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ABSTRACT

This paper presents a new process monitoring and fault di-
agnosis approach based on a modified Multivariate Statisti-
cal Process Control (MSPC) and evaluates its applicability to
municipal wastewater treatment process monitoring. Firstly,
a conventional MSPC, based on Principal Component Anal-
ysis (PCA), is adjusted to provide an easy-to-understand user
interface and then a new yet simplified reconfigurable diag-
nosis model is introduced. The user interface that has been
developed is designed to integrate MSPC seamlessly with ex-
isting process monitoring systems that use the so-called trend
graphs. The proposed diagnosis model is constructed by ag-
gregating small models with either one or two inputs, which
enhances the tractability of the diagnosis model. The effec-
tiveness of the modified MSPC is demonstrated through a se-
ries of offline and online experiments, using a set of real mul-
tivariate process data from a municipal wastewater treatment
plant.

1. INTRODUCTION

Process monitoring and fault diagnosis plays an important
role for operation of social infrastructure systems such as
power generation plants, water and wastewater treatment plants,
railway and transportation systems, just to name a few. Su-
pervisory Control And Data Acquisition (SCADA) system is
often installed in such infrastructure systems where operators
monitor time-series process data by the so-called trend graphs
to keep process in control. The simplest yet often adopted
fault diagnosis technique for stable plant operation is abnor-
mality (out-of-control states) detection in process data by a
pre-specified control limit for each single variable, which is
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similar to Statistical Process Control (SPC). To improve pro-
cess performance and operational stability, however, earlier
fault detection and cause localization will be important. It
allows us to recognize how to improve process performance
and how to avoid performance degradation.

Multivariate Statistical Process Control (MSPC) (Jackson &
Mudholkar, 1979), (Kourti & MacGregor, 1996),(Kresta, Mac-
gregor, & Marlin, 1991),(Westerhuis, Gurden, & Smilde, 2000),
(Wise & Gallagher, 1996) is attractive data-driven approach
for such purpose, which is suitable to monitor complex pro-
cesses with high-dimensional data structure. The key idea of
MSPC is subspace orthogonalization where Principal Com-
ponent Analysis (PCA) is often utilized. High-dimensional
process data is projected onto a subset of the subspaces and
a few statistical indices for fault detection are constructed,
which is effective in improving detection accuracy and cause
localization ability. In addition, advanced MSPC methods
have also been proposed (Choi, Morris, & Lee, 2008), (Jaffel,
Taouali, Harkat, & Messaoud, 2017),(Ge, Yang, & Song, 2009),
(Uchida, Fujiwara, Saito, & Osaka, 2022) for further improve-
ment. Despite such advances, the SPC-like monitoring is still
popular and widely used as real-time process monitoring in
many real plants, while various applications of MSPC have
been reported (AlGhazzawi & Lennox, 2008),(Camacho, Pérez-
Villegas, Garcı́a-Teodoro, & Maciá-Fernández, 2016), (GarcÇa-
Alvarez, 2009), (Kano et al., 2002), (Lemaigre et al., 2016),
(de Oliveira, Pedroza, Sousa, Lima, & de Juan, 2017), (Rosén,
2001), (Sandberg, Lennox, & Undvall, 2007),(Zhao, Yang,
Yan, & Zhao, 2022). Among various possible reasons, the
difficulty of intuitive understanding of diagnostic results and
the difficulty of PCA model handling in MSPC will be main
reasons to hinder wide applications of real-time continuous
monitoring by MSPC.

