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ABSTRACT

Prognostics and Health Management (PHM) has become in-
creasingly popular in recent years, and data-driven methods
and artificial intelligence have emerged as dominant tools within
the PHM field. This trend is mainly due to the increasing use
of sensors and the ability of machine learning techniques to
leverage condition monitoring data. However, despite their
utility and effectiveness, these techniques are not without draw-
backs. One major issue is that data-driven methods often
lack transparency in their reasoning, which is crucial for un-
derstanding fault occurrences and diagnostics. Additionally,
the availability of data can be a challenge. In some cases,
data are scarce or hard to obtain, either due to the cost of
installing necessary sensors or the rarity of the required in-
formation. Lastly, the insights derived from data can some-
times diverge from those obtained through expert analysis and
established norms. This contrasts with knowledge-based ap-
proaches such as expert systems, which formally organize the
knowledge acquired from norms and experts, and then de-
duce the desired conclusion. While research is increasingly
exploring data-driven techniques, industry tends to still fre-
quently employ knowledge-based methods. To fill this gap,
this paper offers a detailed survey of knowledge-based and
expert systems in PHM, examining methodologies such as
propositional logic, fuzzy logic, Dempster-Shafer theory and
Bayesian networks. It assesses the integration and impact of
these techniques in PHM for fault detection, diagnosis and
prognosis, highlighting their strengths, limitations, and po-
tential future developments. The study provides a thorough
evaluation of current developments and contributes signifi-
cant insights into the current capabilities and future direc-
tions of knowledge-based techniques in enhancing decision-
making processes in PHM.
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1. INTRODUCTION

As the world becomes more complex, issues of sustainabil-
ity, environmental responsibility, and security of critical ser-
vices take on critical importance (Sánchez-Silva, Frangopol,
Padgett, & Soliman, 2016). Faced with these challenges, the
aging of infrastructure raises major concerns (Zio, 2009). In-
deed, for large metropolises that heavily rely on transporta-
tion systems like subways and trains, the reliability of these
systems are absolutely essential (Lidén, 2015). A lack of reli-
ability can shorten the lifespan of these valuable assets, which
can result in significant financial costs and compromise peo-
ple’s safety (Zio, 2016; Manzini, Regattieri, Pham, & Ferrari,
2010). Today, technology offers the necessary tools for opti-
mal management of these systems. In particular, by blending
data analysis methods, algorithmic techniques, and engineer-
ing principles, Prognostics and Health Management (PHM),
an interdisciplinary branch of engineering, aims to provide
methods and tools in order to design optimal maintenance
policies for a specific asset (Fink et al., 2020). In order to
do this, PHM enables to control and predict the evolution and
the behavior of industrial assets to anticipate failure and avoid
accidents (Elattar, Elminir, & Riad, 2016). The process typ-
ically begins with the implementation of sensors, which are
crucial for monitoring the condition of the asset. Given the
complexity of modern systems, these sensors vary in types
and capture a diverse range of variables, they are also sub-
ject to measurement and transmission noise that can impact
the results. Consequently, feature selection, which is a pre-
processing step to obtain useful data representations, is com-
monly employed (Fink et al., 2020). With suitable condition
data about the asset in hand, the next three steps are critical
for the asset health analysis. The first step involves identify-
ing deviations from the system’s normal behavior (fault de-
tection). Upon detecting an anomaly, the goal is to isolate it
and determine its origin (fault diagnostics). Subsequently, es-
timating the remaining useful life (RUL) aims to predict when
the asset’s performance will decline to an unacceptable level
(fault prognostics) (J. Lee et al., 2014). PHM extends beyond
prognostics, and is designed to aid in decision-making, taking
into account available resources, management strategies, and
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economic implications.

The effective implementation of PHM strategies relies heav-
ily on leveraging modern technological advancements. Nowa-
days, the intersection of big data, expansive data storage ca-
pabilities, and the evolution of powerful algorithms positioned
data-driven approaches and machine learning (ML) as pri-
mary tools for condition monitoring and decision-making (I. Lee,
2017). The extensive applications of ML in the PHM paradigm
have shown immense promise (Xu & Saleh, 2021). (Biggio
& Kastanis, 2020) describe its various applications, includ-
ing its integration in PHM processes for feature selection us-
ing filter-based and wrapper-based approaches, and for health
analysis through learning algorithms. (Tsui, Chen, Zhou, Hai,
& Wang, 2015) detail applications in diagnostics and prog-
nostics of industrial assets, utilizing classification, Bayesian
frameworks, and particle filtering. More recently, deep learn-
ing (DL), a subfield of ML, has emerged as a promising ap-
proach to address challenges in the PHM process. Its ability
to process massive amounts of monitoring data and transfer
knowledge across different operating units makes it particu-
larly effective in feature selection. It automates data analy-
sis for feature choice, especially when the feature count is
significant, as discussed by (Fink et al., 2020). The advan-
tages of DL in PHM have also been thoroughly explored in
(Fink, 2020). While these techniques are really efficient and
promising, they come with inherent challenges. A primary
concern is their ”black box” nature, where the exact decision-
making process remains opaque, leading to misunderstood
outcomes or even misguiding results (Rudin, 2019). Indeed,
(Barredo Arrieta et al., 2020) points out that explainability
is a crucial feature for the practical deployment of artificial
intelligence (AI) models. The major obstacle to this deploy-
ment lies in the gap between industries and research commu-
nity. This lead to an hesitancy in adopting some ML mod-
els due to perceived risks to assets. Another obstacle is that
a too important emphasis is placed on the outcomes which
undermines the significance of understanding the underlying
mechanisms. Beyond this, other significant challenges in-
clude extensive requirements for data collection and labeling
and the high computational cost associated with training and
deploying complex models. According to (Zio, 2022), while
some recent explorations of ML models enhance PHM out-
comes with convenient estimation of associated uncertainty,
the fact that data could be hard to obtain, developing sys-
tematic frameworks to represent and quantify the different
sources of uncertainty remains a area for improvement, es-
pecially in the prognostics field.

To counterbalance these challenges, expert systems seem to
offer convincing advantages. They represent the earliest forms
of AI developed in research, and were, in the past, the driv-
ing force behind the development of AI problem-solving and
knowledge-based processing. More precisely, an expert sys-
tem is a program designed to simulate the behavior of a spe-

cialist in a specific domain with the ambition to capture hu-
man insights within algorithmic bounds (Todd, 1992; Kast-
ner, 1984). To function effectively, it should possess the ex-
pertise and judgment to produce answers akin to what a hu-
man expert would provide. Moreover, to ensure the reliabil-
ity and trustworthiness of its decisions, it is often designed
to explain its reasoning, and has the capability to incorpo-
rate new knowledge into its existing database (Lucas, 1991).
Once the expert knowledge is appropriately stored, the sys-
tem performs inferences to provide choices and responses
to user requests through an inference engine. The main ad-
vantage of this type of intelligent system is its interpretabil-
ity. The knowledge is explicitly stored, and the inference
process is transparent (Weiner, 1980). Despite these quali-
ties, two main flaws need to be mentioned. The first signifi-
cant flaw concerns the lack of flexibility of the implemented
knowledge. Typically, this often represents knowledge linked
together and attempting to best qualify a domain that one
wishes to study. Due to this, if there is a need to expand the
case study or to deviate from it, the system may lack adapt-
ability. A second, related flaw concerns knowledge cover-
age. Expert systems were initially designed to be competent
in specific domains. Representing a complex or interdisci-
plinary system can become tedious, due to a large number
of required rules, or ineffective, due to a lack of knowledge
or unsuitable representation frameworks (Buchanan & Smith,
1988).

Following this, one can observe that while ML offers high
predictive power, expert systems encapsulate human exper-
tise, providing decisions that are both transparent and well-
founded. Recognizing that neither approach is completely
satisfying in isolation, there is a growing interest in merg-
ing the robust statistical inference of ML with the clarity of
expert systems (Barredo Arrieta et al., 2020). This fusion
aims to combine the strengths of both approaches, ensuring
a comprehensive approach to PHM (Amodei et al., 2016).
Having established the current landscape where ML and ex-
pert systems intersect, particularly in the field of PHM, we
have gained an outline of the importance of expert systems
in such applications (which will be expanded later). We now
dive into a retrospective review of the various developments
concerning the application of these systems and their gradual
integration into prognostics and health management. Forty
years ago, (Kastner, 1984) has dealt with the development of
expert systems at a nascent stage. The paper first details the
intrinsic functioning of the expert program before moving on
to a variety of applications, from oil exploitation to infectious
disease diagnosis. Seven years later, Lucas et al. published
”Principles of Expert Systems” (Lucas, 1991), which set the
foundation of expert systems theory and offered a compre-
hensive and detailed view of the subject while also discussing
the existing implementation tools. In subsequent years, there
has been many publications on various expert systems appli-
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cations, each generally focusing on a specific domain. We can
mention (Kusiak & Chen, 1988) and (Metaxiotis, 2001), who
examined the use of expert systems in production, mainte-
nance, and process planning. The first work provides a more
exhaustive overview of different knowledge representations
in an expert system, and the advantages of various models,
each illustrated by examples of applications. The latter pa-
per focuses more on the operational aspects of these systems,
covering the different programming tools used in practice and
listing applications by domains. Expert systems have also
been surveyed from a modeling perspective. Recently, (Zhou,
Hu, Hu, Wen, & Chang, 2021) discussed ways to use belief
rule-based systems in theory and practice (which we will ex-
plore further). Fuzzy set-based systems, predominantly used
to handle uncertainty, were reviewed in (Rajabi, Hossani, &
Dehghani, 2019), who covered the evolution of these systems
over time and discussed the growing popularity of fuzzy set
theory through 60 pioneering applications. Given that PHM
is currently in rapid development, and expert systems had
reached their peak in popularity decades earlier (see Figures 2
and 3), literature discussing the combination of these two do-
mains is limited. Indeed, although there are several reviews
on AI techniques such as ML and DL in PHM, the literature
focusing on expert systems and knowledge-based techniques
in PHM is very scarce. One can mention (R. Liu, Yang, Zio,
& Chen, 2018), which discusses the application of artificial
intelligence methods in fault diagnosis and prognostics with
an emphasis on rotating machinery and the importance of
predefined knowledge. Three years ago, the integration of
expert knowledge in PHM has been addressed in a short re-
view (Gay et al., 2021). In this paper, the authors provide a
classification in question format to identify the type of expert
knowledge required for a PHM application. The main goal is
to determine which knowledge modeling approach best suits
any given PHM application. Additionally, it mainly discusses
prognostics (RUL estimation) with little emphasis on fault de-
tection or fault diagnosis, which are crucial components in
PHM strategies. Thus, we believe a more comprehensive re-
view of expert systems applied to PHM is still lacking.

While expert systems and PHM have been extensively re-
viewed independently, little attention was paid to the method
development and application of expert systems in PHM. In
this paper, we propose a comprehensive review of this type
of methods covering the entire PHM process, with an em-
phasis on fault detection, fault diagnosis and fault progno-
sis. We present several applications at each of these steps and
discuss the strengths and weaknesses of various approaches
across a broad timeline, from the early developments of ex-
pert systems to the present day. We also delve into different
knowledge modeling techniques applicable in an expert sys-
tem. In short, the primary aim of this survey is to offer a
comprehensive review of the current developments and ap-
plications of expert or knowledge-based systems (KBSs) in

Prognostics and Health Management of engineering systems.
Figure 1 presents the different topics discussed in this re-
view. Section 2 discusses the evolution of research interest in
knowledge-based systems and specifically their applications
in the PHM field. Section 3 introduces the field of PHM, delv-
ing into the various maintenance strategies that have evolved
over time, leading from corrective maintenance to the emer-
gence of PHM. Section 4 provides an overview of the ar-
chitecture of expert systems and details their typical compo-
nents. In addition, we present the various families of expert
systems and how they deal with uncertainty. Section 5 re-
views the existing research works applying knowledge-based
methods in PHM, by examining their findings and applied
methodologies. Section 6 provides a discussion on future
perspectives and directions for expert and knowledge-based
systems in PHM. Finally, we conclude this work in Section 7.

2.1: Knowledge-based and Expert systems
2.2: Prognostics and Health Management
2.3: Knowledge-based systems in PHM

Sec. 2: Evolution
of Research

Sec. 4: Expert and
Knowledge-based systems

3.1: From corrective maintenance to PHM
3.2: Prognostics and Health Management
3.3: PHM methods

4.1: Expert systems architecture
4.2: Knowledge representation
4.3: Handling uncertainty
4.4: Inference engine

Sec. 5: Review

Sec. 6: Future directions for
Knowledge-based systems for PHM

Sec. 3: Prognostics and
Health Management

5.1: Knowledge-based benefits in PHM
5.2: Methodology
5.3: Knowledge-based techniques in fault detection
5.4: Knowledge-based techniques in fault diagnostic
5.5: Knowledge-based techniques in fault prognostic
5.6: Knowledge-based techniques in advisory 
       generation and health management

Sec. 7: Conclusion

Figure 1. Overview of the structure of this review.

2. EVOLUTION OF RESEARCH

Before delving into the detailed discussion of expert systems
and their applications in PHM, it is important to briefly look
at the evolution of research interest in these areas over time.
For this purpose, we conducted electronic searches on Sco-
pus. This database is multidisciplinary and compiles a wide
range of articles from various publishers (ACM Digital Li-
brary, Elsevier, IEEE Xplore, Springer, etc).
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2.1. Knowledge-based and Expert systems

We begin our study by examining the evolution of research
in the field of knowledge-based and expert systems. The
methodology employed is detailed in the table below, illus-
trating our approach using Scopus as the primary search tool.
Our investigation involved conducting three independent searches
on Scopus, with each search query corresponding to a dis-
tinct row in Table 1 and a separate curve in Figure 2. This
search was carried out on December 14th, 2023, focusing
on papers related to expert systems through three different
search queries. We adopted this approach in response to the
evolving terminology used to describe expert systems from
1980 to present. Although the terms ”knowledge-based sys-
tem” and ”expert system” are sometimes used interchange-
ably, they have subtle differences. Specifically, a KBS is a
computer program that employs a knowledge base and ar-
tificial intelligence methodologies to solve a specific prob-
lem, while an expert system is a kind of KBS designed to
emulate the decision-making abilities of a human expert in
a particular field (Akerkar & Sajja, 2009). For our discus-
sion, both terms denote a system using a knowledge base and
AI to solve a specific problem. The terms ”rule-based sys-
tem” and ”knowledge-based system” have become increas-
ingly prevalent as reflected in our results: the curves for each
term align closely until around the year 2000, after which
there is a divergence, indicating a broader range of terms be-
ing used to designate expert systems since this period. Setting
this aside, the crucial observation from our study is the pres-
ence of two peaks in our data curve. The first peak, around
1990, represents the golden era of expert systems. There is
also a more recent peak, which signifies a renewed interest
in knowledge-based systems today. One can observe a slight
decrease around 2013-2014, likely due to the surge in deep
learning popularity during that period.

Table 1. Search queries on Scopus and results by query for
literature about knowledge-based systems.

