06565 [cs])
Azad, T., & Gabbar, H. A. (2012, August). Fault semantic network for microgrid diagnosis and control. In 2012 International Conference on Smart Grid (SGE) (pp. 1–8). Oshawa, ON, Canada: IEEE. Retrieved 2023-10-16, from http://ieeexplore.ieee.org/document/6463963/ doi: 10.1109/SGE.2012.6463963
Baban, M., Baban, C. F., & Suteu, M. D. (2019). Maintenance Decision-Making Support for Textile Machines: A Knowledge-Based Approach Using Fuzzy Logic and Vibration Monitoring. IEEE Access, 7, 83504–83514. Retrieved 2023-12-29, from https://ieeexplore.ieee.org/document/8740857/ doi: 10.1109/ACCESS.2019.2923791
Bai, Y., Zhuang, H., & Wang, D. (Eds.). (2006). Advanced fuzzy logic technologies in industrial applications. London: Springer.
Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga, M. E., Magister, L. C., Tonda, A., . . . Marra, G. (2023, July). Interpretable Neural-Symbolic Concept Reasoning. In Proceedings of the 40th International Conference on Machine Learning (pp. 1801–1825). PMLR. Retrieved 2024-05-06, from https://proceedings.mlr.press/v202/barbiero23a.html (ISSN: 2640-3498)
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., . . . Herrera, F. (2020, June). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. Retrieved 2023-10-12, from https://linkinghub.elsevier.com/retrieve/pii/S1566253519308103 doi: 10.1016/j.inffus.2019.12.012
Bartram, G., & Mahadevan, S. (2020, November). Probabilistic Prognosis with Dynamic Bayesian Networks. International Journal of Prognostics and Health Management, 6(4). Retrieved 2024-01-04, from https://papers.phmsociety.org/index.php/ijphm/article/view/2290 doi: 10.36001/ijphm.2015.v6i4.2290
Bektas, O., Marshall, J., & Jones, J. A. (2020, September). Comparison of Computational Prognostic Methods for Complex Systems Under Dynamic Regimes: A Review of Perspectives. Archives of Computational Methods in Engineering, 27(4), 999–1011. Retrieved 2023-12-28, from http://link.springer.com/10.1007/s11831-019-09339-7 doi: 10.1007/s11831-019-09339-7
Biagetti, T. (2004, December). Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems. Energy, 29(12-15), 2553–2572. Retrieved 2023-10-18, from https://linkinghub.elsevier.com/retrieve/pii/S0360544204001082 doi: 10.1016/j.energy.2004.03.031
Biggio, L., & Kastanis, I. (2020, November). Prognostics and Health Management of Industrial Assets:
Current Progress and Road Ahead. Frontiers in Artificial Intelligence, 3, 578613. Retrieved 2023-12-22, from https://www.frontiersin.org/articles/10.3389/frai.2020.578613/full doi: 10.3389/frai.2020.578613
Boose, J. H. (1985, November). A knowledge acquisition program for expert systems based on personal construct psychology. International Journal of Man-Machine Studies, 23(5), 495–525. Retrieved 2023-12-17, from https://linkinghub.elsevier.com/retrieve/pii/S0020737385800559 doi: 10.1016/S0020-7373(85)80055-9
Brotherton, T., Jahns, G., Jacobs, J., & Wroblewski, D. (2000). Prognosis of faults in gas turbine engines. In 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484) (Vol. 6, pp. 163–171). Big Sky, MT, USA: IEEE. Retrieved 2024-01-04, from http://ieeexplore.ieee.org/document/877892/ doi: 10.1109/AERO.2000.877892
Buchanan, B. G., & Smith, R. G. (1988, June). Fundamentals of Expert Systems. Annual Review of Computer Science, 3(1), 23–58. Retrieved 2023-10-06, from http://www.annualreviews.org/doi/10.1146/annurev.cs.03.060188.000323 doi: 10.1146/annurev.cs.03.060188.000323
Bumblauskas, D., Gemmill, D., Igou, A., & Anzengruber, J. (2017, December). Smart Maintenance Decision Support Systems (SMDSS) based on corporate big data analytics. Expert Systems with Applications, 90, 303–317. Retrieved 2024-08-29, from https://www.sciencedirect.com/science/article/pii/S095741741730564X doi: 10.1016/j.eswa.2017.08.025
Cahyono, B. D., & Kusuma, D. E. (2024). Development of an expert system for fault diagnosing of washing machines using Delphi 7. (4).
Cai, B., Huang, L., & Xie, M. (2017, October). Bayesian Networks in Fault Diagnosis. IEEE Transactions on Industrial Informatics, 13(5), 2227–2240. Retrieved 2023-12-28, from http://ieeexplore.ieee.org/document/7904628/ doi: 10.1109/TII.2017.2695583
Cao, Y., Zhou, Z., Hu, C., He, W., & Tang, S. (2021, November). On the Interpretability of Belief Rule-Based Expert Systems. IEEE Transactions on Fuzzy Systems, 29(11), 3489–3503. Retrieved 2023-12-18, from https://ieeexplore.ieee.org/document/9199531/ doi: 10.1109/TFUZZ.2020.3024024
Cathignol, A., Thuillie-Demont, V., Baldi, L., Micheau, L., Petitpretre, J.-P., & Ouberehil, A. (2024, June). Hybrid AI-Subject Matter Expert Solution for Evaluating the Health Index of Oil Distribution Transformers. PHM Society European Conference, 8(1), 8. Retrieved 2024-08-23, from https://papers.phmsociety.org/index.php/phme/article/view/4102 doi: 10.36001/phme.2024.v8i1.4102
Chemweno, P., Pintelon, L., Jongers, L., & Muchiri, P. (2016, June). i-RCAM: Intelligent expert system for root cause analysis in maintenance decision-making. In 2016 IEEE International Conference on Prognostics and Health Management (ICPHM) (pp. 1–7). Retrieved 2024-08-29, from https://ieeexplore.ieee.org/abstract/document/7542830 doi: 10.1109/ICPHM.2016.7542830
Chen, B., Matthews, P. C., & Tavner, P. J. (2013, December). Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS. Expert Systems with Applications, 40(17), 6863–6876. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S0957417413003989 doi: 10.1016/j.eswa.2013.06.018
Chen, J., Roberts, C., & Weston, P. (2008, May). Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems. Control Engineering Practice, 16(5), 585–596. Retrieved 2023-10-16, from https://linkinghub.elsevier.com/retrieve/pii/S0967066107001244 doi: 10.1016/j.conengprac.2007.06.007
Chen, K. Y., Lim, C. P., & Lai, W. K. (2005, December). Application of a Neural Fuzzy System with Rule Extraction to Fault Detection and Diagnosis. Journal of Intelligent Manufacturing, 16(6), 679–691. Retrieved 2023-12-29, from http://link.springer.com/10.1007/s10845-005-4371-1 doi: 10.1007/s10845-005-4371-1
Chen, S. H., & Pollino, C. A. (2012, November). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134–145. Retrieved 2023-10-24, from https://linkinghub.elsevier.com/retrieve/pii/S1364815212001041 doi: 10.1016/j.envsoft.2012.03.012