Based on this motivation, this paper tries to improve the ap-
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plicability of MSPC to real-time process monitoring. To this
end, this paper firstly introduces an improved user interface
(UI) where the conventional trend-graph-based monitoring
and MSPC-based diagnosis are combined, which will im-
prove intuitive understanding by plant operators. Then, with-
out changing the UI, this paper proposes a new yet simple
MSPC algorithm to improve tractability and maintainability
of PCA model used in MSPC. The proposed MSPC has some
advantages over conventional PCA-based MSPC (PCA-MSPC
hereinafter) for real-time continuous applications of MSPC to
real processes. The advantages include simple and clear de-
pendence on a specific training data in modeling and easy
reconfiguration of input variables of a PCA model, which im-
proves model tractability and possibly enables robust-and- in-
terpretable modeling. While the proposed MSPC is simpler
than the PCA-MSPC, it is confirmed that the MSPC effec-
tively works for fault diagnosis by applying it to real process
data in a municipal WasteWater Treatment Plant (WWTP).

2. CONVENTIONAL PCA-MSPC

This section overviews PCA-MSPC (Jackson & Mudholkar,
1979; Wise & Gallagher, 1996; Camacho et al., 2016) prior to
presenting a modified MSPC. PCA-MSPC utilizes Hotelling’s
T 2 statistic (D statistic) and Q statistic (Squared Prediction
Error) as fault indices together with their control limits and
the variable contributions to them, which can be defined by
using PCA.

PCA transforms an n ⇥ m data matrix X by combining the
variables as a linear weighted sum, represented as

X = TallP
T
all = TPT +E = X̂ +E

= [t1p
T
1 +· · ·+tkp

T
k ]+[tk+1p

T
k+1+· · ·+tmpT

m],(1)

where pi, i = 1, · · · ,m, are the principal component load-
ings, Pall = [p1,p2, · · · ,pm] and P = [p1,p2, · · · ,pk]
are the loading matrices, ti, i = 1, · · · ,m, are the prin-
cipal component scores, Tall = [t1, t2, · · · , tm] and T =
[t1, t2, · · · , tk] are the score matrices, and E = [tk+1pT

k+1 +
· · ·+ tmpT

m] is the residual matrix. n ,m, and k are the num-
ber of samples, that of variables, and the retained number of
principal components by truncation, respectively. Superscript
T denotes the transpose of a vector/matrix. It is usually as-
sumed that the columns of X have been standardized to zero
mean and unit variance by normalizing each column by its
mean µi and standard deviation �i, i = 1, 2, · · · ,m. The
principal component loadings are the direction vectors creat-
ing a hyperplane that is embedded inside the m-dimensional
spaces and captures the maximum possible residual variance
in the measured variables, while maintaining orthonormality
with the other loading vectors. The loadings correspond to
the eigenvectors of the covariance matrix of X and its eigen-
values indicate the variance captured by the corresponding
eigenvector. The (sample) covariance matrix ⌃ = 1

n�1X
TX

can be described by

⌃ = Pall⇤allP
T
all = P⇤PT + F , (2)

where ⇤all = diag(�1,�2, · · · ,�m) is a diagonal matrix of
the eigenvalues �i, i = 1, 2, · · · ,m of ⌃, ⇤ is a partial ma-
trix of ⇤all of which elements consist of k largest eigenval-
ues, and F is the residual of the covariance matrix ⌃. Note
that the covariance matrix ⌃ is identical to the correlation
matrix (denoted by R hereinafter) if each column of X is
standardized. Using these matrices, the T 2 and Q statistics
(of measurements at time t) are defined by

T 2(t) := tT (t)⇤�1t(t) = xT (t)P⇤�1PTx(t), (3)
Q(t) := eT (t)e(t) = xT (t)(I � PPT )x(t), (4)

where e(t) , t(t), and x(t) are the residual vector at time t,
the score vector at time t, and the measurement data vector
(sample) at time t, respectively. I is the identity matrix of
size m. The T 2 statistic defined by the sum of normalized
squared scores is a measure of the variation within the PCA
model, while the Q statistic indicates how well each sample
conforms to the PCA model and is a measure of the amount
of variation not captured by the k principal components re-
tained in the model. Note that ”PCA model” means the cre-
ated hyperplane by PCA here, but it also denotes the set of
loadings (eigenvectors), eigenvalues, and means and standard
deviations of all input variables for PCA in the following.