Query Expression Curve in Fig. 2 Results
TITLE-ABS-KEY(”expert system”)
AND PUBYEAR(greater than 1979) ES 68’469

TITLE-ABS-KEY(”expert system” OR
”rule-based” OR ”rule based”) AND

PUBYEAR(greater than 1979)
ES RB 122’325

TITLE-ABS-KEY(”expert system” OR
”knowledge based” OR ”rule-based” OR

”rule based”) AND PUBYEAR(greater than
1979)

ES RB KBS 218’512

2.2. Prognostics and Health Management

We now examine the progression of research publications in
the field of PHM in Table 2. Figure 3 illustrates a modest in-
crease from 1980 to 2000, transitioning into a period of expo-
nential growth that highlights the rapid advancement of PHM
recently. One can notice that half of the publications related

Figure 2. Evolution of the number of research papers pub-
lished about knowledge-based systems.

to PHM have been produced in the period between 2015 and
2023, underscoring a significant surge in research interest in
recent years.

Table 2. Search queries on Scopus and results by query for
literature about Prognostics and Health Management.

Query Expression Results
TITLE-ABS-KEY(”PHM” OR ”fault
detection” OR ”fault diagnostic” OR

”fault diagnosis” OR ”fault prognosis” OR
”fault prognostic” OR ”prognostics and

health management” OR ”RUL
prediction”) AND PUBYEAR(greater

than 1979)

124’621

2.3. Knowledge-based systems in Prognostics and Health
Management

Having traced the development of research in expert systems
and PHM independently, it is now interesting to explore the
trajectory of publications on the application of expert systems
within PHM. The query executed on Scopus, with the result-
ing data, are detailed in the subsequent Table 3. On Figure 4,
one can notice a pronounced initial surge in the 1980s and
90s. This spike can be primarily attributed to the intense de-
velopment of expert systems during that era, also reflecting a
nascent interest in PHM, well before its peak phase. Moving
forward, the trend shows a scattered growth from the 1990s
to the present, with a notable peak in recent years, aligning
with the trends observed in the previously discussed graphs.

3. PROGNOSTICS AND HEALTH MANAGEMENT

This section aims to provide the reader with a comprehen-
sive understanding of maintenance practices up to the present
day, and to introduce the PHM paradigm within this estab-
lished landscape. Then it will offer an in-depth exploration of
PHM techniques, covering the underlying processes and the
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Figure 3. Evolution of the number of research papers pub-
lished about Prognostics and Health Management.

Table 3. Search queries on Scopus and results by query for lit-
erature about knowledge-based systems applied to Prognos-
tics and Health Management.

Query Expression Results
TITLE-ABS-KEY(((”expert system” OR

”rule-based” OR ”rule based” OR
”knowledge based”) AND (”PHM” OR
”fault detection” OR ”fault diagnostic”

OR ”fault diagnosis” OR ”prognosis” OR
”prognostic” OR ”prognostics and health

management” OR ”RUL prediction”))
AND PUBYEAR(greater than 1979)

5’159

specific methods employed.

3.1. From Corrective Maintenance to PHM

PHM is intrinsically connected to the optimization of mainte-
nance practices. To fully understand the significance of PHM,
it is important to first examine the evolution of maintenance
strategies. Maintenance is broadly defined as all the techni-
cal and administrative actions necessary to ensure the smooth
operation of a system (Swanson, 2001). The most basic form
of maintenance, aligning with this definition, is corrective
maintenance, which (Sheut & Krajewski, 1994) describes as
a ”work-to-failure” approach. Although this strategy may
appear rudimentary, it can be the optimal choice for certain
assets, especially when system operation is not critical, and
failures have minimal impact on safety, reliability, environ-
mental factors, comfort, or economic outcomes. Following
corrective maintenance, the next stage in maintenance evo-
lution is preventive maintenance, which involves performing
maintenance at predetermined intervals, without considering
the system’s current condition. When implemented correctly
with the optimal maintenance intervals, preventive mainte-
nance tends to extend the lifespan of equipment. However,
optimizing the cost-benefit balance of preventive maintenance
is a complex challenge (Malik, 1979). As modern systems

Figure 4. Evolution of the number of research papers pub-
lished about knowledge-based systems in Prognostics and
Health Management.

have become increasingly complex, the availability of skilled
maintenance technicians has been constrained by an aging
workforce, declining vocational training, and reduced inter-
est in technical careers among younger generations, neces-
sitating a re-evaluation of traditional maintenance methods.
Technological advancements, particularly the widespread de-
ployment of condition monitoring sensors and data capture
infrastructure, have enabled continuous monitoring of indus-
trial and infrastructure assets, making condition-based main-
tenance (CBM) a viable alternative. Unlike preventive main-
tenance performed at regular intervals, CBM allows for main-
tenance to be carried out precisely when the system requires
it. By monitoring equipment conditions in real time, potential
faults can be identified and addressed as they arise (Tsang,
1995). Compared to preventive maintenance, CBM facili-
tates more efficient operations, but demands significant re-
sources and extensive information (Ahmad & Kamaruddin,
2012). Predictive maintenance advances beyond CBM by not
only monitoring the current condition but also forecasting the
Remaining Useful Life (RUL) of equipment, allowing main-
tenance interventions to be strategically scheduled just be-
fore the end of the asset’s lifecycle (Fink, 2020). While both
condition-based and predictive maintenance rely heavily on
the availability of condition monitoring data, CBM primar-
ily focuses on fault detection, with maintenance actions trig-
gered after a fault is identified, without precise knowledge
of the system’s RUL. In contrast, predictive maintenance not
only detects faults but also estimates the RUL (Mitici, De Pa-
ter, Barros, & Zeng, 2023), allowing the system to be oper-
ated until the very end of its lifecycle, thus fully utilizing the
asset’s lifespan (Figure 6 illustrates this difference). Imple-
menting CBM typically presents significant challenges, in-
cluding the need for substantial investment in advanced sen-
sor technology and data analytics infrastructure to ensure pre-
cise equipment monitoring. Additionally, it requires the de-
velopment of expertise in data interpretation and the integra-
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tion of these systems into existing maintenance workflows,
which can be complex and resource-intensive. Additionally,
successful implementation requires the workforce’s accep-
tance and adaptation, particularly from maintenance engineers,
who must be willing to adopt and adapt to new technologies
and methodologies (Prajapati, Bechtel, & Ganesan, 2012).
While CBM focuses on monitoring the overall condition of
machinery to optimize maintenance schedules and prevent
failures, Structural Health Monitoring (SHM) specifically tar-
gets the structural integrity of infrastructure, such as build-
ings and bridges, to detect damage and ensure safety. CBM is
applied broadly in industrial settings, whereas SHM is used
primarily in civil engineering and aerospace (Tinga & Loen-
dersloot, 2014).

All the different maintenance strategies are illustrated in Fig-
ure 5. Figure 6 illustrates the different ways of handling a
fault by the various types of maintenance as discussed in the
previous paragraph. Corrective maintenance involves ma-
jor repairs after a component fails. Preventive maintenance
includes regular minor maintenance and major repairs upon
failure, regardless of the component’s current condition. Con-
dition based maintenance monitors the component’s health in
real time, preventing failure but struggles to accurately pre-
dict the RUL of the component. Predictive maintenance pre-
vents failures and schedules maintenance at the most optimal
time for the component by predicting its RUL.

3.2. Prognostics and Health Management

The primary goal of Prognostics and Health Management (PHM)
is to develop methods and tools that facilitate the creation
of optimal maintenance strategies, specifically tailored to an
asset’s unique operating and degradation conditions, thereby
maximizing availability while minimizing costs. PHM em-
bodies a holistic approach to effective system health manage-
ment, covering fault detection, fault isolation, diagnosis of
fault origins and types, and the prediction of remaining use-
ful life (RUL).

However, PHM goes beyond merely predicting RUL. It en-
compasses the broader objective of making informed main-
tenance and logistical decisions that consider available re-
sources, operational context, and the economic implications
of different faults. PHM focuses on managing the health and
performance of complex systems by minimizing downtime,
reducing maintenance costs, and extending the operational
life of assets. This approach leverages real-time data, predic-
tive analytics, and resource availability to align maintenance
decisions with the system’s operational requirements. Ulti-
mately, PHM aims to reduce the operational impact of fail-
ures and optimize maintenance strategies, enhancing overall
efficiency and cost-effectiveness.

To achieve these objectives, the following PHM process is
usually admitted in the literature, illustrated on Figure 7.

The PHM process typically comprises several steps. It begins
with understanding the mechanisms of degradation and fail-
ure modes, using various inputs like raw sensor data or nor-
mative knowledge (Hu, Miao, Si, Pan, & Zio, 2022). These
inputs are processed to produce usable information. Then, the
development phase involves analyzing these inputs to charac-
terize the system, including fault detection, fault diagnosis,
and assessing the remaining useful life of degrading compo-
nents (fault prognosis). The final phase is decision-making,
where the output is an actionable information such as main-
tenance strategies or resource allocation (Elattar et al., 2016;
Compare, Bellani, & Zio, 2019).

3.2.1. Integration Phase

As shown in Figure 7, the integration phase plays a vital role
in the overall PHM process. During this phase, data is col-
lected and processed, which is essential for evaluating the
health and behavior of the system’s individual components.
Before any raw data is collected from the system, it is im-
portant to first identify the available physical sensors or per-
formance metrics (L. Tang, Saxena, Evans, Iyer, & Gold-
farb, 2023). These sensors should be strategically placed
throughout the system to ensure that comprehensive informa-
tion is collected. Following this, the process acquires data
from these sensors along with information about the system’s
health. It is crucial for engineers to carefully determine which
data is most relevant to capture. In the final step, the col-
lected data is transformed into meaningful information that
can quickly indicate whether an asset is operating abnormally.
This involves identifying, selecting, and refining the key pre-
dictive features from the acquired data. Expert knowledge
can be particularly beneficial in this phase, providing valuable
insights that complement machine learning efforts by lever-
aging a deep understanding of indicators related to system’s
health (Cathignol et al., 2024).

3.2.2. Development Phase

The development phase is the main focus of our study and
will be explored in detail through applications in Section 5.
It aims to detect and diagnose faults within an asset, and as-
sess its overall health state. This involves identifying the type
of fault, determining its severity, and estimating the time re-
maining until the asset fails. Each task — fault detection, di-
agnosis, and prognosis — presents unique challenges. These
challenges provide key insights for integrating knowledge-
based techniques, which we will discuss later.

Fault detection involves identifying deviations from a sys-
tem’s expected behavior, with the primary goal of initiating
a maintenance intervention upon detecting a fault to prevent
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Maintenance

Corrective
Maintenance

Preventive
Maintenance

Condition-based
Maintenance

Predictive
Maintenance

Intervention on
Failure

Periodic Intervention Predictive
Intervention

Forward-Improving
Intervention

Prognostics and
Health Management

Figure 5. Different types of maintenance strategies and their characteristics, with the place of Prognostics and Health Manage-
ment in this framework.

its potential consequences and enhance system availability
(Miljkovic, 2011; Abid, Khan, & Iqbal, 2021). Depending
on the availability and quality of data, various approaches
can be employed to achieve effective fault detection. Rule-
based approaches, for example, often involve setting prede-
fined thresholds for individual sensor measurements or de-
rived features, triggering alerts when these thresholds are ex-
ceeded. These thresholds are typically established based on
historical data, expert knowledge, or a combination of both.
When a sensor reading crosses its threshold, it signals that the
system is deviating from its normal operational state, prompt-
ing a maintenance action to prevent further degradation. In
more advanced scenarios, data-driven and machine learning
techniques may be employed, allowing for more sophisticated
analysis that can account for complex interactions between
multiple parameters and provide more accurate fault detec-
tion in systems with diverse operational conditions (Michau
& Fink, 2021; Hsu, Frusque, & Fink, 2023).

Fault diagnostics is the process of systematically identifying
and analyzing a detected fault within a system. It involves
three key steps:

1. Fault Isolation: This step focuses on determining the
specific component or subsystem within the larger sys-
tem where the fault has occurred. By narrowing down
the location of the fault, the diagnostic process becomes
more targeted and effective.

2. Identification of the Fault’s Origin: Once the fault is
isolated, the next step is to identify the root cause of

the fault. This involves understanding what triggered the
anomaly, whether it’s due to wear and tear, external envi-
ronmental factors, operational errors, or other underlying
issues.

3. Identification of the Specific Fault Type: The final step
is to classify the fault based on its characteristics, deter-
mining the exact nature of the issue. This classification
helps in deciding the appropriate corrective actions and
ensuring that similar faults can be prevented in the future.

Together, these tasks form the comprehensive process of fault
diagnostics, enabling precise and informed decisions for main-
tenance and system management. After the fault is diagnosed,
a critical decision must be made regarding the appropriate
corrective action. This decision involves evaluating the sever-
ity of the fault, the impact on system performance, and the
available maintenance resources. Depending on the diagno-
sis, the action might range from immediate repairs or compo-
nent replacements to scheduling maintenance at a later, less
disruptive time. The decision-making process also considers
the potential risks of continuing operation versus the benefits
of addressing the fault promptly, aiming to minimize down-
time, reduce costs, and ensure the safety and reliability of
the system (Leonhardt & Ayoubi, 1997). In practical applica-
tions, this step often involves uncertainty during data process-
ing. This uncertainty can arise from imprecise measurements
of from the incomplete information they provide (J. Lee et al.,
2014). Such challenges add some complexity to the process
of finding the sources of the fault and its type.

Fault prognostics involve assessing the remaining time be-
fore a component fails (i.e., looses its function). The goal is to
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Figure 6. Illustrative comparison of typical timelines using the different types of maintenance strategies. Figure adapted from
(Fink et al., 2020).

anticipate and schedule maintenance based on accurate pre-
dictions of the component’s RUL (Medjaher, Tobon-Mejia,
& Zerhouni, 2012). Once detection and diagnosis are estab-
lished, prognostics introduce its own set of challenges that
add complexity to the process. Indeed, factors such as en-
vironmental changes, usage patterns, and the inherent nature
of the components themselves can influence the trajectory of
degradation state evolution (Nejjar, Geissmann, Zhao, Taal,
& Fink, 2024). To evaluate the performance of a prognos-
tics approach, (Saxena, Celaya, Saha, Saha, & Goebel, 2021)
presents several metrics, including algorithm and cost-benefit
performance, which help in selecting the most suitable meth-
ods.

Each of these tasks are illustrated in the following Figure 8.
In short terms, fault detection is an anomaly detection or bi-
nary classification problem, distinguishing between normal
and degraded states; fault diagnostics assesses the fault char-
acteristics and severity level, and fault prognosis focuses on
estimating the RUL of the asset.

3.2.3. Decision Phase

After obtaining diagnostics and prognostics output from the
development phase, the core objective of the PHM decision
phase is to support system maintenance. This phase is divided
into two main sub-steps: Advisory generation and Health
management. Advisory generation involves interpreting the
results of diagnostics and prognostics to formulate specific
recommendations. These recommendations are developed based
on the analysis of the system’s current state and predictions
about its future evolution. They aim to guide maintenance
teams or management systems in making informed decisions.