Cheng, X., Liu, S., He, W., Zhang, P., Xu, B., Xie, Y., & Song, J. (2022, January). A Model for Flywheel Fault Diagnosis Based on Fuzzy Fault Tree Analysis and Belief Rule Base. Machines, 10(2), 73. Retrieved 2023-11-15, from https://www.mdpi.com/2075-1702/10/2/73 doi: 10.3390/machines10020073
Cheung, A., Ip, W., & Lu, D. (2005, January). Expert system for aircraft maintenance services industry. Journal of Quality in Maintenance Engineering, 11(4), 348–358. Retrieved 2024-08-29, from https://doi.org/10.1108/13552510510626972 (Publisher: Emerald Group Publishing Limited) doi: 10.1108/13552510510626972
Chubb, D. W. J. (1984, April). Knowledge Engineering Problems during Expert System Development. SIGSIM Simul. Dig., 15(3), 5–9. Retrieved from https://doi.org/10.1145/1102872.1102873 (Place: New York, NY, USA Publisher: Association for Computing Machinery) doi: 10.1145/1102872.1102873
Cobb, B. R., & Shenoy, P. P. (2003, December). A Comparison of Bayesian and Belief Function Reasoning. Information Systems Frontiers, 5(4), 345–358. Retrieved 2024-01-03, from http://link.springer.com/10.1023/B:ISFI.0000005650.63806.03 doi: 10.1023/B:ISFI.0000005650.63806.03
Compare, M., Bellani, L., & Zio, E. (2019, April). Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network. Reliability Engineering & System Safety, 184, 164–180. Retrieved 2024-08-29, from https://www.sciencedirect.com/science/article/pii/S0951832017306816 doi: 10.1016/j.ress.2018.04.025
Darwiche, A. (2008). Chapter 11 Bayesian Networks. In Foundations of Artificial Intelligence (Vol. 3, pp. 467–509). Elsevier. Retrieved 2023-10-24, from https://linkinghub.elsevier.com/retrieve/pii/S1574652607030118 doi: 10.1016/S1574-6526(07)03011-8
Da Silva Vicente, S., Fujimoto, R., & Padovese, L. (2001). Rolling bearing fault diagnostic system using fuzzy logic. In 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297) (Vol. 3, pp. 816–819). Melbourne, Vic., Australia: IEEE. Retrieved 2023-12-29, from http://ieeexplore.ieee.org/document/1009080/ doi: 10.1109/FUZZ.2001.1009080
Davis, R. (1979). Interactive Transfer of Expertise: Acquisition of New Inference Rules.
Deng, X.-W., Gao, Q.-S., Zhang, C., Hu, D., & Yang, T. (2017). Rule - based Fault Diagnosis Expert System for Wind Turbine. ITM Web of Conferences, 11, 07005. Retrieved 2023-10-17, from http://www.itm-conferences.org/10.1051/itmconf/20171107005 doi: 10.1051/itmconf/20171107005
DePold, H. R., & Gass, F. D. (1998). The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics.
Ding, Y., Yao, X., Wang, S., & Zhao, X. (2019, April). Structural damage assessment using improved Dempster-Shafer data fusion algorithm. Earthquake Engineering and Engineering Vibration, 18(2), 395–408. Retrieved 2023-12-30, from http://link.springer.com/10.1007/s11803-019-0511-z doi: 10.1007/s11803-019-0511-z
Dong, G., Han,W., &Wang, Y. (2021, November). Dynamic Bayesian Network-Based Lithium-Ion Battery Health Prognosis for Electric Vehicles. IEEE Transactions on Industrial Electronics, 68(11), 10949–10958. Retrieved 2024-01-04, from https://ieeexplore.ieee.org/document/9248645/ doi: 10.1109/TIE.2020.3034855
Dou, D., Yang, J., Liu, J., & Zhao, Y. (2012, December). A rule-based intelligent method for fault diagnosis of rotating machinery. Knowledge-Based Systems, 36, 1–8. Retrieved 2023-12-29, from https://linkinghub.elsevier.com/retrieve/pii/S0950705112001578 doi: 10.1016/j.knosys.2012.05.013
Dubois, D., & Prade, H. (1996, December). What are fuzzy rules and how to use them. Fuzzy Sets and Systems, 84(2), 169–185. Retrieved 2023-12-18, from https://linkinghub.elsevier.com/retrieve/pii/0165011496000668 doi: 10.1016/0165-0114(96)00066-8
Elattar, H. M., Elminir, H. K., & Riad, A. M. (2016, June). Prognostics: a literature review. Complex & Intelligent Systems, 2(2), 125–154. Retrieved 2023-12-13, from http://link.springer.com/10.1007/s40747-016-0019-3 doi: 10.1007/s40747-016-0019-3
Ferreiro, S., Arnaiz, A., Sierra, B., & Irigoien, I. (2012, June). Application of Bayesian networks in prognostics for a new Integrated Vehicle Health Management concept. Expert Systems with Applications, 39(7), 6402–6418. Retrieved 2023-10-18, from https://linkinghub.elsevier.com/retrieve/pii/S0957417411016988 doi: 10.1016/j.eswa.2011.12.027
Fikes, R., & Kehler, T. (1985, September). The role of frame-based representation in reasoning. Communications of the ACM, 28(9), 904–920. Retrieved 2023-12-19, from https://dl.acm.org/doi/10.1145/4284.4285 doi: 10.1145/4284.4285
Fink, O. (2020). Data-Driven Intelligent Predictive Maintenance of Industrial Assets. In A. E. Smith (Ed.),Women in Industrial and Systems Engineering: Key Advances and Perspectives on Emerging Topics (pp. 589–605). Cham: Springer International Publishing. Retrieved 2024-05-08, from https://doi.org/10.1007/978-3-030-11866-2 25 doi: 10.1007/978-3-030-11866-2 25
Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020, June). Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 92, 103678. Retrieved 2023-10-09, from https://linkinghub.elsevier.com/retrieve/pii/S0952197620301184 doi: 10.1016/j.engappai.2020.103678
Forest, F., Cochard, Q., Noyer, C., Joncour, M., Lacaille, J., Lebbah, M., & Azzag, H. (2020, November). Large-scale Vibration Monitoring of Aircraft Engines from Operational Data using Self-organized Models. In Annual Conference of the PHM Society (Vol. 12, p. 11). Retrieved 2022-09-08, from https://papers.phmsociety.org/index.php/phmconf/article/view/1131 doi: 10.36001/phmconf.2020.v12i1.1131
Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018, December). A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 1918–1924). Seattle, WA, USA: IEEE. Retrieved 2022-09-08, from https://ieeexplore.ieee.org/document/8622297/ doi: 10.1109/BigData.2018.8622297
Forsythe, D., & Buchanan, B. (1989, June). Knowledge acquisition for expert systems: some pitfalls and suggestions. IEEE Transactions on Systems, Man, and Cybernetics, 19(3), 435–442. Retrieved 2023-10-16, from http://ieeexplore.ieee.org/document/31050/ doi: 10.1109/21.31050 Fritz Lehmann. (1992). 1-s2.0-0898122192901355-main.pdf.