The T 2 statistic and the Q statistic are complementary used
for fault detection with their (upper) control limits that are
often approximately expressed by

T 2
↵ =

k(n+ 1)(n� 1)

n(n� k)
F↵(k, n� k), (5)

Q↵ = ✓1

 
c↵
p

2✓2h2
0

✓1
+ 1 +

✓2h0(h0 � 1)

✓21

! 1
h0

, (6)

where F↵(k, n�k) is the value (upper limit) at 100(1�↵)%
confidence level of the F distribution with (k, n� k) degrees
of freedom, ✓i =

Pm
j=k+1 �

i
j , i = 1, 2, 3,h0 = 1 � 2✓1✓3

3✓2
2

,
c↵ is the 100(1 � ↵)% standardized normal percentile. Note
that T 2

↵ can be approximated by �2
↵(k) , the value at 100(1�

↵)% confidence level of the �2 distribution with k degrees of
freedom, if n is sufficiently large since (n+1)(n�1)

n(n�k) ! 1 and
kF↵(k, n � k) ! �2

↵(k) as n ! 1. The contributions of
ith component xi(t) of the data vector x(t) for the Q statistic
and for the T 2 statistic could be defined as

Qi(t) := (xT (t)(I � PPT )ei)
2, (7)

T 2
i (t) := (xT (t)(P⇤�1/2PT )ei)

2, (8)

where ei is the ith column of the identity matrix I of size m.
It should be noted that the variable contributions are defined
so that Q(t) =

Pm
i=1 Qi(t) and T 2(t) =

Pm
i=1 T

2
i (t) hold.
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The Q and T 2 statistics with the contributions make it possi-
ble to detect faults earlier and to localize cause variables.

3. MODIFIED MSPC FOR REAL-TIME MONITORING

Intuitive design and tractability of monitoring systems will
play an important role to enhance the applicability of MSPC
to real-time monitoring in existing plants where SCADA is
installed. To this end, this section firstly introduces an easy-
to-understand UI which seamlessly connects MSPC and ex-
isting trend-graph-based monitoring. Then, we propose a
novel yet simplified MSPC algorithm without changing the
UI, which improves tractabilaity of MSPC model in real time
and also may improve intuitive understanding by operators.

3.1. Adjusted-MSPC with Improved User Interface

Figure 1 shows an example of the developed UI consisting of
three parts, which will be easy-to-understand.

Figure 1. Developed user interface combining MSPC-based
monitoring and trend-graph-based monitoring

The part A shows the time-series of a fault index M derived
from the T 2 and Q statistics. The index M is defined by

M(t) := 1� exp(� ln(2)C(t)) (9)

C(t) :=
1

2
(
Q(t)

Q↵
+

T 2(t)

T 2
↵

), (10)

where C is a scaled combined statistic of the T 2 and Q statis-
tics with its control limit 1. The M is defined so that its range
is from 0 to 1 and the control limit becomes 0.5. The reason
for introducing M is as follows. Firstly, distinguishing the T 2

and the Q hampers intuitive understanding by plant operators
since these two are just a fault index for operators. While in-
troducing the combined index C is sufficient for this purpose,
frequently observed outliers of process data generate unnec-
essary extremely large values of the C and hence the index
M is introduced to bounding the range.

The part B is a contribution plot of the M of which contribu-

tion Mi is defined by

Mi(t) := M(t)
Ci(t)

C(t)
, (11)

Ci(t) :=
1

2
(
Qi(t)

Q↵
+

T 2
i (t)

T 2
↵

), (12)

Note that the contribution Mi is defined so that M(t) =Pm
i=1 Mi(t) holds. The variables whose contributions are in

the top eight at a present time are listed from the top to the
eighth so that operators can easily notice abnormal events.