For instance, if a component shows signs of imminent fail-
ure, the system might recommend specific preventive main-
tenance, or if a trend indicates future performance decline,
operational adjustments may be suggested. The key to this
step is providing advice that is not only accurate but also di-
rectly applicable and tailored to the specific conditions of the
system in question. In this context, using PHM information
to optimize maintenance workflows is crucial, especially as
maintenance tasks become increasingly integrated with sys-
tem operations, demanding comprehensive approaches that
optimize both maintenance and operational performance si-
multaneously (Hu et al., 2022). The second sub-step, health
management, turns the recommendations into actions. This
involves planning and carrying out the necessary corrective
measures to keep the system healthy or bring it back to op-
timal performance. It requires careful coordination of re-
sources, including spare parts and personnel, and executing
the interventions as planned. After these actions are taken,
ongoing monitoring is crucial to assess their effectiveness
and make adjustments as needed. By using structured ap-
proaches like multi-criteria optimization models, decisions
can be made more effectively, balancing important factors
such as cost, reliability, and resource availability (Ref: Re-
view of Machine Learning Approaches for Diagnostics and
Prognostics of Industrial Systems Using Industrial Open Source
Data). This continuous loop of action, monitoring, and ad-
justment helps keep the system running smoothly and con-
stantly improves health management strategies.

3.3. PHM Methods

In literature, PHM methods are primarily categorized into

8



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Integration phase

Acquisition Processing

Development phase

Fault
detection

Fault
prognostic

Fault
diagnostic

Decision phase

Health management

Data
Knowledge

Maintenance strategies
Ressources allocation
Mission planning
Management strategies

PHM Operational
Model

PHM Functional
Model

Sensors
Involves physical sensors and any "soft"
system performance variables available

within the system

Data
Acquisition

Data
Processing

State
detection

Health
Assessment

Prognostic
Assessment

Advisory
Generation

Health
Management

Collect the sensor data and health state
information from the system internal

monitors, system data bus or data recorder

Processes and transforms the sensor data
and health state information collected by the

data acquisition part

Evaluates equipment and state conditions
against normal operating profiles and

generate normal or abnormal indicators

Provides information to determine the
current state of health of the system

Provides futures states of health,
performance life remaining, or useful

remaining life indicators

Provides actionable information to
operational and maintenance personnel or

external system

Uses the information generated in the
advisory generation state to institute actions

to return the system to a healthy state

Functional
Block Description

Figure 7. Prognostics and Health Management process from the data/knowledge integration to the decision-making.

Fault Detection

Fault Diagnostic

Fault Prognostic

normal

degraded

fault type 1

current 
time

failure 
time

fault type 2

fault type 3

normal

Figure 8. Overview of Prognostics and Health Management
tasks: fault detection, fault diagnosis and fault prognosis.

three distinct approaches: physics-based, data-driven, and hy-
brid approaches mixing data- and model-based approaches
(Zio, 2022). Notably, the prominence of data-driven methods
has been on the rise (Fink et al., 2020). However, these meth-
ods are not without their limitations, especially when data is
insufficient. An invaluable alternative in such scenarios is
the incorporation of expert knowledge. The following para-
graphs explain how each type of method (model-based, data-

based and knowledge-based) addresses the three previously
discussed tasks of the development phase.

Model-based. To deal with fault detection, these approaches
simulate the system’s behavior through a detailed understand-
ing of its underlying physical laws. By constructing a math-
ematical model that represents the system, this method an-
ticipates the expected operation and, when real-time data di-
verges from this model, a potential fault may be indicated.
Since the system and the degradation processes are modeled,
when a deviation from the overall behaviors is detected, it
is often simpler than for its two counterparts to locate the
fault and therefore to identify its cause. Generally, techniques
such as sensitivity analysis or failure mode analysis are used
to achieve fault diagnosis (Gao, Cecati, & Ding, 2015). For
prognosis, we need degradation models to predict the sys-
tem’s future behavior, thereby estimating the RUL of its com-
ponents. Such models are crucial for determining when a sys-
tem component reaches its failure threshold.

Data-driven. Currently one of the most widespread approaches
in literature, data-driven approaches leverage the data retrieved
from sensors to recognize anomalous patterns. The effective-
ness of this method relies on the ability to detect irregularities
within the data that deviate from established norms. There
is also an increasing necessity to detect anomalous condi-
tions when the available data represents normal operation, for
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which methods capable of reproducing complex data distri-
butions can be beneficial. Then, traditional data-driven fault
diagnostic systems generally require measurements where the
actual states of degradation are known. Based on this, a data
analysis can be performed using ML methods. However, un-
supervised learning struggles with long-term dependencies,
and supervised learning methods often require a significant
number of specific data points that are difficult to obtain for
diagnostics. The effectiveness of data-driven approaches in
prognostics relies on the availability of extensive data (Khan
& Yairi, 2018). It requires comprehensive run-to-failure data
and detailed information about the degradation process. A
broad variety of machine learning techniques, including Con-
volutional Neural Networks, Support Vector Machines (SVM),
and Denoising Auto Encoders, are employed to estimate the
RUL (Si, Wang, Hu, & Zhou, 2011).

Knowledge-based. Considering fault detection, these meth-
ods rely on predefined rules that describe when problems are
likely to occur based on measurements. Information is col-
lected from sensors and processed using expert knowledge or
directly collected from experts or normative knowledge. It
is then coupled with an inference engine, to determine the
presence of anomalies. The transition from fault detection to
fault diagnosis is quite straightforward for purely knowledge-
based methods, as the predefined rule set based on knowledge
allows for the inference of the cause of the fault (Isermann,
1997). In practice, this type of method is often combined to
increase the certainty of the result (Gharib & Kovács, 2023).
In the field of prognostics, knowledge-based approaches are
generally less widespread in literature but look particularly
interesting in industry. These approaches, once successful in
extracting degradation laws, often attempt to formulate these
laws into rules for estimating RUL. However, this rule-based
formulation is not always effective. Although it can pro-
vide a structured approach, the complexity and variability of
real-world degradation processes can make such rule-based
systems less effective than more dynamic methods such as
physics-based models or data-driven techniques.

Figure 9 illustrates some of the techniques used by each method
to perform PHM tasks. This list is not exhaustive and some
of the methods classified in one branch can be used in another
depending on the application.

In certain complex systems, the utilization of a single method
may not be sufficient. In such scenarios, a combination of
methods is often employed to enhance accuracy and reliabil-
ity. Here, we focus on knowledge-based methods and their
integration with other approaches, predominantly data-driven
methods. The following section discusses why incorporating
knowledge-based techniques has many advantages.

PHM techniques

Data-driven  
approach

Knowledge-based 
approach

Model-based 
approach

• PCA 
• Clustering 
• Kernel density estimation 
• Decision trees / Random forest 
• Support vector machine 
• Neural network 
• ...

• Propositional logic 
• Fuzzy logic 
• Dempster-Shafer 
• Bayesian networks 
• ...

• Sensitivity analysis 
• Degradation models 
• Reliability models 
• Physical models 
• ...

Figure 9. Some of the model-based, data-driven and
knowledge-based techniques used in PHM.

4. EXPERT AND KNOWLEDGE-BASED SYSTEMS

This section has for purpose to provide the reader with a
clear and comprehensive understanding of expert systems,
from their construction to their architecture. We begin by dis-
cussing the key actors involved in the project and the design
process of the system, providing the reader with a practical
understanding of how to implement an expert system. We
then delve into the modeling of the system, starting with an
exploration of the different types of knowledge representa-
tions, each with its unique strengths and limitations. Fol-
lowing this, we examine how these systems handle uncer-
tainty, focusing on the mathematical tools that make expert
systems so intriguing. Indeed, the formalization of uncer-
tainty through clear and understandable relationships between
facts allows users to comprehend the underlying mechanisms
and to tailor them as needed. Lastly, we describe the two
main types of inference processes in an expert system, which
facilitate the journey from input to output.

4.1. Expert Systems Architecture

There are three crucial actors contributing in the develop-
ment of an expert system. The Expert, who holds domain-
specific knowledge; the User, the end beneficiary, ensuring
the user-friendliness of the system; and the Knowledge En-
gineer, responsible for the design and implementation of the
system, ensuring its fidelity and efficacy (GUIDA & TASSO,
1989a). Frequent interactions between the three actors are of-
ten important to ensure the quality and efficiency of the sys-
tem (Davis, 1979). Indeed, the process of creation involves
many steps interconnected as represented in the diagram on
Figure 10.

1. The first step is defining the problem and its boundary.
This involves determining the necessary knowledge to
understand the problem. However, it is common to ad-
just this definition as development progresses, because
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Figure 10. Design process of an expert system: Knowledge definition → Knowledge collection → Knowledge modeling →
Inference integration → System finalization.

the problem’s scope may be broader or different than ini-
tially thought (Steels, 1990).

2. Knowledge elicitation, also referred to as knowledge col-
lection, is a task extensively explored in academic lit-
erature (Leu & Abbass, 2016; Gnanamalar, Janani, &
Devi, 2013; Song, Jiang, & Li, 2015; Nakakoji & Fis-
cher, 1995; Boose, 1985; Forsythe & Buchanan, 1989).
This process involves extracting expertise from those with
significant experience in their field. Either from experts
who can offer insights based on their experience, or from
established standards that gather a wide range of theoret-
ically and practically acknowledged information. This
knowledge is then applied either directly or used to in-
terpret the results from sensor data, depending on the
situation. During this phase, some challenges need to
be taken into account (Musen, 1993). Firstly, the core of
this expertise is often challenging to state in a logical and
coherent way, as some knowledge may be part of com-
mon sense and obvious to the expert, who won’t express
it explicitly. Secondly, experts, with their profound un-
derstanding, tend to possess a ’know-how’ of performing
tasks rather than a straightforward ’know-what’, which
adds complexity to the task of conveying this knowledge
to a system. Finally, the mental models held by experts
are shaped by various social processes and biases. This
influence necessitates careful consideration in deciding
whether or how to incorporate these models into a sys-
tem, as these factors can significantly affect the repre-
sentation of knowledge. According to (Moore & Miles,
1991), the most effective way to create a comprehensive
knowledge base is to involve multiple experts who col-
lectively cover the entire spectrum of the subject area in
order to attenuate the bias.

3. The knowledge modeling phase is typically the most tech-
nical aspect of the process. Once all the knowledge has
been collected from the previous step, it involves orga-
nizing it into a knowledge base. This base serves as
a central archive for all the information and expertise
provided by the experts (Lucas, 1991). What’s more
important than the knowledge itself for the operability
of the expert system is how this knowledge is modeled
(Muhammad, Garba, Oye, & Wajiga, 2019). This aspect
has been extensively reviewed in literature, and some of
the main mathematical tools used for this will be detailed
later.

4. The inference engine is the algorithmic heart of the sys-
tem, its integration to the system is the last step required
to have an operational system (Maria Malek, 2008). It
uses the data from the knowledge base to produce ap-
propriate responses to user queries (this part will be ex-
panded later).

5. The final step in the expert system development is its
industrialization, focusing on making the system user-
friendly and comprehensible (GUIDA & TASSO, 1989b).
In one hand, the user interface, serving as the interaction
platform between the user and the system, is crucial for
ease of use. This is where users input queries and receive
responses. In the other hand, to ensure understandability,
an explanation module is often included. This module
justifies or explains the system’s deductions, providing
traceability and transparency to the reasoning process.
This feature helps users grasp the underlying logic, and
trust the system’s capabilities.

A high-level overview of an expert system with the compo-
nents discussed previously is illustrated as a diagram in Fig-
ure 11.

Figure 11. Typical architecture of an expert system. The user
is the person who operates the system - The interface is the
interactive part where the user submits their queries - The ed-
itor allows for editing the knowledge base - The knowledge
base is where facts are stored and modeled appropriately -
The inference engine is the algorithmic part of the system that
transforms the facts from the knowledge base into a response
to the user’s request - The explanation component is the mod-
ule that explains the system’s reasoning in responding to the
user’s request.

4.2. Knowledge Representation

KBSs can model their knowledge in various ways, whether
through production rules, semantic nets, or frames to obtain
rule-based system (RBS), semantic-based system or frame-
based system. This section aims to define and describe those
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three kinds of systems.

4.2.1. Rule-Based Systems

A RBS is the simplest form of artificial intelligence. It is a
system that makes decisions or generates outcomes based on
a predefined set of rules. It is also, by far, the most commonly
used knowledge representation in expert systems (Grosan &
Abraham, 2011). These rules are typically formulated follow-
ing an ”if-then” logic, where the ”if” part defines a condition
to be met (called the premise), and the ”then” part dictates
the action to be taken or the conclusion to be drawn if the
condition is satisfied (called the conclusion). The reader can
look at (Ligêza, 2006) for further literature about the logical
foundations behind production rules. Furthermore, in 2019,
(Masri et al., 2019) conducted a review of the most popular
RBS found in literature.

4.2.2. Semantic-based and Frame-based systems

Semantic nets (or ontologies) have consistently held a sig-
nificant role in expert systems. They belong to the realm
of knowledge representation, offering a visual and descrip-
tive approach to model knowledge through nodes and arrows.
Each node stands for an entity, while each arrow represents
the relationship between two entities. Beyond their clear vi-
sual interpretation, the advantage that semantic networks hold
over more rudimentary logical representations, like produc-
tion rules, is their ability to articulate a multitude of relation-
ships between entities, such as ”is a”, ”has a”, or ”part of”
(Fritz Lehmann, 1992; John Sowa, 1992). Figure 12 repre-
sents an example of semantic net about a fault detection prob-
lem in a railway track illustrating the vast range of relations
that can be represented.

By adding a layer of complexity to the semantic net, we can
transition to a frame-based system. In this system, what was
once a node in the net becomes a frame, with each frame
possessing attributes that define its relationships to other ele-
ments. While this approach may slightly complexify the con-
ceptual view, it introduces a richer variety of relationships,
such as ’Instance-Of’ and ’Superclass’ links. These links en-
rich the taxonomy, allowing different levels of abstraction.
For a more detailed exploration of this concept, readers may
consult (Lucas, 1991; Fikes & Kehler, 1985).

4.3. Handling Uncertainty

After having examined the various types of knowledge rep-
resentations in expert systems, we must now address an in-
herent concept of our world: uncertainty. Specifically, how
can we incorporate uncertainty into these representations? In
this section, we explore various tools designed to handle un-
certainty. In expert systems, uncertainty is commonly ad-
dressed using the concept of belief. In belief rule-based sys-
tems, belief is a broader notion that assigns a degree of be-
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is performed by

Maintenance
crew

requires

Corrosion
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Figure 12. An example of a semantic network about a fault
detection problem in railway tracks.

lief to any defined element. This theory can then be refined
with additional concepts to define more precisely the type
of uncertainty being considered (Jian-Bo Yang, Jun Liu, Jin
Wang, How-Sing Sii, & Hong-Wei Wang, 2006; Mahesar,
Dimitrova, Magee, & Cohn, 2017). The first type of refine-
ment we address here lead to consider uncertainty as impreci-
sion. In expert system, we often encounter terms with vague
or inexact definitions and the main tool to tackle this is fuzzy
logic which provides a framework to handle such ambigu-
ities. A second aspect of uncertainty treated is probabilistic
uncertainty, which is first addressed by using Probability The-
ory, it enables us to deal with scenarios where terms or events
may or may not be. More specifically, it is the application
of Bayes’ Rule in Bayesian Networks that is widely used in
expert system applications. Then, we explore the Dempster-
Shafer theory, which offers a modification to the first axiom
of Probability Theory, allowing greater flexibility in handling
uncertainty.
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4.3.1. Belief Rule-Based Systems

Belief Rule-Based (BRB) systems refers to RBS that assign
a belief degree to facts and/or rules. The belief degree can
be considered as a degree of truthfulness between 0 and 1
to assert how confident we are in a fact. These systems are
as transparent as their deterministic counterparts but have the
advantage of handling uncertainty in a general setting.

