References
Alcala, C. F., & Qin, S. J. (2009). Reconstruction-based contribution for process monitoring. Automatica, 45(7), 1593–1600.
AlGhazzawi, A., & Lennox, B. (2008). Monitoring a complex refining process using multivariate statistics. Control Engineering Practice, 16(3), 294–307.
BDASH-Project. (2016). Guideline for introducing ict-based advanced process control and remote diagnosis technology for efficient wastewater treatment plant operation (Tech. Rep. No. 939). National Institute for Land and Infrastructure Management. Retrieved from http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0939.htm (Accessed on: 2024-02-14)
Bodenham, D. A., & Adams, N. M. (2016). A comparison of efficient approximations for a weighted sum of chi-squared random variables. Statistics and Computing, 26(4), 917–928.
Camacho, J., Pérez-Villegas, A., García-Teodoro, P., & Macía-Fernández, G. (2016). Pca-based multivariate statistical network monitoring for anomaly detection. Computers & Security, 59, 118–137.
Choi, S. W., Morris, J., & Lee, I.-B. (2008). Nonlinear multiscale modelling for fault detection and identification. Chemical engineering science, 63(8), 2252–2266.
de Oliveira, R. R., Pedroza, R. H., Sousa, A. O., Lima, K. M., & de Juan, A. (2017). Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy. Analytica chimica acta, 985, 41–53.
García-Alvarez, D. (2009). Fault detection using principal component analysis (pca) in a wastewater treatment plant (wwtp). Proceedings of the International Student’s Scientific Conference, 55–60.
Ge, Z., Yang, C., & Song, Z. (2009). Improved kernel pca-based monitoring approach for nonlinear processes. Chemical Engineering Science, 64(9), 2245–2255.
Jackson, J. E., & Mudholkar, G. S. (1979). Control procedures for residuals associated with principal component analysis. Technometrics, 21(3), 341–349.
Jaffel, I., Taouali, O., Harkat, M. F., & Messaoud, H. (2017). Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring. The International Journal of Advanced Manufacturing Technology, 88, 3265–3279.
Joe Qin, S. (2003). Statistical process monitoring: basics and beyond. Journal of Chemometrics: A Journal of the Chemometrics Society, 17(8-9), 480–502.
Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R., & Bakshi, B. R. (2002). Comparison of multivariate statistical process monitoring methods with applications to the eastman challenge problem. Computers & chemical engineering, 26(2), 161–174.
Kourti, T., & MacGregor, J. F. (1996). Multivariate spc methods for process and product monitoring. Journal of quality technology, 28(4), 409–428.
Kresta, J. V., Macgregor, J. F., & Marlin, T. E. (1991). Multivariate statistical monitoring of process operating performance. The Canadian journal of chemical engineering, 69(1), 35–47.
Lemaigre, S., Adam, G., Goux, X., Noo, A., De Vos, B., Gerin, P. A., & Delfosse, P. (2016). Transfer of a static pca-mspc model from a steady-state anaerobic reactor to an independent anaerobic reactor exposed to organic overload. Chemometrics and Intelligent Laboratory Systems, 159, 20–30.
Rosén, C. (2001). A chemometric approach to process monitoring and control-with applications to wastewater treatment operation. Lund University.
Sandberg, E., Lennox, B., & Undvall, P. (2007). Scrap management by statistical evaluation of eaf process data. Control engineering practice, 15(9), 1063–1075.
Uchida, Y., Fujiwara, K., Saito, T., & Osaka, T. (2022). Process fault diagnosis method based on mspc and lingam and its application to tennessee eastman process. IFACPapersOnLine, 55(2), 384–389.
Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2000). Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and intelligent laboratory systems, 51(1), 95–114.
Wise, B. M., & Gallagher, N. B. (1996). The process chemometrics approach to process monitoring and fault detection. Journal of Process Control, 6(6), 329–348.
Zhao, L.-T., Yang, T., Yan, R., & Zhao, H.-B. (2022). Anomaly detection of the blast furnace smelting process using an improved multivariate statistical process control model. Process Safety and Environmental Protection, 166, 617–627.