The part C represents the time-series (trend graphs) of the top
eight variables, with their normal operating range calculated
by time-dependent standard deviations. Each trend graph is
linked to a more detailed one, which can be accessed by click-
ing on it. An example of this is shown in Figure 2, where the
third contributing variable, 1-2 ORP, is displayed.

Figure 2. Example of detailed trend graph that is linked to the
developed GUI in Figure 1.

As process monitoring based on trend graphs is common in
reality, MSPC can be connected to conventional process mon-
itoring in this way. The PCA-MSPC with this UI is referred
to as ”Adjusted-MSPC” in the following.

3.2. Modular-MSPC for Improvement of Tractability

While defining Normal Operating Condition (NOC) is crucial
for applications of MSPC to real plants, it is sometimes dif-
ficult, particularly for non-stational and/or disturbance driven
processes such as WWTPs whose performance heavily de-
pends on the ambient temperature and uncontrolled sewer and
storm water. To adapt such varying conditions and distur-
bances, operational conditions should also be adjusted. Thus,
no unique NOC can be defined in reality. In addition, sen-
sor failures and/or replacements are the rule rather than the
exception in real plants like WWTPs. Thus, PCA model
should be updated appropriately in real-time monitoring but
when and how to update is difficult in general. The difficulty
will be partly caused by complex and strong dependence of
PCA models on training data, which in turn makes diagnos-
tic results difficult to interpret uniformly and intuitively. In

3
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addition, adding and deleting of input variables for MSPC
is not easily handled since PCA treats multivariate data col-
lectively, which also makes model update process more te-
dious. To cope with it, we propose a simplified reconfig-
urable MSPC that is referred to as ”Modular-MSPC” , which
is more simply and clearly dependent on training data. The
main idea of Modular-MSPC is to define a new combined
statistic named S, instead of the C statistic, by aggregating
T 2 statistics of all m single variables and pairwise Q statis-
tics for all possible

�m
2

�
= m(m�1)

2 combinations of vari-
ables. In Modular-MSPC, each T 2 or pairwise Q statistic
is considered as the basic building block and thus variable
contributions are also defined by partly aggregating these ba-
sic building blocks, which allows us to add and delete input
variables easier. In addition, dependence on training data of
Modular-MSPC is clear and simple, which is illustrated be-
low.

Firstly, the T 2 statistic for single ith variable is exactly same
as the square of the univariate t statistic, which is just the
square of (a sample) of ith variable if the data is already stan-
dardized, which is represented as

T 2
i (t) = (ti(t))

2 = (xi(t))
2, (13)

where subscript i stands for ith variable.

Then pairwise Q statistic can be derived by conducting PCA
for two variables. Fortunately, Pall and ⇤all can be derived
explicitly, which is expressed as

⌃ = R = Pall⇤allP
T
all

=

"p
2
2

p
2
2p

2
2

�
p
2

2

# 
1 + r 0
0 1� r

� "p
2
2

p
2
2p

2
2

�
p
2

2

#
, (14)

where r means the correlation coefficient rij of ith and jth
variables under consideration. The equation (14) shows the
following interesting properties as shown in Figure 3.

Figure 3. Two dimensional PCA to define pairwise Q

Firstly, Pall does not depend on training data, which implies
that the direction vector never changed and can be fixed irre-
spective of training data. Next, diagonal elements of ⇤all can
be characterized by the correlation coefficient r only, which

means that the variances along the loadings are explicitly re-
lated to the correlation coefficient. Finally, the first principal
component loading becomes p1 = [

p
2
2 ,

p
2
2 ]T if r > 0, and

p2 = [
p
2
2 , �

p
2

2 ]T if r < 0, thus one can distinguish the first
and the second by just checking the sign of r. By noting the
nice properties and assuming that the loading P consists of
the first loading, the pairwise Q statistic can be derived as