Let us consider a set of facts F = {Fi} and a set of rules
R = {Rj}. Each fact Fi and rule Rj is associated with a
degree of belief bf (Fi) and br(Rj) respectively. The belief
degrees can be defined as

bf : F → [0, 1] (1)
br : R → [0, 1] (2)

where bf (Fi) represents the confidence level (belief degree)
regarding the truthfulness of fact Fi. br(Rj) symbolizes the
trust that if the premises of rule Rj are validated, then the
consequence will follow.

The determination of the belief degrees can either come from
data analysis or expert experience. Also, to determine the
degree of belief necessary to assert that the facts are validated,
and to activate inference, weights are assigned to each rule.
For a deeper dive into this topic, the reader may refer to the
article by (Zhou et al., 2021).

As we can see, this theory is very comprehensive, allowing
us to develop theoretical frameworks that clarify certain as-
pects while fitting within its vast field of application. Fuzzy
logic is generally regarded as a method for treating beliefs as
degrees of truth in scenarios where information is not clearly
defined or is ambiguous. On the other hand, Dempster-Shafer
theory is seen as representing belief as a measure of confi-
dence derived from evidence, capable of accommodating un-
certainty and partial information (Jian-Bo Yang et al., 2006;
Cao, Zhou, Hu, He, & Tang, 2021).

4.3.2. Fuzzy logic

Fuzzy logic is a branch of mathematics that allows reason-
ing with imprecise terms, in contrast to classical logic where
terms are either true or false (Zadeh, 1999). In fuzzy logic,
an object can be both true and false simultaneously, but with
different degrees of membership (Trillas & Eciolaza, 2015;
Dubois & Prade, 1996). Consider the fuzzy descriptors ’high’
and ’low’ as an example. One might describe a value as being
’very high’ or ’somewhat low’. Fuzzy logic provides a means
to capture and express numerically these nuances.

Implementing the fuzzy logic technique in real applications,
specifically in RBS, involves the following steps (Bai, Zhuang,
& Wang, 2006) as pictured in Figure 13:

1. Fuzzification: This step involves transforming classical
data into fuzzy data. For example, instead of stating un-

equivocally that something is ”high”, we quantify its de-
gree of intensity on a scale from 0 to 1 (how high is it
in a scale from 0 to 1?). In this stage, we utilize a mem-
bership function that maps a value or indication of a par-
ticular attribute to a number between 0 and 1 for fuzzy
sets of the premises. Consider the scenario where we
have a general rule linking temperature (A) to air condi-
tioning settings (B). This global rule can be broken down
into two more specific rules based on fuzzy logic: ”If the
temperature is warm (A1), then set the air conditioning to
high (B1),” and ”If the temperature is cool (A2), then set
the air conditioning to low (B2).” The actual temperature
provided by the user determines the extent to which the
conditions of A1 and A2 are met, reflected by the values
of their respective membership functions.

2. Fuzzy Inference Process: This step combines the fuzzy
sets and membership functions from the premises to de-
rive the membership functions for the conclusions based
on a given fuzzy rule. The degree of membership in
the premises facts A1 and A2 determines the degree of
activation for each rule. This activation level then dic-
tates the value of the membership functions for the con-
clusions B1 and B2 . Basically, the more a tempera-
ture aligns with either the ”warm” or ”cool” fuzzy set,
the more it activates the corresponding rule, leading to a
stronger influence on the respective air conditioning set-
ting.

3. Defuzzification: The outputs obtained from the com-
bination of inputs remains fuzzy entities (B1 and B2).
Defuzzification is the process of converting these fuzzy
values back into one crisp, clear value. Different meth-
ods exists to do it (centroı̈d, bisector, mean of maximum,
etc.) (Roychowdhury & Pedrycz, 2001; Leekwijck &
Kerre, 1999). The defuzzification process uses the values
of the membership functions of B1 and B2 to determine
a unified output. This involves finding a balance between
B1 and B2, based on their respective membership values.

4.3.3. Bayesian networks

A Bayesian Network (BN) is a mathematical tool that bridges
graph and probability theory, offering a valuable framework
for representing probabilistic knowledge and conducting in-
ference in intelligent systems. It consists of two components:
a qualitative part and a quantitative part (Guinhouya, 2023).

The qualitative component is a directed acyclic graph that
represents the dependencies between variables. An arrow
from Xi to Xj indicates a probabilistic dependency between
these variables; specifically, knowledge of the value of Xi in-
fluences the potential value of Xj . Each vertex in the graph
is called a node, with each node corresponding to a specific
variable. The connections between these nodes are referred
to as edges or arcs.
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Figure 13. Typical application of fuzzy logic in a knowledge-
based system.

The quantitative component of a Bayesian Network comprises
the Conditional Probability Table (CPT). Each node Xi has
its associated CPT, which details the strength of dependency
between Xi and every node connected to Xi. The entries of
the CPT are determined using Bayes’ rule:

P (Xi|Xj) =
P (Xj |Xi)↑ P (Xi)

P (Xj)
(3)

• P (Xi) and P (Xj) represent the individual probabilities
of observing Xi and Xj , respectively.

• P (Xi|Xj) denotes the conditional probability of observ-
ing Xi given Xj .

• P (Xj |Xi) signifies the conditional probability of observ-
ing Xj given Xi.

The data required to construct BNs can be derived from datasets,
expert knowledge, or a combination of both. Once set up,
BNs enable two primary types of inferences: predictive infer-
ence (or forward chaining), which determines effects based
on their causes; and diagnostic inference (or backward chain-
ing), which infers causes from observed effects (Pearl, 1988).
For a deeper understanding of Bayesian networks, readers can
refer to (Darwiche, 2008; S. H. Chen & Pollino, 2012; Kit-
son, Constantinou, Guo, Liu, & Chobtham, 2022).

4.3.4. Dempster-Shafer Theory

According to probability theory, knowing nothing about two
distinct sets or being certain that these sets have equal proba-
bilities is mathematically equivalent; both scenarios attribute
an equal probability of 0.5 to each set. The Dempster-Shafer
Theory (DST), however, provides a richer framework to model
uncertainty, allowing for a distinction between genuine igno-
rance and equal likelihood (Gordon & Shortliffe, 1984). The
key elements of DST are the following (Yager, 1987):

1. Frame of Discernment: This is a finite set, !, consist-
ing of mutually exclusive propositions.

2. Mass Function: A function m : 2! → [0, 1], assign-
ing a degree of belief (or ”mass”) to each subset of !
verifying two conditions :

• m(↓) = 0

•
∑

A→! m(A) = 1

It is important to note that the mass function allocates
belief specifically to the given subset, not to its parts.

3. Belief and Plausibility: These two functions provide
quantification of uncertainty:

• Belief: It measures the total belief assigned to a set
A (a fact of our knowledge base) with the informa-
tion we have at the moment:

Bel(A) =
∑

B→A

m(B)

• Plausibility: It measures the maximum possible be-
lief for a set by considering eventual further infor-
mation:

Pl(A) =
∑

B:B↑A ↓=↔

m(B)

It follows naturally that Bel(A) ↔ Pl(A).

The DST is an extension of classical probability theory that
offers a more nuanced way to represent information. For in-
stance, rather than merely stating a probability, one might ex-
press: ”I have a 65% belief that it will rain, but it is 100%
plausible based on the available evidence”. By using this
framework in a rule-based system, one can effectively man-
age uncertainty, fuse information from diverse sources and
make suitable decisions when faced with conflicting or in-
complete data (Zhou et al., 2021). For example, the Dempster-
Shafer combination rule, a key element of DST often applied
in practice (as we will discuss in 5), enables us to calculate
the combined belief from multiple sources of belief. This
is achieved by considering the intersections of evidence sets
from the original belief functions (Yager, 1987; Sentz & Fer-
son, 2002).

4.4. Inference Engine

Let us consider a knowledge base that consists of either pro-
duction rules, semantic nets, or frames. This knowledge base
is filled with well-defined information, uncertain or not. The
element that combines this information to provide answers
to user queries is called the inference engine. As previously
mentioned, the inference engine scans the knowledge base to
provide the response queried by the user. There are two main
methods to accomplish this, forward chaining and backward
chaining. To illustrate these two procedures, let us consider a
RBS containing the set of rules {R1, R2, R3, R4} involving
the set of facts {A, B, C, D, E, F, G}, defined as follows:
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• R1 : IF A AND B, THEN E
• R2 : IF A AND C, THEN F
• R3 : IF C, THEN G
• R4 : IF D, THEN C

Backward chaining is an inference method that starts with the
desired goal. The system then searches its knowledge base
for rules that conclude with the desired goal. The premises of
these rules then become sub-goals for which the system will
again look for rules with these sub-goals as conclusions. By
continuing in this manner, the system can trace back to the
initial premises that indirectly imply the final goal. Suppose
we want to determine which set of facts leads to the conclu-
sion F. Upon inspecting the knowledge base, the inference
engine finds that conclusion F is derived from rule R2, which
has conditions A and C. Thus, A and C become new conclu-
sions to achieve. The engine further observes that A is not
the conclusion of any rule, but C is derived from rule R4 with
D as the condition. Ultimately, to arrive at conclusion F, the
combination of facts A and D or A and C is required (Jose,
2011; Chubb, 1984).

Forward chaining operates in the opposite direction to back-
ward chaining: it starts from the initial premises provided and
explores the rules to determine possible conclusions. Let us
consider the case where the user wants to know what con-
clusions can be derived from the fact D. So we start with a
virtual set where only the fact D is present, the system then
applies rule R4 to infer fact C, followed by rule R3 to infer
fact G. Then from C and G alone, no other facts can be de-
duced using the set of rules. Therefore, the answer is that
from the fact D, conclusions C and G can be drawn (Jose,
2011; Chubb, 1984).

It is evident from these two examples that forward chaining
and backward chaining serve different purposes. Forward
chaining is especially useful in the event of a system fault, and
one seeks to determine the appropriate maintenance actions.
Conversely, backward chaining is relevant when an anomaly
or failure is observed, as it allows tracing back to the root
cause of the disruption. Moreover, forward chaining is of-
ten more computationally demanding. Designed as a search
algorithm, it does not have a predefined optimal method to
reach the result and may require exhaustive exploration of
the knowledge base. On the other hand, backward chaining,
being goal-driven, breaks down the problem starting from
the end goal and avoids unnecessary computations (Al-Ajlan,
2015). Although the given example deals with inference in
rule-based systems, the process in semantic-based or frame-
based systems is similar in its aim to connect facts. How-
ever, the main difference lies in the knowledge representa-
tion. In these systems, the relationships between facts are not
limited to the ”IF, THEN” conditionals typical of production
rules. They are more complex and varied, and may require
the user to explicitly specify the link sought or that the system

enriches the information with existing relationships between
facts.

5. REVIEW

This section introduces the key differences between data-driven,
model-based, and knowledge-based systems, and highlights
the growing importance of merging these approaches. We
will emphasize how KBSs offer significant advantages for im-
plementing PHM processes, either on their own or more often
in combination with data-driven or model-based approaches.
Following this, the main objective of this section is to re-
view various research articles that discuss the application of
knowledge-based techniques in PHM, providing insights into
their effectiveness and practical use in different industrial set-
tings.

5.1. Knowledge-based benefits in PHM

Data-driven approaches are prominent in the literature, mainly
because of their ability to exploit historical data for predictive
modeling and decision-making, and the advent of new tech-
nologies (ML, big data) which enables us to access and ana-
lyze huge amounts of data. This method, while advantageous
for its ability to identify patterns and insights from vast data
sets, is not without its drawbacks. In signal analysis, for ex-
ample, frequent inaccuracies occur in data processing when
signals are long, non-linear or non-stationary. Also, estima-
tion accuracy depends on the quality and quantity of available
data. These problems can hamper the effectiveness of the ap-
proach, particularly in situations where labeled data (failure
data) are scarce and measurements are unevenly distributed
between components (Y. Wang et al., 2024; Gay et al., 2021).
On the other hand, model-based methods in PHM are known
for their reliability and accuracy. They rely on a thorough
understanding of the system’s physical mechanisms and fail-
ure processes. However, these methods come with their own
set of difficulties, not least the complexity of model develop-
ment, which can be time-consuming and require considerable
domain expertise. In addition, they often lack flexibility and
struggle to adapt to changes in system dynamics that were
not initially taken into account in the model (Soualhi, Lam-
raoui, Elyousfi, & Razik, 2022). Hybrid approaches merging
data-driven approach and model-based method, seem ideal
in theory. They aim to capitalize on the strengths of both
approaches, potentially offering more comprehensive solu-
tions. However, these hybrid systems introduce added com-
plexity, making modeling, debugging and data synchroniza-
tion more difficult. It can also be complex to balance the
contributions of data- and model-based components. In this
paradigm, KBSs are emerging as an alternative that addresses
some of the limitations of data-driven and model-based meth-
ods (Peng, Xia, Li, Song, & Hao, 2022). KBSs make use of
domain expertise, which is particularly valuable in scenarios
where data is scarce but expert knowledge is abundant (Ruan,
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Wang, Yan, & Gühmann, 2023). They facilitate decision-
making by providing interpretable information, and prove ro-
bust in the face of problems such as noisy or incomplete data
(Sarazin et al., 2021). For small and medium-sized enter-
prises, which are often faced with data accessibility prob-
lems, incorporating expert knowledge into the PHM process
offers solutions that improve the system’s ability to explain
and adapt (Omri, Masry, Mairot, Giampiccolo, & Zerhouni,
2021). KBSs also simplify interpretation through, for exam-
ple, the use of linguistic variables in fuzzy rules (Ishibashi
& Lucio Nascimento Junior, 2013). It’s also worth noting
that KBSs are generally much more interactive, favoring user-
software interaction and system readability (Biagetti, 2004).
However, KBSs alone are not without their drawbacks. They
can be limited by the extent and currency of the included ex-
pert knowledge, and may struggle with processing large vol-
umes of data or adapting to new, unforeseen scenarios. Con-
sequently, the optimal solution often lies in a combination
of these approaches (Radtke & Bock, 2022). It aims to of-
fer a balanced, robust, and flexible PHM system, capable of
addressing the diverse challenges faced in various industrial
contexts.

The advantages and disadvantages of the main knowledge-
based techniques when applied to PHM tasks are informa-
tively presented in Table 4. The following section will high-
light and further develop these points through the described
applications.

5.2. Methodology

The review focuses on the incorporation of knowledge-based
techniques into the PHM development process, structured around
three key stages: fault detection, fault diagnosis and fault
prognosis. For each of these stages, we explore up to four dis-
tinct methodologies: deterministic systems, where behavior
is predicted without uncertainty usually through propositional
logic; fuzzy logic, which handles imprecision in data and
knowledge; the Dempster-Shafer theory, focusing on evidence-
based reasoning and belief functions; and Bayesian networks,
used for probabilistic inference and decision-making under
uncertainty. For each relevant article under each subsection,
we start with data collection, followed by data processing.
Then, we discuss how knowledge is modeled in the study and
conclude by examining the inference methods leading to the
necessary results. The taxonomy in Figure 14 outlines the
structure of the review and compiles the articles discussed
therein.