Galagedarage Don, M., & Khan, F. (2019, June). Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and Bayesian network model. Chemical Engineering Science, 201, 82–96. Retrieved 2023-12-30, from https://linkinghub.elsevier.com/retrieve/pii/S000925091930154X doi: 10.1016/j.ces.2019.01.060
Gao, Z., Cecati, C., & Ding, S. X. (2015, June). A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757–3767. Retrieved 2023-12-28, from http://ieeexplore.ieee.org/document/7069265/ doi: 10.1109/TIE.2015.2417501
Gay, A., Iung, B., Voisin, A., Do, P., Bonidal, R., & Khelassi, A. (2021, November). A Short Review on the Integration of Expert Knowledge in Prognostics for PHM in Industrial Applications. In 2021 5th International Conference on System Reliability and Safety (ICSRS) (pp. 286–292). Palermo, Italy: IEEE. Retrieved 2023-10-18, from https://ieeexplore.ieee.org/document/9660645/ doi: 10.1109/ICSRS53853.2021.9660645
Gerhardinger, D., Domitrovíc, A., Krajcek Nikolíc, K., & Ivancevíc, D. (2023, November). Predicting the Remaining Useful Life of Light Aircraft Structural Parts: An Expert System Approach. Aerospace, 10(11), 967. Retrieved 2024-09-04, from https://www.mdpi.com/2226-4310/10/11/967 doi: 10.3390/aerospace10110967
Ghahramani, Z. (1998). Learning dynamic Bayesian networks. In J. G. Carbonell et al. (Eds.), Adaptive Processing of Sequences and Data Structures (Vol. 1387, pp. 168–197). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved 2024-01-04, from https://link.springer.com/10.1007/BFb0053999 (Series Title: Lecture Notes in Computer Science) doi: 10.1007/BFb0053999
Gharib, H., & Kovács, G. (2023, July). A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine Diesel Engines: New Research Directions. Machines, 11(7), 695. Retrieved 2024-08-23, from https://www.mdpi.com/2075-1702/11/7/695 doi: 10.3390/machines11070695
Ghosh, N., Paul, R., Maity, S., Maity, K., & Saha, S. (2020, December). Fault Matters: Sensor data fusion for detection of faults using Dempster–Shafer theory of evidence in IoT-based applications. Expert Systems with Applications, 162, 113887. Retrieved 2023-12-29, from https://linkinghub.elsevier.com/retrieve/pii/S0957417420306898 doi: 10.1016/j.eswa.2020.113887
Gnanamalar, R. H., Janani, C., & Devi, T. (2013). International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net.
Gomes, I. P., & Wolf, D. F. (2021, January). Health Monitoring System for Autonomous Vehicles using Dynamic Bayesian Networks for Diagnosis and Prognosis. Journal of Intelligent & Robotic Systems, 101(1), 19. Retrieved 2024-01-04, from http://link.springer.com/10.1007/s10846-020-01293-y doi: 10.1007/s10846-020-01293-y
Gordon, J., & Shortliffe, E. H. (1984). The Dempster-Shafer Theory of Evidence.
Grosan, C., & Abraham, A. (2011). Intelligent Systems: A Modern Approach (Vol. 17; J. Kacprzyk & L. C. Jain, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved 2023-12-18, from https://link.springer.com/10.1007/978-3-642-21004-4 doi: 10.1007/978-3-642-21004-4
Gudes, E., Kuflik, T., & Meisels, A. (1990, June). On resource allocation by an expert system. Engineering Applications of Artificial Intelligence, 3(2), 101–109. Retrieved 2024-08-29, from https://www.sciencedirect.com/science/article/pii/0952197690900035 doi: 10.1016/0952-1976(90)90003-5
GUIDA, G., & TASSO, C. (1989a). Building Expert Systems: A Structured Bibliography (Vol. 5). Amsterdam [etc.]: North-Holland. (ISSN: 09243542 Publication Title: Topics in expert system design methodologies and tools)
GUIDA, G., & TASSO, C. (1989b). Building Expert Systems: From Life Cycle to Development Methodology (Vol. 5). Amsterdam [etc.]: North-Holland. (ISSN: 09243542 Publication Title: Topics in expert system design methodologies and tools)
Guinhouya, K. A. (2023, March). Bayesian networks in project management: A scoping review. Expert Systems with Applications, 214, 119214. Retrieved 2023-10-13, from https://linkinghub.elsevier.com/retrieve/pii/S0957417422022321 doi: 10.1016/j.eswa.2022.119214
He, W., Williard, N., Osterman, M., & Pecht, M. (2011, December). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314–10321. Retrieved 2023-10-18, from https://linkinghub.elsevier.com/retrieve/pii/S0378775311015400 doi: 10.1016/j.jpowsour.2011.08.040
Heidari. (2017, April). Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm. International Journal of Engineering, 30(4). Retrieved 2023-12-29, from http://www.ije.ir/Vol30/No4/A/20.pdf doi: 10.5829/idosi.ije.2017.30.04a.20
Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M. K., & Zhou, L. (2022, June). Neuro-symbolic approaches in artificial intelligence. National Science Review, 9(6), nwac035. Retrieved 2024-08-29, from https://doi.org/10.1093/nsr/nwac035 doi: 10.1093/nsr/nwac035
Hsu, C.-C., Frusque, G., & Fink, O. (2023, October). A Comparison of Residual-based Methods on Fault Detection. Annual Conference of the PHM Society, 15(1). Retrieved 2024-01-19, from http://www.papers.phmsociety.org/index.php/phmconf/article/view/3444 (Number: 1) doi: 10.36001/phmconf.2023.v15i1.3444
Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022, January). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063. Retrieved 2024-08-26, from https://linkinghub.elsevier.com/retrieve/pii/S0951832021005652 doi: 10.1016/j.ress.2021.108063
Hui, K. H., Lim, M. H., Leong, M. S., & Al-Obaidi, S. M. (2017, January). Dempster-Shafer evidence theory for multi-bearing faults diagnosis. Engineering Applications of Artificial Intelligence, 57, 160–170. Retrieved 2024-01-03, from https://linkinghub.elsevier.com/retrieve/pii/S0952197616302019 doi: 10.1016/j.engappai.2016.10.017
Isermann, R. (1997, May). Supervision, fault-detection and fault-diagnosis methods — An introduction. Control Engineering Practice, 5(5), 639–652. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0967066197000464 doi: 10.1016/S0967-0661(97)00046-4
Ishibashi, R., & Lucio Nascimento Junior, C. (2013, June). GFRBS-PHM: A Genetic Fuzzy Rule-Based System for PHM with improved interpretability. In 2013 IEEE Conference on Prognostics and Health Management (PHM) (pp. 1–7). Gaithersburg, MD, USA: IEEE. Retrieved 2023-12-28, from http://ieeexplore.ieee.org/document/6621419/ doi: 10.1109/ICPHM.2013.6621419
Jain, L. C., & Martin, N. M. (1998). Fusion of neural networks, fuzzy systems and genetic algorithms: industrial applications (Vol. 4). CRC press.