Qij(t)(= Qji(t)) =
(xi(t)� sign(rij)xj(t))2

2
, (15)

where Qij(=Qji) denotes the pairwise Q statistic between ith
variable and jth variable (i 6= j). We prefer to rescale Qij by
dividing by its variance 1� |rij |, which is redefined as

Qij(t)=(qij(t))
2=

 
(xi(t)� sign(rij)xj(t))p

2(1� |rij |)

!2

, (16)

where qij(t) is defined as the square root of Qij(t).This rescale
allows us to consider that Qij(t) and T 2

i (t) (for all i, j =
1, 2, · · · ,m, i 6= j) follow �2(1) if n is sufficiently large un-
der the standard assumption for deriving the control limits (5)
and (6).

By using (13) and (16), non-scaled S statistic denoted S0 and
the ith variable contribution S0i are defined as

S0(t) :=
mX

i=1

0

@T 2
i (t) +

1

2

mX

j=1,j 6=i

Qij(t)

1

A , (17)

S0i(t) := T 2
i (t) +

1

2

mX

j=1,j 6=i

Qij(t), (18)

where S0(t) =
Pm

i=1 S0i(t) holds. Note that S0(t) can also
be simply expressed as S0(t) = zT (t)z(t) by defining z(t) =

[t1(t), · · · , tm(t), q12(t), · · · , q(m�1)m(t)]T of size m(m+1)
2 ⇥

1 vector. To obtain the scaled S statistic, the control limit of
S0 should be decided. A proper control limit can be derived
as

S0↵ =

r
2

2k0

�
�2
↵(k0)� k0

�
+ 1, (19)

where, i = 2i�1(i � 1)!
Pm(m+1)

2
j=1 �i

j , i = 1, 2, 3, k0 =

83
2/

2
3. �j , j = 1, 2, · · · ,m(m + 1)/2 are the eigenvalues

of 1
nZ

TZ where Z is the n ⇥ m(m + 1)/2 data matrix de-
fined by Z := [z(1), z(2), · · · z(n)]T . The control limit can
be derived under the assumption that Qij(t) and T 2

i (t) fol-
low �2(1). The Hall-Buckley-Eagleson approximation for
a weighted sum of �2(1) random variables (Bodenham &
Adams, 2016) is applied after transforming the vectors z(t), t =
1, 2, · · · , n to their scores. The detail of the derivation of the
control limit (19) is presented in the Appendix.

By using the control limit (19), the S statistic and the variable
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contributions can be simply defined as S(t) := S0(t)/S0↵

and Si(t) := S0i(t)/S0↵, respectively. One can adopts the
S and Si instead of using the C and Ci without changing the
UI presented above. Moreover, interpretability and tractabil-
ity of Modular-MSPC will be improved since it was derived
in a constructive way and simply depends on training data
only through the correlation coefficients rij in the correlation
matrix R of all input variables.

Although Modular-MSPC is simpler than the PCA-MSPC
(Adjusted-MSPC), performance of Modular-MSPC cannot be
understood and thus should be compared with Adjusted-MSPC.
Thus it will be compared in the next section in terms of de-
tectability and diagnosability and will be shown that Modular-
MSPC actually works well as a process monitoring technique
for a real municipal WWTP.

4. APPLICATION OF MODIFIED MSPC TO WWTP

4.1. Wastewater Treatment Plant

The modified MSPC was applied to a part (called the 1st
train) of a municipal WWTP in Japan, while the conventional
PCA-MSPC had already been evaluated at the same WWTP
as a part of a national project called B-DASH (BDASH-Project,
2016). Figure 4 shows the outline of the plant layout of the
train. Influent wastewater is firstly stored in the primary set-