5.3. Knowledge-based techniques in Fault detection

Table 5 categorizes articles related to fault detection.

5.3.1. Deterministic

A fault detection tool using a variety of subsets of determinis-
tic expert rules was utilized in (Schein et al., 2006) to predict
faults in air handling units. These rules are derived from the
physical principles of mass and energy conservation. The ini-
tial step involves determining the mode of operation using
control signals. Subsequently, this information is applied to
identify the appropriate subset of rules which ultimately as-
certains the presence of a fault. While the rules themselves
are fixed, the values within them can be modified, thereby
rendering the system adaptable. The study emphasizes the
importance of properly setting rule thresholds to balance ef-
fective fault detection and minimizing false alarms. This method
has been tested in both an emulation environment and in real-
world conditions.

(Heidari, 2017) presents an advanced approach for bearing
fault detection, combining a rule-based classifier ensemble
with a genetic algorithm for feature reduction. The method
starts with the collection of vibratory data, followed by fea-
ture reduction using genetic algorithms, leveraging expert knowl-
edge to identify the most relevant features. The generated
rules, based on expert understanding of bearing failure modes,
form the base classifiers. These classifiers are then combined
into an ensemble to optimize diversity for increased accuracy.
Their effectiveness is tested on a fault decision table (a dataset
containing observations on vibration and bearing conditions),
significantly improving the accuracy of fault detection.

Semantic networks or ontologies have also been applied to
fault detection. In the field of building energy systems, (T. Li
et al., 2022) first developed a comprehensive ontology on the
basis of existing prior knowledge. It involves developing an
ontology to represent this knowledge in a readable format and
enriching it with expert knowledge to establish semantic rules
for detecting various types of faults (operation problems, con-
trol issues, equipment malfunctions, and sensor failures). Fi-
nally, building data is collected and aligned with the ontology,
creating a knowledge and data graph used to verify the pres-
ence of a malfunction. The approach was successfully ap-
plied to an air conditioning system comprising 51 units, each
with unique characteristics, using 21,844 data series.

Another application is presented in (Azad & Gabbar, 2012),
the authors develop a semantic fault detection network for the
diagnosis and control of micro-grids. Azad and Gabbar uti-
lize a combination of data from intelligent electronic devices
and physical knowledge to assess risk and identify faults in
micro-grids. To achieve this, the failure modes of each vari-
able are studied, and the causes and risks are calculated using
a fault localization algorithm. In this context, the semantic
network acts as a tool for processing deviations, linking the
grid’s structure, behavior, operation, and associated equip-
ment variables. This methodology has enhanced the relia-
bility of micro-grids by providing automated fault detection.
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KBS in PHM Fault Detection

Fault Diagnostics

Fault Prognostics

Advisory Generation
Health Management

Deterministic: (Schein et al., 2006), (Azad & Gabbar, 2012),
(Heidari, 2017), (T. Li et al., 2022)

Fuzzy logic: (J. Chen et al., 2008), (Mendonça et al., 2009),
(Vagnoli et al., 2017), (J. Liu & Zio, 2018), (Qu et al., 2020)

Dempster-Shafer: (Oukhellou et al., 2010), (Ding et al., 2019),
(Ghosh et al., 2020), (Yaghoubi et al., 2022)

Deterministic: (Miguelanez et al., 2008), (Dou et al., 2012),
(Deng et al., 2017), (Cahyono & Kusuma, 2024)

Fuzzy logic: (Da Silva Vicente et al., 2001), (Skarlatos et al., 2004),
(K. Y. Chen et al., 2005), (Baban et al., 2019),

(Karakose & Yaman, 2020), (Cheng et al., 2022)

Dempster-Shafer: (M. Liu et al., 2016), (Hui et al., 2017)

Bayesian networks: (Lerner et al., 2000), (Yongli et al., 2006), (B. Li et al., 2013),
(Y. Zhao et al., 2013), (Galagedarage Don & Khan, 2019),

(Soltanali et al., 2021), (Q. Liu et al., 2023), (Reetz et al., 2024)

Deterministic: (Gerhardinger et al., 2023)

Fuzzy logic: (W. Q. Wang et al., 2004), (Satish & Sarma, 2005),
(B. Chen et al., 2013), (Soualhi et al., 2014), (Peng et al., 2022)

Dempster-Shafer: (Niu & Yang, 2009), (He et al., 2011), (H. Tang et al., 2016),
(Q. Liu et al., 2019), (Weddington et al., 2021)

Bayesian networks: (Ferreiro et al., 2012), (Dong et al., 2021),
(Gomes & Wolf, 2021)

(Slagle & Hamburger, 1985), (Gudes et al., 1990), (Cheung et al., 2005),
(Chemweno et al., 2016), (Hitzler et al., 2022),

(Santos et al., 2022) (L. Tang et al., 2023)

Figure 14. Taxonomy of the reviewed literature on Knowledge-based Systems (KBS) in Prognostics and Health Management
(PHM).
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Method Advantages Disadvantages
Deterministic

• Simple
• Reliable
• Interpretable

• Rigid
• No uncertainty handling
• Threshold-sensitive
• Data-dependent

Fuzzy Logic
• Handles uncertainty
• Adaptable
• Interpretable
• Integrates well

• Complexity
• Needs tuning
• Imprecise rules
• Computational cost

Bayesian Networks
• Handles uncertainty
• Causal modeling
• Integrates diverse data
• Temporal tracking

• Not suited for fault
detection

• Complex structure
• Data-intensive
• Expert-dependent
• Computationally

demanding

Dempster-Shafer
• Effective information

fusion
• Handles uncertainty
• Conflict resolution

• Complex
• Computationally intensive
• Needs accurate evidence

Table 4. Advantages and disadvantages of different expert systems methods.

5.3.2. Fuzzy Logic

In (Qu et al., 2020), a novel method for wind turbine fault de-
tection is proposed, using expanded linguistic terms in non-
singleton fuzzy logic. The process begins with gathering op-
erational data from wind turbines and transforming it into
fuzzy inputs to capture nuances in the data. The fuzzy infer-
ence system then employs linguistic terms and rules, which
are derived from prior knowledge and expert experience. These
terms are qualitative descriptors that represent the value of a
variables (”high”, ”medium”, ”low”. . . ). The system allows
for generating new terms from existing ones by using two ad-
jacent existing terms, allowing the system to define a more
granular spectrum of fault conditions. This approach allows
for the generation of new rules that incorporate both original
and expanded terms, leading to a more detailed and accurate
fault detection process. The system can differentiate between
multiple levels of fault severity, providing a more compre-
hensive understanding of the wind turbine’s condition. Fi-
nally, the fuzzy output sets are de-fuzzified into a crisp out-
put, which quantifies the severity of detected faults. This
method not only enhances the detection of various types of

faults but also provides a quantifiable measure of their sever-
ity, showcasing the effectiveness of integrating expanded lin-
guistic terms and non-singleton fuzzy logic in fault detection
systems.

(Mendonça et al., 2009) proposes a model-based architecture
for fault detection and isolation that combines fuzzy model-
ing and fuzzy decision-making. Firstly, data is collected from
an industrial valve simulator, then simulated in fuzzy models
to understand both normal and faulty operations. Fuzzy logic
is used here to manage the imprecision of the data, making the
model more realistic and uncertain, but more difficult to esti-
mate. A tree search algorithm is used to optimize the struc-
ture of the fuzzy model. Finally, the approach was applied to
a pneumatic servo-motor actuated industrial valve, success-
fully detecting and isolating 10 abrupt and incipient faults.
The presence of noise in the data increases the difficulty of
detecting and isolating faults, suggesting future research to
extend the FDI scheme to a larger number of faults.

Fuzzy systems have been introduced to address imprecision
and are known to sometimes lack accuracy in input-output
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Table 5. Summary of surveyed literature for fault detection.

Technique Article Title Author, Year Method Domain

Deterministic

A rule-based fault detection method for air
handling units

(Schein et al.,
2006) Knowledge Industrial

monitoring
Fault semantic network for micro grid di-
agnosis and control

(Azad & Gab-
bar, 2012)

Knowledge -
Data - Model

Energy sys-
tems

Fault Detection of Bearings Using a Rule-
based Classifier Ensemble and Genetic Al-
gorithm

(Heidari,
2017)

Knowledge -
Data

Mechanical
components

A semantic model-based fault detection
approach for building energy systems

(T. Li et al.,
2022)

Knowledge -
Model

Industrial
monitoring

Fuzzy Logic

Fault detection and diagnosis for railway
track circuits using neuro-fuzzy systems

(J. Chen et al.,
2008)

Knowledge -
Data

Industrial
monitoring

An architecture for fault detection and iso-
lation based on fuzzy methods

(Mendonça et
al., 2009)

Knowledge -
Model

Industrial
monitoring

A fuzzy-based Bayesian belief network ap-
proach for railway bridge condition moni-
toring and fault detection

(Vagnoli et
al., 2017)

Knowledge -
Model

Infrastructure
/ Construction

A scalable fuzzy support vector machine
for fault detection in transportation sys-
tems

(J. Liu & Zio,
2018)

Knowledge -
Data

Industrial
monitoring

Wind turbine fault detection based on ex-
panded linguistic terms and rules using
non-singleton fuzzy logic

(Qu et al.,
2020)

Knowledge -
Data

Energy sys-
tems

Dempster-
Shafer

Fault diagnosis in railway track circuits us-
ing Dempster–Shafer classifier fusion

(Oukhellou et
al., 2010)

Knowledge -
Data

Industrial
Monitoring

Structural damage assessment using im-
proved Dempster-Shafer data fusion algo-
rithm

(Ding et al.,
2019)

Knowledge -
Model

Infrastructure
/ Construction

Fault Matters: Sensor data fusion for de-
tection of faults using Dempster–Shafer
theory of evidence in IoT-based applica-
tions

(Ghosh et al.,
2020)

Knowledge -
Data - Model

Industrial
monitoring

A novel multi-classifier information fusion
based on Dempster–Shafer theory: appli-
cation to vibration-based fault detection

(Yaghoubi et
al., 2022)

Knowledge -
Data

Industrial
Monitoring
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mapping due to if-then rules that may have an incomplete
description. Consequently, it is common to augment fuzzy
systems by combining them with other methods.

(J. Chen et al., 2008) introduced an increasingly popular method
known as the Neuro-fuzzy (NF) system. This method is one
of the main methods combining data-driven and knowledge
based approach. NF systems learn from data, adaptively ad-
justing their fuzzy rules and functions. Fuzzy inference al-
lows for the management of imprecision, while neural learn-
ing optimizes performance (Jain & Martin, 1998). Chen et al.
(2008) employed this system for fault detection in a railway
track circuit. The first step is collecting data from track cir-
cuit components, such as current and voltage measurements,
to monitor conditions. Then, these measurements undergo
fuzzification and rule-based processing in the NF system. The
model, combining fuzzy logic and a neural network, is trained
with these data, addressing uncertainty and improving fault
detection. The system’s performance, compared to traditional
methods, shows enhanced accuracy and efficiency in a labo-
ratory test rig of audio frequency jointless track circuit.

In (J. Liu & Zio, 2018), a fuzzy SVM integrated with K-
Nearest Neighbors (KNN) is utilized for fault detection in
transportation systems. The process begins with data col-
lection, followed by processing using KNN to pinpoint key
borderline data points. Fault detection is often mathemati-
cally treated as a classification problem; in this context, KNN
enhances the SVM’s classification capability. Fuzzy logic
is then incorporated, managing uncertainties and imprecision
by assigning fuzzy membership values specifically to the bor-
derline data points, which are crucial for the SVM’s depen-
dency. The combined approach effectively detects faults, as
demonstrated in a case study on a high-speed train’s braking
system, showing improved accuracy and efficiency in fault
detection compared to traditional methods.

In (Vagnoli et al., 2017), a novel approach is developed for
condition monitoring of railway bridges, integrating fuzzy
logic with a BN. The process starts with data collection from
a Finite Element (FE) model simulating the bridge’s behav-
ior under various conditions. Based on this FE model, the
necessary information to establish prior CPT of the BN are
extracted. Then, expert knowledge is captured through fuzzy
logic and used to refine the BN. This fuzzy process incorpo-
rates fuzzy membership functions to capture vagueness and
subjectivity in expert judgment through relationships between
linguistic variables. These variables are used to investigate
potential relationships between different bridge elements and
numerically quantify the opinions of experts. This integrated
approach demonstrates the ability to monitor the health state
of the bridge and its elements effectively, allowing for a more
nuanced and comprehensive understanding of the bridge’s con-
dition. It is noteworthy that the Bayesian network primarily
facilitates fault diagnosis in this approach.

5.3.3. Dempster-Shafer theory

In fault detection, DST is mainly explored in the literature
within the context of classifier fusion. As previously men-
tioned, fault detection can often be viewed as a classifica-
tion problem, a scenario where DST offers significant advan-
tages. This theory enhances decision-making by combining
information from diverse sources, calculating an overall be-
lief degree while considering the individual contributions of
classifiers (see Section 4). Conflicts between classifiers are
effectively managed through Dempster-Shafer’s combination
rule, which redistributes beliefs by excluding conflicting parts
(Quost, Masson, & Denœux, 2011). This conflict resolution
leads to often more effective fusion than traditional classifier
fusion methods.

Indeed, (Yaghoubi et al., 2022) has for purpose to show that
DST can be used to improve the accuracy of the classification.
The paper compare four methods of classifications (k-nearest
neighbours, subspace vector data description with Gaussian
kernel, support vector machine with Gaussian kernel and neu-
ral network) applied to 15 benchmarks datasets with a classi-
fier fusion based on DST and then compared the performance.

In (Oukhellou et al., 2010), the outputs of a local neural net-
work are interpreted through DST classifier fusion to assist
in making a definitive decision on the detection and localiza-
tion of faults in a railway track circuit system. This technique
initially employs a statistical pattern recognition approach on
the inspection recordings, which facilitates the derivation of
uncertain if-then rules utilizing DST.

In (Ghosh et al., 2020), DST is used for data fusion, not af-
ter machine learning classifications, but following data col-
lection from various sensors. The article demonstrates the
use of DST prior to fault classification, showing effective re-
sults similar to traditional classifier fusion, which usually fo-
cuses on combining outputs from different classification al-
gorithms.

Similarly, in (Ding et al., 2019), an integrated fusion algo-
rithm is proposed that considers mass loss in the combination
process. Structural health data is collected and then fused us-
ing this algorithm. This approach allows for a more accurate
assessment of structural damage by effectively managing the
inherent uncertainties and complexities in the data.

5.4. Knowledge-based techniques in Fault diagnostics

Table 6 categorizes articles related to fault diagnostics.

5.4.1. Deterministic

With the increasing installed capacity in wind turbines, the
need for intelligent systems has become crucial. The expert
system developed in (Deng et al., 2017) uses propositional
logic to transform expert knowledge and historical data into
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Table 6. Summary of surveyed literature for fault diagnostics.