Jian-Bo Yang, Jun Liu, Jin Wang, How-Sing Sii, & Hong-Wei Wang. (2006, March). Belief rule-base inference methodology using the evidential reasoning Approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(2), 266–285. Retrieved 2023-11-13, from http://ieeexplore.ieee.org/document/1597400/ doi: 10.1109/TSMCA.2005.851270
John Sowa. (1992). semantic-net-sowa.pdf.
Jose, A. (2011). Design and development of a rule-based expert system for AACR: A study of the application of Artificial Intelligence techniques in Library and Information field.
Karakose, M., & Yaman, O. (2020, September). Complex Fuzzy System Based Predictive Maintenance Approach in Railways. IEEE Transactions on Industrial Informatics, 16(9), 6023–6032. Retrieved 2023-12-29, from https://ieeexplore.ieee.org/document/8993841/ doi: 10.1109/TII.2020.2973231
Kastner. (1984). A review of expert systems.
Khan, S., & Yairi, T. (2018, July). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241–265. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0888327017306064 doi: 10.1016/j.ymssp.2017.11.024
Kitson, N. K., Constantinou, A. C., Guo, Z., Liu, Y., & Chobtham, K. (2022, October). A survey of Bayesian Network structure learning. arXiv. Retrieved 2023-10-13, from http://arxiv.org/abs/2109.11415 (arXiv:2109.11415 [cs])
Konstantinov, A. V., & Utkin, L. V. (2024, February). Incorporating Expert Rules into Neural Networks in the Framework of Concept-Based Learning. arXiv. Retrieved 2024-05-28, from http://arxiv.org/abs/2402.14726 (arXiv:2402.14726 [cs, stat]) doi: 10.48550/arXiv.2402.14726
Kusiak, A., & Chen, M. (1988, March). Expert systems for planning and scheduling manufacturing systems. European Journal of Operational Research, 34(2), 113–130. Retrieved 2023-10-04, from https://linkinghub.elsevier.com/retrieve/pii/0377221788903463 doi: 10.1016/0377-2217(88)90346-3
Langseth, H. (2008). Bayesian Networks in Reliability: The Good, the Bad, and the Ugly.
Lee, I. (2017, May). Big data: Dimensions, evolution, impacts, and challenges. Business Horizons, 60(3), 293–303. Retrieved 2023-12-14, from https://linkinghub.elsevier.com/retrieve/pii/S0007681317300046 doi: 10.1016/j.bushor.2017.01.004
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014, January). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1-2), 314–334. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0888327013002860 doi: 10.1016/j.ymssp.2013.06.004
Leekwijck, W. V., & Kerre, E. E. (1999). Defuzzification: criteria and classification. Fuzzy Sets and Systems.
Leonhardt, S., & Ayoubi, M. (1997, May). Methods of fault diagnosis. Control Engineering Practice, 5(5), 683–692. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0967066197000506 doi: 10.1016/S0967-0661(97)00050-6
Lerner, U., Parr, R., Koller, D., & Biswas, G. (2000). Bayesian Fault Detection and Diagnosis in Dynamic Systems.
Leu, G., & Abbass, H. (2016, August). A multi-disciplinary review of knowledge acquisition methods: From human to autonomous eliciting agents. Knowledge-Based Systems, 105, 1–22. Retrieved 2023-12-17, from https://linkinghub.elsevier.com/retrieve/pii/S0950705116000988 doi: 10.1016/j.knosys.2016.02.012
Li, B., Han, T., & Kang, F. (2013, December). Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network. International Journal of Computer Integrated Manufacturing, 26(12), 1161–1171. Retrieved 2024-01-03, from http://www.tandfonline.com/doi/abs/10.1080/0951192X.2013.812803 doi: 10.1080/0951192X.2013.812803
Li, T., Zhao, Y., Zhang, C., Zhou, K., & Zhang, X. (2022, January). A semantic model-based fault detection approach for building energy systems. Building and Environment, 207, 108548. Retrieved 2023-10-17, from https://linkinghub.elsevier.com/retrieve/pii/S0360132321009410 doi: 10.1016/j.buildenv.2021.108548
Lidén, T. (2015). Railway Infrastructure Maintenance - A Survey of Planning Problems and Conducted Research. Transportation Research Procedia, 10, 574–583. Retrieved 2023-12-14, from https://linkinghub.elsevier.com/retrieve/pii/S2352146515001982 doi: 10.1016/j.trpro.2015.09.011
Ligêza, A. (2006). Logical Foundations for Rule-Based Systems.