Figure 4. Plant layout for the first train of WWTP

tler where solid wastes are removed. Then liquid wastes such
as organic matters (COD), nitrogen (NH4-N,NO3-N), and
phosphorus (PO4-P) are treated biologically in the reactors
with (partial) aeration by the blowers. It is called activated
sludge process since the sludge containing microorganisms
are growing while treating organic matters. Finally, the acti-
vated sludge is separated into solids (sludge) and liquid in the
secondary settler. A part of sludge is removed as waste sludge
and the remainder is returned to the (pair of) bioreactors con-
nected to common primary/secondary settlers. While a large
amount of data for about a thousand variables are collected
every 1 minute by a SCADA, we have chosen 82 variables
that are relevant to process status of the 1st train as the candi-
dates of the input variables of MSPC. The variables are influ-
ent and effluent flow-rates, water levels, flow-rates of pumps
and blowers, process control indices such as SRT (Sludge Re-
tention Time), water quality indices such as MLSS (activated

sludge concentration), DO (dissolved oxygen), NH4-N,NO3-
N,PO4-P and so on (BDASH-Project, 2016).

4.2. Evaluation Method

The evaluation was conducted in two phases. In the first
phase, the basic performance of Modular-MSPC was evalu-
ated by applying it to historical data, and four diagnosis mod-
els with different input variables were adopted. Each diagno-
sis model has its own specific purpose, such as sensor failure
detection, process fault diagnosis, and aeration control per-
formance diagnosis, but details are omitted. Subsequently,
each model is termed ModelA, ModelB, ModelC, ModelD,
respectively, and 16, 18, 36, 78 variables are incorporated
into them in this order. Performance was evaluated by de-
tectability and diagnosability, with the former can be quanti-
tatively defined but the latter is qualitative. The detectability
was assessed in terms of (anomaly) detection time and dis-
tinguishability of normal and abnormal states. The detection
time (DT) was defined by the elapsed time (min.) from t0
to the detected time when the value of the index M reached
the normalized control limit 0.5. The distinguishability was
defined by the difference in the M-values before and after an
abnormal event. The former, denoted by M0, is the M-value
at the last minute to t0 and the latter, denoted by Mmax, is the
maximum M-value from t0 to the time the event was noticed
by an operator. Namely, the distinguishability �M is defined
by �M := Mmax � M0. The diagnosability was defined
as cause localization ability that can be checked by isolat-
ing highly contributing variables and qualitatively evaluated
in terms of the adequacy of process operation.

The performance of Modular-MSPC was compared to that of
Adjusted-MSPC for abnormal events that had occurred at the
WWTP in the past. An abnormal event of a sludge collec-
tor failure is highlighted here to explain the basic detectabil-
ity and diagnosability of Modular-MSPC, while such com-
parisons were also conducted for the events reported in the
B-DASH project (BDASH-Project, 2016). The failure oc-
curred at a recorded time t0 and was noticed by an operator
about 24 hours later. During this period, the sludge concen-
tration MLSS decreased and thereby wastewater quality such
as NH4-N was gradually deteriorating.

In the second phase, the performance of Modular-MSPC was
assessed qualitatively by applying it in real-time. The plant
operators were asked to monitor using a prototype system of
Modular-MSPC with the developed UI for about two months
in real-time. In this real-time experiment, eleven diagnosis
models with different combinations of input variables were
applied simultaneously and the models were updated auto-
matically every two weeks by using the process data of the
latest two weeks. After the experiment was completed, we
investigated meaningful detected abnormal events by inter-
viewing the operators about real process status and operating
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conditions.