Technique Article Title Author, Year Method Domain

Deterministic

Fault diagnosis of a train door system
based on semantic knowledge representa-
tion

(Miguelanez
et al., 2008) Knowledge Automotive /

Transport
A rule-based intelligent method for fault
diagnosis of rotating machinery

(Dou et al.,
2012)

Knowledge -
Data

Mechanical
components

Rule-based Fault Diagnosis Expert System
for Wind Turbine

(Deng et al.,
2017)

Knowledge -
Data

Energy sys-
tems

Development of an expert system for fault
diagnosing of washing machines using
Delphi 7

(Cahyono
& Kusuma,
2024)

Knowledge Mechanical
components

Fuzzy Logic

Rolling bearing fault diagnostic system us-
ing fuzzy logic

(Da Silva Vi-
cente et al.,
2001)

Knowledge Mechanical
components

Railway wheel fault diagnosis using a
fuzzy-logic method

(Skarlatos et
al., 2004)

Knowledge -
Data

Mechanical
components

Application of a Neural Fuzzy System with
Rule Extraction to Fault Detection and Di-
agnosis

(K. Y. Chen et
al., 2005)

Knowledge -
Data

Industrial
monitoring

Maintenance Decision-Making Support for
Textile Machines: A Knowledge-Based
Approach Using Fuzzy Logic and Vibra-
tion Monitoring

(Baban et al.,
2019) Knowledge Industrial

monitoring

Complex Fuzzy System Based Predictive
Maintenance Approach in Railways

(Karakose &
Yaman, 2020)

Knowledge -
Data

Industrial
monitoring

A Model for Flywheel Fault Diagnosis
Based on Fuzzy Fault Tree Analysis and
Belief Rule Base

(Cheng et al.,
2022)

Knowledge -
Model

Mechanical
components

Dempster-
Shafer

Fault diagnosis method for railway turnout
control circuit based on information fusion

(M. Liu et al.,
2016)

Knowledge -
Data

Industrial
monitoring

Dempster-Shafer evidence theory for
multi-bearing faults diagnosis

(Hui et al.,
2017)

Knowledge -
Data

Industrial
monitoring

Bayesian
Networks

Bayesian Fault Detection and Diagnosis in
Dynamic Systems

(Lerner et al.,
2000)

Knowledge -
Model

Energy sys-
tems

Bayesian Networks-Based Approach for
Power Systems Fault Diagnosis

(Yongli et al.,
2006)

Knowledge -
Model

Energy sys-
tems

Fault diagnosis expert system of semicon-
ductor manufacturing equipment using a
Bayesian network

(B. Li et al.,
2013)

Knowledge -
Data

Industrial
monitoring

An intelligent chiller fault detection and di-
agnosis methodology using Bayesian be-
lief network

(Y. Zhao et
al., 2013)

Knowledge -
Model

Industrial
monitoring

Dynamic process fault detection and di-
agnosis based on a combined approach
of hidden Markov and Bayesian network
model

(Galagedarage Don
& Khan,
2019)

Knowledge -
Data

Energy sys-
tems

An Integrated Fuzzy Fault Tree Model
with Bayesian Network-Based Mainte-
nance Optimization of Complex Equip-
ment in Automotive Manufacturing

(Soltanali et
al., 2021)

Knowledge -
Model

Automotive /
Transport

Bayesian Uncertainty Inferencing for Fault
Diagnosis of Intelligent Instruments in IoT
Systems

(Q. Liu et al.,
2023)

Knowledge -
Data

Industrial
monitoring

Expert system based fault diagnosis for
railway point machines

(Reetz et al.,
2024)

Knowledge -
Data Transportation
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”IF... THEN...” rules. Moreover, the system continuously
improves through a self-learning process integrated into the
knowledge base. This demonstrates the effectiveness of a
simple and powerful expert system that relies solely on ex-
pert knowledge to diagnose faults in wind turbines based on
symptoms.

(Cahyono & Kusuma, 2024) presents the development of an
expert system designed to diagnose washing machine faults
using forward chaining. This system is built on a knowledge
base created from data gathered through literature review and
expert interviews in the field of washing machine repairs. The
collected knowledge is transformed into a set of if-then rules.
Users input the symptoms they observe (such as noise, mo-
tor stoppage, abnormal vibrations), and the system analyzes
this information to identify potential faults, such as a bro-
ken belt, defective motor, or electrical issue. By applying
forward chaining, the system works through the rules to gen-
erate a diagnosis and recommend the appropriate repair so-
lution. The expert system effectively diagnoses 13 common
washing machine faults, helping to reduce the time required
for troubleshooting and repairs.

In a more complex manner, (Dou et al., 2012) utilizes statis-
tical methods and machine learning to generate deterministic
rules for diagnosing faults in rotating machinery. The primary
advantage of this method lies in its ability to effectively inte-
grate statistical techniques for feature extraction and the use
of a machine learning algorithm (MLEM2) for rule induction.
This results in precise and reliable rules for fault diagnosis,
capitalizing on both the thorough analysis of data (statistical)
and the systematic application of rules (deterministic).

Semantic networks is a powerful tool for knowledge mod-
eling, it is illustrated by (Miguelanez et al., 2008) for diag-
nosing faults in train door systems. This network builds an
ontology representing knowledge about the functioning and
failures of door systems. This ontology includes several com-
ponents, such as domain expertise, historical data of failures,
and real-time information from sensors. Diagnosis is then
made by comparison: sensor data are analyzed and compared
with the information contained in the ontology. The relation-
ships and rules defined in the ontology enable the system to
accurately deduce the nature and cause of the failures. Ad-
ditionally, the system has a preventive maintenance function,
alerting to components that are likely to fail. This system
was tested on pneumatic train doors and showed a significant
improvement in diagnosis and a better understanding of the
failures.

5.4.2. Fuzzy Logic

Fuzzy logic has been employed in various ways across differ-
ent domains for fault diagnosis.

(Da Silva Vicente et al., 2001) employs fuzzy logic to diag-

nose faults in ball bearings. The initial phase involves vibra-
tional signal analysis using spectral and statistical techniques.
Subsequently, fuzzy logic is used to interpret the results, with
each input from the preliminary analysis being translated into
a fuzzy set for a more refined and adaptable classification of
bearing faults.

In regards to textile machine maintenance, (Baban et al., 2019)
demonstrates an equivalent use of fuzzy logic. Vibration mon-
itoring is used to detect the development of faults, and then
fuzzy logic manages the complexity and uncertainty of the
machine degradation process.

In the railway industry, To address issues of irregularities in
train wheels, (Skarlatos et al., 2004) implemented an intel-
ligent system based on fuzzy logic. This system uses three
input variables (vibration level, frequency, and train speed)
and one output variable (wheel condition). The inputs were
subjected to statistical analysis, which established confidence
intervals for healthy and defective wheels. Subsequently, 333
fuzzy rules were defined to establish the relationships be-
tween these variables, allowing for an accurate characteriza-
tion of the wheel condition while managing the uncertainties
of the input data.

Similarly, (Karakose & Yaman, 2020) uses a fuzzy system
to enhance predictive maintenance. Here, fuzzy logic aids in
interpreting thermographic images in electric railway main-
tenance. The process is as follows: Thermal images are cap-
tured along train lines. These images undergo image process-
ing to detect faults, and the type of fault determined by this
analysis is then subjected to fuzzy logic interpretation

Each of the four previous examples demonstrates a similar
use of fuzzy logic. Initially, a data-driven approach and/or
signal analysis is employed. Then, fuzzy logic is introduced
to add a degree of flexibility in the fault diagnostic process. It
does this by transforming the previously processed inputs into
fuzzy sets, thereby enhancing the interpretability and adapt-
ability of the diagnostic process. The following two examples
skillfully combine fuzzy logic with two other methods to ad-
dress two common challenges in fault diagnostics.

In fault diagnostic with uncertain input information, BRB
system are good to deal with uncertainty, however the ini-
tialisation need to relies on a fiable source and it is quite dif-
ficult to obtain accurate knowledge. (Cheng et al., 2022) in-
tegrated fuzzy logic into a fault tree and uses BN as a bridge
to obtain knowledge. This tree represents various events that
could lead to a failure and, through fuzzy logic, it is possi-
ble to manage the uncertainty and imprecision of information
about the failures. The BN acts as a translator from fuzzy
fault tree to BRB. This method facilitates effective mapping
of the knowledge base for a diagnostic system based on belief
rules.

In (K. Y. Chen et al., 2005), the inherent ’black box’ issue as-
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sociated with the use of neural networks in fault diagnostics
is overcome through the use of fuzzy logic. The fuzzy system
is employed on real-world sensor data for diagnosing heat
transfer and tube blockages in a power plant The method en-
hances interpretability of neural network predictions, aligning
with expert opinions and domain knowledge. The integration
of fuzzy logic with neural networks, as seen in this example,
follows a trend similar to other examples in previous sections.

5.4.3. Dempster-Shafer theory

As seen in fault detection, DST is mainly used for classifier
fusion, a trend that also applies to fault diagnostics. In diag-
nostics, DST is primarily used to amalgamate different fault
analysis results to classify faults optimally, thereby improv-
ing the precision and dependability of the classification.

(M. Liu et al., 2016) explores various fault diagnosis mod-
els applied to the maintenance of railway turnouts and then
uses the DST to combine the results of two distinct methods.
The first method is a model based on fuzzy logic, which takes
as input the symptoms detected on the turnouts and as out-
put, identifies the corresponding faults. However, this system
may show difficulties in accurate diagnosis after defuzzifica-
tion. In parallel, a neural network is also employed, despite
its dependence on a large volume of data that is not always
available. The DST intervenes here by providing a framework
for managing uncertain information. It merges the diagnos-
tic results obtained by the two methods, thus compensating
for their respective weaknesses and significantly improving
diagnostic intelligence and accuracy.

In a similar fashion, (Hui et al., 2017) utilizes DST as a tool
for classifier fusion. In this context, DST is employed to
amalgamate the outcomes of various SVM models.

5.4.4. Bayesian Networks

Bayesian Networks are prevalent in the literature concerning
fault diagnosis but are less common or even nonexistent in
the literature on fault detection. Due to their structure as pre-
sented in Section 4, they excel at handling uncertainty and
making inferences based on causal relationships, which is
crucial in diagnosing specific faults because they can inte-
grate diverse data types and prior knowledge to model com-
plex systems, making them highly effective in diagnosing
where a fault originates and how it propagates. In contrast,
fault detection typically focuses on identifying the presence
of a fault, often requiring different approaches like threshold-
based or pattern recognition methods (Langseth, 2008).

In (Verbert, Babuška, & De Schutter, 2017), BN and DST
are compared in the context of condition-based maintenance.
Where DST seems particularly suited for non-causal reason-
ing tasks, such as information fusion, BN appear more suited
for reasoning about conditional relationships, like the con-

nections between faults and features (Cobb & Shenoy, 2003).
The process of developing a BN for fault detection and diag-
nostic involves several key steps. Initially, the structure of the
BN must be modeled, taking into account the specific charac-
teristics and relationships within the system. Following this,
the parameters of the BN are defined, which involves setting
the probabilities and relationships between different nodes in
the network. The next step is BN inference, where the net-
work is used to draw conclusions based on the input data.
After inference, the focus shifts to fault identification, where
the network helps to pinpoint specific faults within the sys-
tem. The final step is validation and verification of the BN,
ensuring its accuracy and reliability in real-world applications
(Cai, Huang, & Xie, 2017)

(B. Li et al., 2013) describes the development of an expert
system using BN for diagnosing root failures in semicon-
ductor manufacturing equipment. The system’s knowledge
are derived exclusively from expert insights. It employs two
development approaches: a direct mode, where experts con-
tribute their knowledge verbally or in writing for formaliza-
tion into the knowledge base to feed the BN, and an indirect
mode, where expert knowledge is collected and converted
into a machine-learned knowledge representation. Experts
also estimate probabilities in the BN’s CPT using linguistic
terms akin to fuzzy logic. However, this approach’s reliance
on expert subjectivity can significantly impact the diagnosis
accuracy due to the conditional probabilities being expert-
determined. Leveraging historical data and machine learn-
ing algorithms could significantly enhance the accuracy of
Bayesian Networks.

(Y. Zhao et al., 2013) conduct a study on a three-layer BN,
designed to emulate the diagnostic process of chiller system
experts. Beyond the expertise of these specialists for estimat-
ing a priori probabilities in the CPT, historical data and prior
surveys also contribute key insights. The first layer of the
network focuses on factors or information relevant to fault
diagnosis, which are not directly linked to the faults them-
selves, such as maintenance records or contextual data. The
second layer lists various types of faults, while the third layer
depicts the associated symptoms. Although the system does
not collect real-time data, in-depth knowledge and historical
data enable an accurate estimation of parameters, yielding re-
liable results. However, acquiring these parameters remains a
significant challenge.

In a similar way, (Reetz et al., 2024) discussed an expert sys-
tem designed for diagnosing faults in railway point machines
using Bayesian networks. The system integrates both ex-
pert knowledge and measurement data to provide probabilis-
tic fault diagnostics. The focus is on detecting the root causes
of faults, particularly using motor current curve features as
key evidence, along with additional inputs like past mainte-
nance actions, environmental factors, and railway metadata.
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The system processes data to output a ranked list of the most
likely faults, providing maintenance engineers with action-
able insights. The use of fuzzy multi-label classification al-
lows the model to handle multiple potential faults simultane-
ously.

(Q. Liu et al., 2023) present another application of BNs com-
bine with fuzzy logic. The developed procedure is as follows:
Initially, define the scope of the model and construct a fault
tree. Then, convert the fault tree into a BN, followed by the
acquisition of prior probabilities through expert knowledge.
This expertise is translated using fuzzy logic to optimally
preserve linguistic uncertainty. Finally, determine the con-
ditional probability tables using the leaky noisy-OR model.
One drawback, which is common to nearly all systems reliant
on expert knowledge, is the lack of standardized criteria for
expert selection. Consequently, the results inherently carry a
degree of uncertainty.

In (Yongli et al., 2006), a knowledge-based system is pre-
sented for estimating faulty sections in transmission power
systems. The system utilizes sensor data and expert knowl-
edge to structure a BN and estimate the probabilities among
variables. To enhance accuracy, two significant modifications
are introduced: the use of noisy OR and AND models for
probabilistic expansion of traditional logic connectors in or-
der to allow for different contributions to the overall outcome,
and the application of an error back propagation algorithm
for continuous refinement of the BN’s parameters. These im-
provements aim for more precise fault identification in the
power system.

In the research presented in (Soltanali et al., 2021), the inte-
gration of fuzzy logic and BN is employed for the diagnosis
and optimization of maintenance processes in the automotive
manufacturing sector. The process begins with the collec-
tion of subjective expert opinions and operational data, which
are depicted as fuzzy numbers. By constructing a fuzzy fault
tree, these fuzzy entries are eventually converted into prob-
abilities of failures following a defuzzification process, and
these probabilities become the inputs for the BN. The BN
utilizes the dynamic interactions among components to ef-
fectively diagnose failures. Finally, the BN in this study also
encompasses recommendations for optimizing maintenance
strategies.