Liu, J., & Zio, E. (2018, July). A scalable fuzzy support vector machine for fault detection in transportation systems. Expert Systems with Applications, 102, 36–43. Retrieved 2023-12-29, from https://linkinghub.elsevier.com/retrieve/pii/S0957417418300952 doi: 10.1016/j.eswa.2018.02.017
Liu, M., Yan, X., Sun, X., Dong, W., & Ji, Y. (2016, May). Fault diagnosis method for railway turnout control circuit based on information fusion. In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference (pp. 315–320). Chongqing, China: IEEE. Retrieved 2023-11-15, from http://ieeexplore.ieee.org/document/7560373/ doi: 10.1109/ITNEC.2016.7560373
Liu, P., Liu, Y., Cai, B., Wu, X., Wang, K., Wei, X., & Xin, C. (2020, January). A dynamic Bayesian network based methodology for fault diagnosis of subsea Christmas tree. Applied Ocean Research, 94, 101990. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S0141118719304936 doi: 10.1016/j.apor.2019.101990
Liu, Q., Dong, M., Chen, F. F., Li, Y., & Wang, H. (2019). A Novel Method Using DSMCM for Equipment Health Prognosis with Partially Observed Information. Procedia Manufacturing, 38, 1159–1166. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S2351978920302067 doi: 10.1016/j.promfg.2020.01.205
Liu, Q., Wang, C., & Wang, Q. (2023, April). Bayesian Uncertainty Inferencing for Fault Diagnosis of Intelligent Instruments in IoT Systems. Applied Sciences, 13(9), 5380. Retrieved 2023-10-16, from https://www.mdpi.com/2076-3417/13/9/5380 doi: 10.3390/app13095380
Liu, R., Yang, B., Zio, E., & Chen, X. (2018, August). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47. Retrieved 2024-01-14, from https://linkinghub.elsevier.com/retrieve/pii/S0888327018300748 doi: 10.1016/j.ymssp.2018.02.016
Lu, Z., Afridi, I., Kang, H. J., Ruchkin, I., & Zheng, X. (2024, July). Surveying neuro-symbolic approaches for reliable artificial intelligence of things. Journal of Reliable Intelligent Environments. Retrieved 2024-08-29, from https://doi.org/10.1007/s40860-024-00231-1 doi: 10.1007/s40860-024-00231-1
Lucas, P. J. F. (1991, December). Principles of Expert Systems.
Mahesar, Q.-a., Dimitrova, V., Magee, D., & Cohn, A. (2017, November). Uncertainty Management for Rule-Based Decision Support Systems. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 884–891). Boston, MA: IEEE. Retrieved 2023-10-16, from https://ieeexplore.ieee.org/document/8372040/ doi: 10.1109/ICTAI.2017.00137
Malik, M. A. K. (1979, September). Reliable Preventive Maintenance Scheduling. A I I E Transactions, 11(3), 221–228. Retrieved 2023-12-21, from http://www.tandfonline.com/doi/abs/10.1080/05695557908974463 doi: 10.1080/05695557908974463
Manzini, R., Regattieri, A., Pham, H., & Ferrari, E. (2010). Maintenance for Industrial Systems (H. Pham, Ed.). London: Springer London. Retrieved 2023-12-14, from http://link.springer.com/10.1007/978-1-84882-575-8 doi: 10.1007/978-1-84882-575-8
Maria Malek. (2008). Systemes Experts - Cours.pdf.
Masri, N., Sultan, Y. A., Akkila, A. N., Almasri, A., Ahmed, A., Mahmoud, A. Y., . . . Abu-Naser, S. S. (2019). Survey of Rule-Based Systems. , 3(7).
Medjaher, K., Moya, J.-Y., & Zerhouni, N. (2009, June). Failure prognostic by using Dynamic Bayesian Networks. IFAC Proceedings Volumes, 42(5), 257–262. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S1474667015356305 doi: 10.3182/20090610-3-IT-4004.00049
Medjaher, K., Tobon-Mejia, D. A., & Zerhouni, N. (2012, June). Remaining Useful Life Estimation of Critical Components With Application to Bearings. IEEE Transactions on Reliability, 61(2), 292–302. Retrieved 2023-12-28, from http://ieeexplore.ieee.org/document/6190764/ doi: 10.1109/TR.2012.2194175
Mendonc¸a, L., Sousa, J., & S´a Da Costa, J. (2009, March). An architecture for fault detection and isolation based on fuzzy methods. Expert Systems with Applications, 36(2), 1092–1104. Retrieved 2023-12-29, from https://linkinghub.elsevier.com/retrieve/pii/S0957417407005246 doi: 10.1016/j.eswa.2007.11.009
Metaxiotis. (2001). Expert systems in production planning and scheduling: A state-of-the-art survey.
Michau, G., & Fink, O. (2021, March). Unsupervised transfer learning for anomaly detection: Application to complementary operating condition transfer. Knowledge-Based Systems, 216, 106816. Retrieved 2023-11-06, from https://www.sciencedirect.com/science/article/pii/S0950705121000794 doi: 10.1016/j.knosys.2021.106816
Miguelanez, E., Brown, K., Lewis, R., Roberts, C., & Lane, D. (2008). Fault diagnosis of a train door system based on semantic knowledge representation. In 4th IET International Conference on Railway Condition Monitoring (RCM 2008) (pp. 27–27). Derby, UK: IEE. Retrieved 2023-11-15, from https://digital-library.theiet.org/content/conferences/10.1049/ic 20080333 doi: 10.1049/ic:20080333
Miljkovic. (2011). Fault detection methods: A literature survey.
Mitici, M., De Pater, I., Barros, A., & Zeng, Z. (2023, June). Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines. Reliability Engineering & System Safety, 234, 109199. Retrieved 2024-08-29, from https://linkinghub.elsevier.com/retrieve/pii/S095183202300114X doi: 10.1016/j.ress.2023.109199
Moore, C., & Miles, J. (1991). Knowledge elicitation using more than one expert to cover the same domain. Artificial Intelligence Review, 5(4). Retrieved 2023-12-17, from http://link.springer.com/10.1007/BF00141757 doi: 10.1007/BF00141757
Muhammad, L., Garba, E., Oye, N., & Wajiga, G. (2019). Modeling Techniques for Knowledge Representation of Expert System: A Survey. Journal of Applied Computer Science & Mathematics, 13(2), 39–44. Retrieved 2023-12-18, from https://www.jacsm.ro/view/?pid=28 6 doi: 10.4316/JACSM.201902006
Murphy, K. P. (2002). Dynamic Bayesian Networks.