When facing fault diagnostic problems in temporal or com-
plex systems, traditional BN often encounter inevitable dif-
ficulties. To overcome these, Dynamic Bayesian Networks
(DBN) are utilized (Ghahramani, 1998; Murphy, 2002). These
networks effectively represent temporal processes using a Tem-
poral Causal Graph as their structure, addressing measure-
ment errors and parameter drifts. DBN can also handle hybrid
systems comprising both discrete and continuous variables,
aiding in the prediction of discrete failure modes. An addi-
tional advantage of DBN is their capability to track the cur-

rent system state, maintaining a probability distribution over
possible states based on all available measurements, as de-
tailed by (P. Liu et al., 2020).

(Lerner et al., 2000) demonstrate DBN’ effectiveness in a
complex system of five interconnected water tanks. This sys-
tem posed a challenge with its limited measurements and var-
ious potential failure modes, including drifts, bursts, and mea-
surement errors. The experiment showcased the DBN algo-
rithm’s ability to accurately track and diagnose faults in dy-
namic systems.

A common theme in the literature on DBN is the use of Hid-
den Markov Models (HMM) for fault detection, which are
then combined with a BN for fault diagnosis. As previously
discussed, the strengths of BN are particularly highlighted in
fault diagnosis. (Galagedarage Don & Khan, 2019) exem-
plifies this perfectly by employing an HMM that relies on a
continuous data stream to detect a fault. Subsequently, the
HMM outputs, which are log-likelihood values, are utilized
to estimate the probabilities for the CPT required for fault di-
agnosis. The dynamic nature of the system is illustrated by
the HMM continuously providing information to the BN.

5.5. Knowledge-based techniques in Fault prognostics

Table 7 categorizes articles related to fault prognostics.

The literature on fault prognostics is less extensive compared
to fault diagnostics, and this gap widens further when focus-
ing on knowledge-based methods. Utilizing these methods
seems challenging when seeking high accuracy for three main
reasons:

1. Prognostics often deal with complex and diverse fault
patterns, especially in dynamic systems. Rule-based meth-
ods, relying on predefined rules, might not effectively
capture this complexity (Brotherton, Jahns, Jacobs, &
Wroblewski, 2000).

2. Knowledge-based systems depend heavily on expert knowl-
edge, which can be limiting in rapidly evolving fields or
in situations where exhaustive expert knowledge is chal-
lenging to obtain or update (Tung & Yang, 2009).

3. The growing emphasis on data-driven techniques, such
as machine learning and pattern recognition, offers more
flexibility and adaptability in handling the vast and var-
ied data associated with machine faults and prognostics
(Tsui et al., 2015; Schwabacher, 2007).

While knowledge-based systems may appear less prevalent in
contemporary scientific literature on prognostics, their practi-
cal utility in industry should not be underestimated. For those
aiming to develop techniques with the highest possible accu-
racy, relying solely on knowledge-based systems might seem
counterproductive. However, in business contexts where fi-
nancial constraints are a primary consideration, these meth-
ods can indeed be quite fruitful. All that aside, the literature
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Table 7. Summary of surveyed literature for fault prognostics.

Technique Article Title Author, Year Method Domain

Deterministic
Predicting the Remaining Useful Life of
Light Aircraft Structural Parts: An Expert
System Approach

(Gerhardinger
et al., 2023) Knowledge Transportation

Fuzzy Logic

Prognosis of machine health condition us-
ing neuro-fuzzy systems

(W. Q. Wang
et al., 2004)

Knowledge -
Data

Mechanical
components

A fuzzy bp approach for diagnosis and
prognosis of bearing faults in induction
motors

(Satish &
Sarma, 2005)

Knowledge -
Data

Mechanical
components

Wind turbine pitch faults prognosis using
a-priori knowledge- based ANFIS

(B. Chen et
al., 2013)

Knowledge -
Data

Energy sys-
tems

Prognosis of Bearing Failures Using Hid-
den Markov Models and the Adaptive
Neuro-Fuzzy Inference System

(Soualhi et
al., 2014)

Knowledge -
Data

Industrial
monitoring

Knowledge-based prognostics and health
management of a pumping system under
the linguistic decision-making context

(Peng et al.,
2022) Knowledge Industrial

Monitoring

Dempster-
Shafer

Dempster–Shafer regression for multi-
step-ahead time-series prediction towards
data-driven machinery prognosis

(Niu & Yang,
2009) Data Industrial

monitoring
Prognostics of lithium-ion batteries based
on Dempster-Shafer theory and the
Bayesian Monte Carlo method

(He et al.,
2011)

Knowledge -
Model

Energy sys-
tems

Uncertainty quantification using evidence
theory in concrete fatigue damage progno-
sis

(H. Tang et
al., 2016)

Knowledge -
Model

Infrastructure
/ Construction

A Novel Method Using DS-MCM for
Equipment Health Prognosis with Partially
Observed Information

(Q. Liu et al.,
2019)

Knowledge -
Model - Data

Industrial
monitoring

Lithium-ion battery diagnostics and prog-
nostics enhanced with Dempster-Shafer
decision fusion

(Weddington
et al., 2021)

Knowledge -
Model

Energy sys-
tems

Bayesian
Networks

Application of Bayesian networks in prog-
nostics for a new Integrated Vehicle Health
Management concept

(Ferreiro et
al., 2012)

Knowledge -
Model - Data

Automotive
/ Transporta-
tion

Health Monitoring System for Au-
tonomous Vehicles using Dynamic
Bayesian Networks for Diagnosis and
Prognosis

(Gomes &
Wolf, 2021)

Knowledge -
Model

Automotive
/ Transporta-
tion

Dynamic Bayesian Network-Based
Lithium-Ion Battery Health Prognosis for
Electric Vehicles

(Dong et al.,
2021)

Knowledge -
Model - Data

Energy sys-
tems
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does include instances of effective combinations of method-
ologies, incorporating knowledge-based components. This
suggests a balanced approach, blending knowledge-based ap-
proach with advanced data-driven techniques, can be both
feasible and beneficial in some academic works and real-world
applications.

5.5.1. Deterministic

(Gerhardinger et al., 2023) presents an expert system that
predicts the remaining useful life of light aircraft structural
parts operating through four modules: knowledge acquisi-
tion, knowledge base, inference, and explanation. It collects
operational data from sources like aircraft logbooks, stores
specific RUL values based on load profiles in the knowledge
base, and the inference module estimates accumulated fatigue
damage. The system uses an ”if-then” framework to calculate
the remaining life of a part by summing damage increments
from different flight phases. The explanation module then
suggests appropriate maintenance actions based on the calcu-
lated RUL, helping optimize maintenance schedules and pre-
vent part failure.

5.5.2. Fuzzy Logic

(Peng et al., 2022) introduces a model that integrates fuzzy
logic to synthesize knowledge from both data and expert in-
put for prognostics and maintenance decision. This approach
has been effectively applied to predict the consequences of
specific faults in the pipeline of a pumping system and the
best maintenance strategy to apply. The initial stage involves
data collection from observations by field engineers or from
expert knowledge and data processing, during which fuzzy
linguistic terms are selected in order to develop operational
information about the health of components. These terms are
then interpreted using trapezoidal fuzzy functions in fuzzy
logic. Once the function is established, its output (the RUL)
is evaluated based on the input information. The final step in-
volves the inference process, leading to a conclusion that aids
in selecting the optimal maintenance decision.

In the field of prognostics, applications of fuzzy logic usually
involve its integration with neural networks, forming a NF
system. (DePold & Gass, 1998) introduces at first the com-
bination of neural networks and expert system. The synergy
allows for more accurate data analysis and informed decision-
making.

In (B. Chen et al., 2013), data is retrieved from Supervi-
sory Control and Data Acquisition systems, which encom-
pass alarms and signals that could provide early indications
of component faults. Critical features, which are parame-
ters associated with the failure of components, are utilized to
train neural networks. Simultaneously, the system facilitates
the integration of a-priori knowledge into the training pro-
cess, enhancing reliability and interpretability. Fuzzy logic

then assists in classifying the severity of each fault, offering
an initial assessment of when maintenance might be neces-
sary. An algorithm, leveraging this system, is implemented
to determine the earliest date for potential faults within pre-
determined prognostic horizons (7, 14, 21 days) to minimize
the risk of false identifications.

In (Satish & Sarma, 2005), parameters such as stator current
and rotor speed are continuously measured and inputted into
the system. The output of the neural network represents the
bearing condition expressed by linguistic fuzzy terms, which
discretize into an estimation of RUL. For accuracy purpose,
the weights of the connections between neurons in the net-
work are constantly adapted by an error back propagation al-
gorithm to enhance the model’s accuracy in diagnosing and
prognosticating bearing faults

(W. Q. Wang et al., 2004) compare two well-known tech-
niques based on neural networks for prognostic estimation,
recurrent neural networks and NF systems. The article em-
phasizes that NF systems outperform their counterparts be-
cause of their ability to handle non-linearities and stochastic
behavior in time-series data effectively. Additionally, the syn-
ergy of neural networks’ adaptability with the interpretabil-
ity and uncertainty management of fuzzy systems results in
higher forecast accuracy and more efficient training.

In (Soualhi et al., 2014), the NF system is integrated with
HMM for the effective prognosis and health management of
roller bearings. Time-domain features from vibration signals
are employed as health indicators, with expert knowledge ap-
plied to interpret these signals. HMM ascertain the immedi-
acy of upcoming degradation states based on these indicators.
Subsequently, the NF system uses this information to accu-
rately estimate the remaining time before the bearing reaches
its next degradation state in a similar way to above.

5.5.3. Dempster-Shafer theory

In contrast to fault detection or diagnostics, DST is not uni-
laterally used as a classifier fusion tool for prognostics.

In the study (H. Tang et al., 2016), DST is utilized as a method
to represent uncertainty in predicting the fatigue life of con-
crete. Due to the lack of sufficient or accurate information,
traditional probability theory appears to be less suitable for
representing this uncertainty (see Section 4). The estima-
tion of the RUL is subsequently conducted using a differ-
ential evolution algorithm, which propagates the uncertainty
through the fatigue life prediction model. The article com-
pares the results obtained from both DST and probability the-
ory with experimental data and observes a higher precision in
the results derived from DST.

Lithium-Ion batteries are widely used in various applications
due to their high energy density. (He et al., 2011) study the
degradation of such batteries through a decrease in capacity
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over time. The degradation process is complex due to in-
herent system uncertainties, measurement uncertainties, op-
eration environment uncertainties, and modeling uncertain-
ties. To manage this complexity, He et al. (2011) proceed
as follows: The first step concerns the utilization of DST by
combining evidence from various datasets to initialize model
parameters. Then, the Bayesian Monte Carlo (BMC) method
is employed to update model parameters with new capacity
data. At each cycle, BMC is used to approximate the posterior
probability density function, thereby enabling the estimation
of RUL. This new method outperformed traditional ones with
more accurate estimations and a higher level of confidence.

In (Q. Liu et al., 2019), the study combines DST with a Markov
Chain Model (MCM) to develop a comprehensive state recog-
nition framework for equipment. This approach employs DST’s
frame of discernment to encapsulate all conceivable states of
the equipment. Then, Basic Probability Assignments (BPA)
are utilized to measure the confidence in the accuracy of each
potential state. These BPAs are then transformed into a prob-
ability distribution to facilitates the accurate identification of
the equipment’s health state. The study successfully demon-
strates the application of this framework, highlighting its pre-
cision in health state recognition.

In (Niu & Yang, 2009), a novel approach is adopted for ma-
chinery prognosis using the DST. The study introduces a novel
Dempster-Shafer regression model (DSR) for multi-step-ahead
time-series prediction, to handle effectively uncertainties and
imprecision in time-series data. The DSR method treats each
training sample as a piece of evidence, assigning weights
based on their proximity to the input vector and aggregat-
ing these evidences using Dempster’s rule of combination.
Then, the study employs an iterated multi-step-ahead predic-
tion strategy, which is crucial for predicting the degradation
trend of machinery performance and estimating the RUL of
the system. This approach is validated using condition moni-
toring data from a methane compressor by reducing error and
enhancing reliability in prognostic assessments.

Prognostication of equipment health utilizing DS evidence
fusion theory can diminish the uncertainty associated with in-
formation sources concerning the health status of equipment
(K. Zhao et al., 2022). In (Weddington et al., 2021), results
from extended Kalman filter (EKF) and particle filter (PF) are
fused using an application of DST. Initially, both EKF and PF
are individually tasked with estimating the RUL of lithium-
ion batteries. Following this, DST is employed, using Basic
Belief Assignments to evaluate the confidence levels in the
RUL estimates from both EKF and PF sources. Subsequently,
the Dempster-Shafer combination rule is applied, producing a
final RUL probability distribution. On comparing the perfor-
mance of this combined RUL distribution against the individ-
ual outputs of EKF and PF, a notable enhancement in terms
of accuracy and reliability is observed

5.5.4. Bayesian Networks

BN are particularly effective in managing uncertainty and
variability in data, which is crucial for the estimation of RUL.
Moreover, the ability to integrate a temporal component and
dynamically adapt data through DBN makes them especially
useful for fault prognostics (Verduijn, Peek, Rosseel, De Jonge,
& De Mol, 2007; Medjaher, Moya, & Zerhouni, 2009; Bar-
tram & Mahadevan, 2020; Bektas, Marshall, & Jones, 2020).

In (Dong et al., 2021), the process of constructing a DBN for
battery health prognosis begins with the utilization of expert
opinions. These opinions are used in the initial stages for
defining the problem’s scope, identifying the relevant vari-
ables and faults, and establishing the DBN’s structure. Fol-
lowing this foundational step, heterogeneous data sources, in-
cluding reliability data, operational data, and experimental
data, are employed to estimate the CPT of the DBN. these
probabilities are then employed to simulate the system’s be-
havior over time, ultimately aiding in the prognosis by esti-
mating battery’s state of health and predicting the RUL. The
paper illustrates this approach with experimental tests on dif-
ferent battery cells, showing accurate state of health estima-
tion and reliable RUL prediction.

(Gomes & Wolf, 2021) presents a DBN-based health moni-
toring system for autonomous vehicles, designed for both di-
agnosis and prognosis. The DBN structure comprises three
layers: Evidence, Symptom, and Fault. The Evidence Layer
inputs new information at specific times for fault detection
and diagnosis. The Symptom Layer interprets this evidence
as potential indicators of faults, while the Fault Layer denotes
the abnormal states of system components. This DBN model
also includes time-related layers, allowing it to utilize past
and current information to predict future states of the system
over a predefined time horizon, thus facilitating prognosis.
The efficacy of this approach is validated through experimen-
tal tests on various battery cells, demonstrating the model’s
high accuracy and effectiveness in fault detection and diag-
nosis for autonomous vehicles.

The aeronautics industry have approved the application of
knowledge-based systems, as shown in (Ferreiro et al., 2012),
where a Bayesian Network model is used for predictive main-
tenance to reduce maintenance costs and enhance aircraft op-
erability. The paper emphasizes future maintenance scenar-
ios, particularly focusing on avoiding unscheduled mainte-
nance. The paper highlights three key components to learn
with BNs: Constructing the network’s structure through data
and experts insights, learning probabilities based on exist-
ing network structures and using BN for prognostic purposes.
The latter is particularly important for estimating RUL, be-
cause BN enable the discovery of links between different vari-
ables, and effectively integrate various attributes from datasets.
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5.6. Knowledge-based Techniques in Advisory Generation
& Health Management

Although this review focuses on the application of KBS in
the development phase of the PHM process—i.e., fault detec-
tion, diagnostics, and prognostics tasks—we briefly review
the subsequent stages, consisting of advisory generation and
health management. To recap, advisory generation involves
providing actionable information to operational and mainte-
nance personnel or external systems, while health manage-
ment uses this information to implement actions that restore
the system to a ”healthy state.” These two stages are typically
supported by what is known as a Decision Support System
(DSS). A DSS is a computerized system that assists mainte-
nance and operational personnel in making well-informed de-
cisions regarding the maintenance and management of phys-
ical assets (Bumblauskas, Gemmill, Igou, & Anzengruber,
2017). A typical process for employing a DSS in the de-
cision phase might involve the following steps. The DSS
begins by collecting and analyzing real-time data to assess
asset health and identify components likely to require main-
tenance. Based on this analysis, the system generates main-
tenance recommendations, providing actionable service pro-
posals—this step aligns with advisory generation. The DSS
then prioritizes these tasks, considering factors such as equip-
ment criticality and cost, to support health management tasks
like mission planning and resource allocation, ensuring effi-
cient and effective maintenance execution. In literature, ex-
pert systems alone have been mainly used for resource allo-
cations tasks. For instance, in the aviation industry, an expert
system allocates resources, specifically labor, by utilizing a
fuzzy Analytical Hierarchy Process. The system constructs a
hierarchical model to prioritize criteria such as licenses, ex-
perience, and regulations, assigns fuzzy values to handle un-
certainties, and ranks candidates for maintenance tasks, op-
timizing resource management in aircraft maintenance oper-
ations (Cheung et al., 2005). Similarly, in a military con-
text, an expert system optimizes resource allocation through a
two-phase process. It evaluates weapon effectiveness using a
computation network with expert-defined rules and Bayesian
logic, and then determines optimal allocations via an allo-
cation tree, refining decisions through user interactions and
adapting to real-time changes on the battlefield, ensuring dy-
namic and effective resource management (Slagle & Ham-
burger, 1985). (Gudes et al., 1990) also utilized a general
control strategy through expert systems to efficiently allocate
resources across these diverse domains. More recently, in the
field of infrastructure management, (Santos et al., 2022) em-
ployed a fuzzy logic expert system to select optimal and sus-
tainable maintenance and rehabilitation (M&R) strategies for
road pavements. This system considers both economic and
environmental objectives, converting these criteria into fuzzy
linguistic terms. By applying expert-defined fuzzy rules, the
system evaluates and ranks M&R strategies based on a global

performance score, enabling decision-makers to choose the
most appropriate strategy from a set of Pareto-optimal solu-
tions. This approach ensures that the selected strategy aligns
with sustainability goals while effectively managing costs and
environmental impact. Nowadays, due to the emergence of
highly efficient machine learning-based techniques, advisory
generation and health management are mainly performed by
hybrid systems combining knowledge-based and data-driven
techniques. One can mention the development of neuro-symbolic
approaches to leverage the strengths of deep learning for pat-
tern recognition, while incorporating expert knowledge through
symbolic methods for explainability and structured decision-
making (Hitzler et al., 2022). This integration allows for
solving complex problems that require both data-driven in-
sights and formal reasoning, enabling more accurate, inter-
pretable, and reliable AI solutions that can effectively han-
dle tasks such as logical deduction, planning, and knowledge
representation. In the same vein, (L. Tang et al., 2023) de-
scribes the OSPtk toolkit, which optimizes sensor placement
in critical industrial systems. This system integrates perfor-
mance and cost considerations using a Dependency Matrix
(D-Matrix) to model the relationship between sensors and
fault detection capabilities. It incorporates data-driven in-
sights from simulation data and historical maintenance data
to refine the D-Matrix, alongside expert knowledge in its con-
struction. Genetic Algorithms are employed to find the opti-
mal sensor configurations, allowing designers to select sen-
sors that meet PHM requirements while balancing cost con-
straints, ultimately enhancing the reliability and cost-effectiveness
of the system. As a self-optimizing system, (Chemweno et
al., 2016) presented an i-RCAM expert system which en-
hances health management and advisory generation by en-
abling proactive maintenance through continuous improve-
ment and early detection of potential failures. By analyzing
maintenance data with association rule mining, i-RCAM un-
covers patterns and detects early warning signs, which are
then validated by experts. This system continuously updates
its rule base, allowing it to generate timely and accurate main-
tenance recommendations, thus ensuring that potential issues
are addressed before they escalate, leading to more effective
and reliable health management.

6. FUTURE DIRECTIONS FOR KNOWLEDGE-BASED SYS-
TEMS FOR PHM

The evolution of Knowledge-Based Systems in PHM is driven
by the need to enhance decision-making capabilities, increase
scalability, and foster greater adaptability in various opera-
tional environments. As these systems continue to develop,
several key research areas are emerging, reflecting the ongo-
ing integration of traditional knowledge-based methods with
cutting-edge technologies.

Hybrid Systems. One of the most significant future direc-
tions is the development of hybrid systems that combine tra-
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ditional knowledge-based approaches with artificial intelli-
gence (AI) and machine learning techniques. By integrat-
ing rule-based systems with neural networks, reinforcement
learning, and deep learning models, these hybrid systems aim
to enhance the decision-making process in PHM. A particu-
larly promising area within this evolution is neuro-symbolic
AI, which merges the symbolic reasoning of traditional AI
with the learning capabilities of neural networks (Lu, Afridi,
Kang, Ruchkin, & Zheng, 2024; Barbiero et al., 2023; Kon-
stantinov & Utkin, 2024). This approach allows for more
sophisticated analysis and prediction capabilities, where AI
models can interpret and reason with vast datasets while tradi-
tional knowledge-based systems provide a structured frame-
work for logical decision-making. The synergy between these
approaches is expected to lead to more accurate, interpretable,
and reliable PHM systems.

Big Data Integration. As PHM systems are required to pro-
cess and analyze the increasing amounts of sensor data in
real-time, the ability to scale knowledge-based systems to han-
dle big data has become critical. Future research will likely
focus on leveraging distributed computing and cloud-based
architectures to efficiently handle and process the growing
volume of data (Forest, Lacaille, Lebbah, & Azzag, 2018;
Forest et al., 2020). This includes the development of KBS
that can operate efficiently in big data environments, provid-
ing timely insights and prognostics across various industries.
The integration of big data analytics with KBS will enable
more informed decision-making, allowing for more precise
maintenance and operational strategies.

Adaptive Systems. Another promising direction is the ad-
vancement of KBS into adaptive systems that can continu-
ously learn and evolve from new expert inputs, newly cap-
tured data, and emerging scenarios. These systems will dy-
namically refine their knowledge bases, allowing for the de-
velopment of personalized maintenance strategies that are tai-
lored not only to specific operational conditions and the unique
histories of individual machines but also to the specialized
insights of domain experts. This adaptability is crucial for
PHM applications, where conditions can vary significantly
and standardized approaches often are not applicable. The
evolution of such systems will ensure that PHM solutions re-
main effective and relevant as new challenges and data emerge,
sustaining their value in continually changing environments.

Transfer Learning The application of transfer learning within
KBS for PHM is an area of growing interest. In this context,
transfer learning allows a KBS trained on a specific set of
machines or operating conditions to apply its learned rules,
diagnostic patterns, and predictive models to a different but
related domain, such as a different type of machinery or a
new operational environment (Q. Wang, Taal, & Fink, 2022).
In this context, rules can be transferred by generalizing exist-
ing knowledge, mapping rules to equivalent components, or

adapting them to account for domain-specific factors. This
approach leverages the similarities between systems, allow-
ing for quicker deployment in new applications with reduced
retraining needs. As the KBS collects more data in the new
domain, these rules can be refined to improve accuracy and
relevance. Ultimately, transfer learning can significantly re-
duce the time and data required to develop effective PHM
systems, making it a valuable tool for expanding the applica-
bility of KBS across various sectors.

Cyber-Physical Systems (CPS) and Digital Twins. The in-
tegration of KBS with Cyber-Physical Systems (CPS) and
digital twin technologies represents a significant advancement
in PHM. Digital twins, which are virtual models of physi-
cal assets continuously updated with real-time data, enable
more accurate prognostics and health management by simu-
lating various scenarios and predicting future states (Thelen et
al., 2022a, 2022b). When combined with KBS, digital twins
can offer real-time diagnostics, predictive maintenance, and
decision support. CPS and KBS complement each other in
PHM by providing the data acquisition, real-time monitoring,
and interaction capabilities (CPS) that support the decision-
making, rule-based reasoning, and predictive analysis func-
tions of KBS. This synergy enables more effective and dy-
namic maintenance strategies, ultimately enhancing system
reliability and efficiency.

Advancing Knowledge-Based Systems with Large Language
Models. Large Language Models (LLMs) are revolutionizing
the capabilities of KBS by enhancing their ability to process,
understand, and generate natural language. LLMs can signif-
icantly improve the way KBS handle unstructured data, such
as technical documents, maintenance logs, and real-time sen-
sor reports, by extracting relevant information and transform-
ing it into actionable insights. They enable KBS to better in-
terpret complex queries, provide more accurate and context-
aware responses, and even generate predictive insights based
on historical data patterns. Moreover, LLMs can assist in
the automatic updating and expansion of knowledge bases
by learning from vast datasets, continuously integrating new
information without the need for manual rule coding. Ad-
ditionally, LLMs can automatically learn and refine knowl-
edge graphs, which represent the relationships between dif-
ferent entities, further enhancing the system’s ability to model
complex systems and make informed decisions. This allows
KBS to stay up to date with the latest knowledge and prac-
tices, enhancing their adaptability and relevance across dif-
ferent domains. By combining the structured reasoning of
traditional KBS with the linguistic and analytical prowess of
LLMs, these systems become more robust, intuitive, and ca-
pable of supporting sophisticated decision-making processes
in complex environments.

User-Centric Design and Human-Machine Collaboration.
As KBS become more sophisticated, the interaction between
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human operators and these systems will become increasingly
important. Future research will focus on user-centric design
principles, creating intuitive interfaces and decision-support
tools that enhance human-machine collaboration. The goal
is to develop KBS that not only provide accurate predictions
and diagnostics but also do so in a way that is accessible and
understandable to human operators, ensuring effective collab-
oration and decision-making.

Augmented Reality (AR) and Virtual Reality (VR). The
use of augmented reality (AR) and virtual reality (VR) along-
side Knowledge-Based Systems (KBS) represents another ex-
citing future direction. These technologies create immersive
environments for training, diagnostics, and maintenance tasks,
offering real-time guidance derived from the knowledge base.
Visual and interactive tools provided by AR and VR bridge
the gap between complex data and human understanding, en-
abling operators to more easily perform maintenance tasks
and assess the health status of their systems. This integra-
tion enhances decision-making and improves overall system
reliability, ensuring more effective and intuitive maintenance
processes.

Open Knowledge Bases. Finally, the creation of open, shared
knowledge bases will be a significant area of focus in the fu-
ture. These open knowledge bases can be used across multi-
ple systems and industries, facilitating broader adoption and
fostering innovation. By enabling different organizations to
contribute to and benefit from shared knowledge resources,
the development of open knowledge bases can accelerate the
advancement of KBS for PHM and ensure that the latest in-
sights and best practices are widely accessible.

7. CONCLUSION

Knowledge-based and Expert Systems, techniques developed
in the early age of artificial intelligence, can provide effective
solutions for Prognostics and Health Management (PHM) ap-
plications, due to their ability to leverage expert knowledge
and their inherent interpretability. In particular, they are com-
plementary to data-driven methods which research has over-
whelmingly focused on in recent years. In this paper, we
surveyed the literature and covered various techniques, eval-
uating their effectiveness in fault detection, diagnosrics and
prognostics. We highlighted the strengths and limitations of
each technique and discussed their applications in complex
scenarios. We discussed the evolution of PHM and the po-
tential of KBS in this field to improve the decision-making
processes. Indeed, with the rise of big data and deep learn-
ing, there is a growing trend towards more mathematically
sophisticated and black-box technologies. As we have noted,
a core advantage of knowledge-based techniques is providing
a high level of interpretability. This aspect is crucial, ensur-
ing that as complexity increases, the ability to understand the
underlying decision-making processes remains a priority.

Each method reviewed here has its own advantages and lim-
itations. Propositional Logic is the most usual and simple
way to express knowledge. It is valuable in scenarios with
well-defined parameters or at the end of a process when un-
certainty has been removed. This application alone is lim-
ited in complex environments where variables are not strictly
controlled or in dynamic systems. This is the primary rea-
son for its limited application for prognostics tasks within the
PHM process. Fuzzy Logic is currently a popular and ef-
fective approach to manage imprecision without transforming
the information. Indeed, it provides a framework that allows
for more flexible handling of ambiguous information, in sce-
narios where conditions are not black and white but more or
less grey. The primary challenge in this approach is in accu-
rately and realistically modeling imprecision through fuzzy
sets from their initial definition to the eventual defuzzifica-
tion process needed for clear conclusion. To address this, the
inclusion of deep learning to develop Neuro-Fuzzy systems
is a promising way to explore further. Dempster-Shafer The-
ory (DST) provides a rich framework to deal with different
problems. In fault detection, it primarily serves as a clas-
sification tool thanks to Dempster-Shafer combination rule.
For fault prognosis, it is usually used as a way to combine
evidence from diverse methods or datasets. In fault diagno-
sis, it integrates both these approaches. Additionally, DST
is useful in representing complex uncertainties where a two-
level modeling approach is required. While DST is brilliant
in its ability to deal with many methods and express various
knowledge, one inherent problem resides in accurately pos-
ing the mathematical foundations in practical applications,
especially when rapid decision-making is required. Also, one
might question whether this method truly offers interpretabil-
ity. Does it provide a clear and comprehensible picture of the
problem? Finally, Bayesian Networks (BNs) are renowned
for their probabilistic modeling capabilities, especially when
we need to think about conditional relationship, common in
PHM problems. Their ability to infer under uncertainty using
CPT is a key strength. When the relationships between vari-
ables are well-defined, BNs and their dynamic counterparts
can be among the most effective methods for addressing the
complexity of dynamic systems. Their need for significant
computational resources and aim for representing multiple
variables and relationships make them ideal for fault diag-
nosis and prognosis. However, they are less effective for fault
detection.

In summary, one can expect the future of expert and knowledge-
based systems for PHM to be marked by the integration of
advanced emerging technologies, a focus on scalability and
adaptability, and an emphasis on human-machine collabora-
tion. These developments promise to make KBS more effec-
tive, accessible, and widely applicable across various indus-
tries, ultimately leading to more efficient and reliable PHM
solutions.
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NOMENCLATURE

BN Bayesian Network
BRB Belief Rule-Based
CBM Condition-Based Maintenance
CPT Conditional Probability Table
DBN Dynamic Bayesian Networks
DL Deep Learning
DST Dempster-Shafer Theory
EKF Extended Kalman Filter
HMM Hidden Markov Model
KBS Knowledge-Based System
KNN K-Nearest Neighbors
ML Machine Learning
NF Neuro-Fuzzy
PF Particle Filter
PHM Prognostics and Health Management
RBS Rule-Based System
RUL Remaining Useful Life
SVM Support Vector Machine
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