Musen, M. A. (1993). An Overview of Knowledge Acquisition. In J.-M. David, J.-P. Krivine, & R. Simmons (Eds.), Second Generation Expert Systems (pp. 405–427). Berlin, Heidelberg: Springer Berlin Heidelberg.
Nakakoji, K., & Fischer, G. (1995, April). Intertwining knowledge delivery and elicitation: a process model for human-computer collaboration in design. Knowledge-Based Systems, 8(2-3), 94–104. Retrieved 2023-12-17, from https://linkinghub.elsevier.com/retrieve/pii/095070519598371C doi: 10.1016/0950-7051(95)98371-C
Nejjar, I., Geissmann, F., Zhao, M., Taal, C., & Fink, O. (2024, February). Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction. Reliability Engineering & System Safety, 242, 109718. Retrieved 2023-11-29, from https://www.sciencedirect.com/science/article/pii/S0951832023006324 doi: 10.1016/j.ress.2023.109718
Niu, G., & Yang, B.-S. (2009, April). Dempster–Shafer regression for multi-step-ahead time-series prediction towards data-driven machinery prognosis. Mechanical Systems and Signal Processing, 23(3), 740–751. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S0888327008002094 doi: 10.1016/j.ymssp.2008.08.004
Omri, N., Masry, Z. A., Mairot, N., Giampiccolo, S., & Zerhouni, N. (2021). X-PHM: Prognostics and health management knowledge-based framework for SME. Procedia CIRP, 104, 1595–1600. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S2212827121011677 doi: 10.1016/j.procir.2021.11.269
Oukhellou, L., Debiolles, A., Denoeux, T., & Aknin, P. (2010, February). Fault diagnosis in railway track circuits using Dempster–Shafer classifier fusion. Engineering Applications of Artificial Intelligence, 23(1), 117–128. Retrieved 2023-10-17, from https://linkinghub.elsevier.com/retrieve/pii/S0952197609001109 doi: 10.1016/j.engappai.2009.06.005
Pearl, J. .-. (1988). BAYESIAN INFERENCE (Revised 2nd printing ed.). San Francisco: M. Kaufmann. (Publication Title: Probabilistic reasoning in intelligent systems networks of plausible inference)
Peng, J., Xia, G., Li, Y., Song, Y., & Hao, M. (2022, December). Knowledge-based prognostics and health management of a pumping system under the linguistic decision-making context. Expert Systems with Applications, 209, 118379. Retrieved 2023-10-18, from https://linkinghub.elsevier.com/retrieve/pii/S0957417422014920 doi: 10.1016/j.eswa.2022.118379
Prajapati, A., Bechtel, J., & Ganesan, S. (2012, October). Condition based maintenance: a survey. Journal of Quality in Maintenance Engineering, 18(4), 384–400. Retrieved 2023-12-21, from https://www.emerald.com/insight/content/doi/10.1108/13552511211281552/full/html doi: 10.1108/13552511211281552
Qu, F., Liu, J., Zhu, H., & Zhou, B. (2020, March). Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic. Applied Energy, 262, 114469. Retrieved 2023-12-29, from https://linkinghub.elsevier.com/retrieve/pii/S0306261919321579 doi: 10.1016/j.apenergy.2019.114469
Quost, B., Masson, M.-H., & Denoeux, T. (2011, March). Classifier fusion in the Dempster–Shafer framework using optimized t-norm based combination rules. International Journal of Approximate Reasoning, 52(3), 353–374. Retrieved 2024-01-03, from https://linkinghub.elsevier.com/retrieve/pii/S0888613X10001568 doi: 10.1016/j.ijar.2010.11.008
Radtke, M.-P., & Bock, J. (2022, June). Combining Knowledge and Deep Learning for Prognostics and Health Management. PHM Society European Conference, 7(1), 594–597. Retrieved 2024-08-23, from https://papers.phmsociety.org/index.php/phme/article/view/3302 doi: 10.36001/phme.2022.v7i1.3302
Rajabi, M., Hossani, S., & Dehghani, F. (2019, September). A literature review on current approaches and applications of fuzzy expert systems. arXiv. Retrieved 2023-12-05, from http://arxiv.org/abs/1909.08794 (arXiv:1909.08794 [cs])
Reetz, S., Neumann, T., Schrijver, G., Van Den Berg, A., & Buursma, D. (2024, February). Expert system based fault diagnosis for railway point machines. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 238(2), 214–224. Retrieved 2024-09-04, from http://journals.sagepub.com/doi/10.1177/09544097231195656 doi: 10.1177/09544097231195656
Roychowdhury, S., & Pedrycz, W. (2001, June). A survey of defuzzification strategies. International Journal of Intelligent Systems, 16(6), 679–695. Retrieved 2023-12-18, from https://onlinelibrary.wiley.com/doi/10.1002/int.1030 doi: 10.1002/int.1030
Ruan, D., Wang, J., Yan, J., & G¨uhmann, C. (2023, January). CNN parameter design based on fault signal analysis and its application in bearing fault diagnosis. Advanced Engineering Informatics, 55, 101877. Retrieved 2024-08-22, from https://linkinghub.elsevier.com/retrieve/pii/S1474034623000058 doi: 10.1016/j.aei.2023.101877
Rudin, C. (2019, September). Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. arXiv. Retrieved 2023-12-14, from http://arxiv.org/abs/1811.10154 (arXiv:1811.10154 [cs, stat])
Santos, J., Torres-Machi, C., Morillas, S., & Cerezo, V. (2022, January). A fuzzy logic expert system for selecting optimal and sustainable life cycle maintenance and rehabilitation strategies for road pavements. International Journal of Pavement Engineering, 23(2), 425–437. Retrieved 2024-08-29, from https://doi.org/10.1080/10298436.2020.1751161 (Publisher: Taylor & Francis eprint: https://doi.org/10.1080/10298436.2020.1751161) doi: 10.1080/10298436.2020.1751161
Sarazin, A., Bascans, J., Sciau, J.-B., Song, J., Supiot, B., Montarnal, A., . . . Truptil, S. (2021, December). Expert system dedicated to condition-based maintenance based on a knowledge graph approach: Application to an aeronautic system. Expert Systems with Applications, 186, 115767. Retrieved 2024-08-29, from https://linkinghub.elsevier.com/retrieve/pii/S0957417421011398 doi: 10.1016/j.eswa.2021.115767
Satish, B., & Sarma, N. (2005). A fuzzy bp approach for diagnosis and prognosis of bearing faults in induction motors. In IEEE Power Engineering Society General Meeting, 2005 (pp. 958–961). San Francisco, CA, USA: IEEE. Retrieved 2024-01-04, from http://ieeexplore.ieee.org/document/1489277/ doi: 10.1109/PES.2005.1489277
Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2021, March). Metrics for Offline Evaluation of Prognostic Performance. International Journal of Prognostics and Health Management, 1(1). Retrieved 2023-12-
28, from https://papers.phmsociety.org/index.php/ijphm/article/view/1336 doi: 10.36001/ijphm.2010.v1i1.1336
Schein, J., Bushby, S. T., Castro, N. S., & House, J. M. (2006, December). A rule-based fault detection method for air handling units. Energy and Buildings, 38(12), 1485–1492. Retrieved 2023-10-17, from https://linkinghub.elsevier.com/retrieve/pii/S0378778806001034 doi: 10.1016/j.enbuild.2006.04.014
Schwabacher, M. (2007). A Survey of Artificial Intelligence for Prognostics.
Sentz, K., & Ferson, S. (2002, April). Combination of Evidence in Dempster-Shafer Theory (Tech. Rep. Nos. SAND2002-0835, 800792). Retrieved 2024-01-11, from https://www.osti.gov/servlets/purl/800792/ doi: 10.2172/800792
Sheut, C., & Krajewski, L. J. (1994, June). A decision model for corrective maintenance management. International Journal of Production Research, 32(6), 1365–1382. Retrieved 2023-12-21, from http://www.tandfonline.com/doi/abs/10.1080/00207549408957005 doi: 10.1080/00207549408957005
Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2011, August). Remaining useful life estimation – A review on the statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0377221710007903 doi: 10.1016/j.ejor.2010.11.018
Skarlatos, D., Karakasis, K., & Trochidis, A. (2004, October). Railway wheel fault diagnosis using a fuzzy-logic method. Applied Acoustics, 65(10), 951–966. Retrieved 2023-11-15, from https://linkinghub.elsevier.com/retrieve/pii/S0003682X04000672 doi: 10.1016/j.apacoust.2004.04.003
Slagle, J. R., & Hamburger, H. (1985, September). An expert system for a resource allocation problem. Commun. ACM, 28(9), 994–1004. Retrieved 2024-08-29, from https://dl.acm.org/doi/10.1145/4284.4291 doi: 10.1145/4284.4291
Soltanali, H., Khojastehpour, M., Farinha, J. T., & Pais, J. E. D. A. E. (2021, November). An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing. Energies, 14(22), 7758. Retrieved 2023-12-29, from https://www.mdpi.com/1996-1073/14/22/7758 doi: 10.3390/en14227758
Song, B., Jiang, Z., & Li, X. (2015, February). Modeling knowledge need awareness using the problematic situations elicited from questions and answers. Knowledge-Based Systems, 75, 173–183. Retrieved 2023-12-17, from https://linkinghub.elsevier.com/retrieve/pii/S0950705114004341 doi: 10.1016/j.knosys.2014.12.004
Soualhi, A., Lamraoui, M., Elyousfi, B., & Razik, H. (2022, September). PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems. Energies, 15(19), 6909. Retrieved 2023-12-28, from https://www.mdpi.com/1996-1073/15/19/6909 doi: 10.3390/en15196909
Soualhi, A., Razik, H., Clerc, G., & Doan, D. D. (2014, June). Prognosis of Bearing Failures Using Hidden Markov Models and the Adaptive Neuro-Fuzzy Inference System. IEEE Transactions on Industrial Electronics, 61(6), 2864–2874. Retrieved 2024-01-04, from http://ieeexplore.ieee.org/document/6566058/ doi: 10.1109/TIE.2013.2274415
Steels, L. (1990, June). Components of Expertise. AI Magazine, 11(2), 28–28. Retrieved 2023-09-18, from https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/831 (Number: 2) doi: 10.1609/aimag.v11i2.831
Swanson, L. (2001). Linking maintenance strategies to performance. International Journal of Production Economics, 70(3), 237–244. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925527300000670 doi: https://doi.org/10.1016/S0925-5273(00)00067-0
Sánchez-Silva, M., Frangopol, D. M., Padgett, J., & Soliman, M. (2016, September). Maintenance and Operation of Infrastructure Systems: Review. Journal of Structural Engineering, 142(9), F4016004. Retrieved 2023-12-14, from https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0001543 doi: 10.1061/(ASCE)ST.1943-541X.0001543
Tang, H., Li, D., Chen, W., & Xue, S. (2016, June). Uncertainty quantification using evidence theory in concrete fatigue damage prognosis. In 2016 IEEE International Conference on Prognostics and Health Management (ICPHM) (pp. 1–7). Ottawa, ON, Canada: IEEE. Retrieved 2024-01-04, from http://ieeexplore.ieee.org/document/7542857/ doi: 10.1109/ICPHM.2016.7542857
Tang, L., Saxena, A., Evans, S., Iyer, N., & Goldfarb, H. (2023, October). OSPtk: Cost-aware Optimal Sensor Placement Toolkit Enabling Design-for-PHM in Critical Industrial Systems. Annual Conference of the PHM Society, 15(1). Retrieved 2024-08-29, from http://www.papers.phmsociety.org/index.php/phmconf/article/view/3557 (Number: 1) doi: 10.36001/phmconf.2023.v15i1.3557
Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B. D., . . . Hu, Z. (2022a, September). A Comprehensive Review of Digital Twin – Part 1: Modeling and Twinning Enabling Technologies. arXiv. Retrieved 2022-10-07, from http://arxiv.org/abs/2208.14197 (arXiv:2208.14197 [cs])
Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B. D., . . . Hu, Z. (2022b, August). A Comprehensive Review of Digital Twin – Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives. arXiv. Retrieved 2022-10-07, from http://arxiv.org/abs/2208.12904 (arXiv:2208.12904 [cs, math])
Tinga, T., & Loendersloot, R. (2014). Aligning PHM, SHM and CBM by understanding the physical system failure behaviour.
Todd, B. S. (1992). AN INTRODUCTION TO EXPERT SYSTEMS.
Trillas, E., & Eciolaza, L. (2015). Fuzzy Logic: An Introductory Course for Engineering Students (Vol. 320). Cham: Springer International Publishing. Retrieved 2023-12-18, from https://link.springer.com/10.1007/978-3-319-14203-6 doi: 10.1007/978-3-319-14203-6
Tsang, A. H. (1995, September). Condition-based maintenance: tools and decision making. Journal of Quality in Maintenance Engineering, 1(3), 3–17. Retrieved 2023-12-21, from https://www.emerald.com/insight/content/doi/10.1108/13552519510096350/full/html doi: 10.1108/13552519510096350
Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., & Wang, W. (2015). Prognostics and Health Management: A Review on Data Driven Approaches. Mathematical Problems in Engineering, 2015, 1–17. Retrieved 2023-12-13, from http://www.hindawi.com/journals/mpe/2015/793161/ doi: 10.1155/2015/793161
Tung, T. V., & Yang, B.-S. (2009). Machine Fault Diagnosis and Prognosis: The State of The Art. International Journal of Fluid Machinery and Systems, 2(1), 61–71. doi: 10.5293/IJFMS.2009.2.1.061
Vagnoli, M., Remenyte-Prescott, R., & Andrews, J. (2017). A fuzzy-based Bayesian belief network approach for railway bridge condition monitoring and fault detection. (Pages: 390) doi: 10.1201/9781315210469-341
Verbert, K., Babuska, R., & De Schutter, B. (2017, April). Bayesian and Dempster–Shafer reasoning for knowledge-based fault diagnosis–A comparative study. Engineering Applications of Artificial Intelligence, 60, 136–150. Retrieved 2024-01-03, from https://linkinghub.elsevier.com/retrieve/pii/S0952197617300118 doi: 10.1016/j.engappai.2017.01.011
Verduijn, M., Peek, N., Rosseel, P. M., De Jonge, E., & De Mol, B. A. (2007, December). Prognostic Bayesian networks. Journal of Biomedical Informatics, 40(6), 609–618. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S1532046407000615 doi: 10.1016/j.jbi.2007.07.003
Wang, Q., Taal, C., & Fink, O. (2022). Integrating Expert KnowledgeWith Domain Adaptation for Unsupervised Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 71, 1–12. (Conference Name: IEEE Transactions on Instrumentation and Measurement) doi: 10.1109/TIM.2021.3127654
Wang, W. Q., Golnaraghi, M., & Ismail, F. (2004, July). Prognosis of machine health condition using neuro-fuzzy systems. Mechanical Systems and Signal Processing, 18(4), 813–831. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S0888327003000797 doi: 10.1016/S0888-3270(03)00079-7
Wang, Y., Li, Y., Zhang, Y., Lei, J., Yu, Y., Zhang, T., . . . Zhao, H. (2024, January). Incorporating prior knowledge into self-supervised representation learning for long PHM signal. Reliability Engineering & System Safety, 241, 109602. Retrieved 2023-12-28, from https://linkinghub.elsevier.com/retrieve/pii/S0951832023005161 doi: 10.1016/j.ress.2023.109602
Weddington, J., Niu, G., Chen, R., Yan, W., & Zhang, B. (2021, October). Lithium-ion battery diagnostics and prognostics enhanced with Dempster-Shafer decision fusion. Neurocomputing, 458, 440–453. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S0925231221009814 doi: 10.1016/j.neucom.2021.06.057
Weiner, J. (1980, November). BLAH, a system which explains its reasoning. Artificial Intelligence, 15(1-2), 19–48. Retrieved 2023-12-14, from https://linkinghub.elsevier.com/retrieve/pii/0004370280900211 doi: 10.1016/0004-3702(80)90021-1
Xu, Z., & Saleh, J. H. (2021, July). Machine learning for reliability engineering and safety applications: Review of current status and future opportunities. Reliability Engineering & System Safety, 211, 107530. Retrieved 2023-10-09, from https://linkinghub.elsevier.com/retrieve/pii/S0951832021000892 doi: 10.1016/j.ress.2021.107530
Yager, R. R. (1987, March). On the dempster-shafer framework and new combination rules. Information Sciences, 41(2), 93–137. Retrieved 2024-01-11, from https://linkinghub.elsevier.com/retrieve/pii/0020025587900077 doi: 10.1016/0020-0255(87)90007-7
Yaghoubi, V., Cheng, L., Van Paepegem, W., & Kersemans, M. (2022, March). A novel multi-classifier information fusion based on Dempster–Shafer theory: application to vibration-based fault detection. Structural Health Monitoring, 21(2), 596–612. Retrieved 2023-12-29, from http://journals.sagepub.com/doi/10.1177/14759217211007130 doi: 10.1177/14759217211007130
Yongli, Z., Limin, H., & Jinling, L. (2006, April). Bayesian Networks-Based Approach for Power Systems Fault Diagnosis. IEEE Transactions on Power Delivery, 21(2), 634–639. Retrieved 2024-01-03, from http://ieeexplore.ieee.org/document/1610672/ doi: 10.1109/TPWRD.2005.858774
Zadeh, L. A. (1999). FUZZY SETS AS A BASIS FOR A THEORY OF POSSIBILITY.
Zhao, K., Li, L., Chen, Z., Sun, R., Yuan, G., & Li, J. (2022, July). A survey: Optimization and applications of evidence fusion algorithm based on Dempster–Shafer theory. Applied Soft Computing, 124, 109075. Retrieved 2024-01-04, from https://linkinghub.elsevier.com/retrieve/pii/S1568494622003696 doi: 10.1016/j.asoc.2022.109075
Zhao, Y., Xiao, F., & Wang, S. (2013, February). An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network. Energy and Buildings, 57, 278–288. Retrieved 2024-01-03, from https://linkinghub.elsevier.com/retrieve/pii/S0378778812005968 doi: 10.1016/j.enbuild.2012.11.007
Zhou, Z.-J., Hu, G.-Y., Hu, C.-H.,Wen, C.-L.,&Chang, L.-L. (2021, August). A Survey of Belief Rule-Base Expert System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(8), 4944–4958. Retrieved 2023-10-23, from https://ieeexplore.ieee.org/document/8894055/ doi: 10.1109/TSMC.2019.2944893
Zio, E. (2009, February). Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, 94(2), 125–141. Retrieved 2023-10-09, from https://linkinghub.elsevier.com/retrieve/pii/S0951832008001749 doi: 10.1016/j.ress.2008.06.002
Zio, E. (2016, December). Some Challenges and Opportunities in Reliability Engineering. IEEE Transactions on Reliability, 65(4), 1769–1782. Retrieved 2023-12-13, from http://ieeexplore.ieee.org/document/7530921/ doi: 10.1109/TR.2016.2591504
Zio, E. (2022, February). Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218, 108119. Retrieved 2023-10-18, from https://linkinghub.elsevier.com/retrieve/pii/S0951832021006153 doi: 10.1016/j.ress.2021.108119
Section
Technical Papers