4.3. Evaluation Results

As for the detectability in the first phase, the detection time, a
measure of the detectability, certainly depends on the setting
of the control limit and the distinguishability may also depend
on it. Thus, for fair comparison, we need to set the same value
for the significance level ↵ (or equivalently 100(1 � ↵)%
confidence level) used in the control limit setting formulas
(5),(6), and (19). It is common in industrial statistical process
monitoring and control to set a confidence level of about 2�
to 3� by assuming a normal distribution, which is equivalent
to about 97.7% confidence level for one-sided 2� value (↵ =
0.023) and about 99.9% confidence level for one-sided 3�
value (↵ = 0.0013). It is natural to regard anything exceeding
3� as an outlier or fault, thus a practically acceptable largest
confidence level will be considered to be around 99.9%. To
seek an appropriate confidence level, we have compared the
initial M-value M0, the maximum M-value Mmax, the dis-
tinguishability index �M , and the detection time DT be-
tween Modular-MSPC and Adjusted-MSPC, for all four di-
agnosis models, and for different settings of the significance
level. Table 1 shows the result for the average values for the
four models and Table 2 shows the result of all four mod-
els. In Table 1 and Table 2, ‘A’ and ‘M’ in the parentheses
in the first column indicates ‘Adjusted-MSPC’ and ‘Modular-
MSPC’, respectively. Also, as the threshold setting formulas
do not assume a normal distribution, k�, k = 2, 3, 6 indi-
cates the corresponding significance level ↵ = 0.023, ↵ =
0.0013, and ↵ = 0.00000001, respectively. We have tested
↵ = 0.00000001 in addition to ↵ = 0.023 and ↵ = 0.0013,
as an extreme case. If the normalized control limit 0.5 is al-
ready exceeded before the failure occurs, the detection time
DT cannot be defined, indicated by‘-’ in Table 1 and Table
2. In Table 2, A to D in the parentheses in the first row in-
dicate ModelA (16 variables), ModelB(18 variables), Mod-
elC(36 variables), ModelD (78 variables), respectively.

Table 1. Comparison of average detectability indices between
Modular-MSPC and Adjusted-MSPC

2� 3� 6�
M0(A) 0.54 0.40 0.17
M0(M) 0.32 0.22 0.09

Mmax(A) 1.00 1.00 1.00
Mmax(M) 1.00 1.00 0.97
�M (A) 0.46 0.60 0.83
�M (M) 0.68 0.78 0.88

DT(A) [min.] - - 215
DT(M) [min.] 126 179 329

As can be seen from Table 1 and Table 2, the distinguisha-
bility was superior in all cases for Modular-MSPC, and the
detection time was faster in all cases for Adjusted-MSPC,
provided the detection time DT can be defined. It means that

Adjusted-MSPC sometimes showed abnormal M-values be-
fore the event occurred, but this phenomenon was not ob-
served in Modular-MSPC. Also, in Modular-MSPC, if the
confidence level corresponding to 2��3� is set as the thresh-
old, it provides an appropriate control limit in most cases. On
the contrary, in Adjusted-MSPC, as in the case of the ModelD
with 78 variables, it may already show an abnormal M-value
before the event occurred unless the confidence level corre-
sponding to 6� is set, which could be consided as an extreme
case and also implies a trial and error search for an appropri-
ate significance level setting is required.

Figure 5 shows an example of the result for the significance
level ↵ = 0.0013, where the M-values and trend graphs for
the top three contributions are displayed, as the developed UI
was only available on the online prototype. As can be seen,
earlier detection by Adjusted-MSPC was achieved at the cost
of decreased distinguishability. In this case, the M-value was
already near the normalized control limit 0.5 despite the sig-
nificance level was set as ↵ = 0.0013 corresponding to 3�.

Figure 5. Example of fault diagnosis by Modular-MSPC and
Adjusted-MSPC during sludge collector failure

In terms of the diagnosability, while similar contributions were
obtained in both the MSPCs, Modular-MSPC seemed to be
slightly better than Adjusted-MSPC. In the sludge collector
failure, for example, the MLSS of the two reactors – the most
directly relevant variable to the event – were ranked as the top
two during almost all the time by Modular-MSPC, whereas
incorrect variables probably not relevant to the event often ac-
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Table 2. Comparison of detectability indices between Modular-MSPC and Adjusted MSPC for each model

2�(A) 3�(A) 6�(A) 2�(B) 3�(B) 6�(B) 2�(C) 3�(C) 6�(C) 2�(D) 3�(D) 6�(D)
M0(A) 0.58 0.41 0.14 0.47 0.34 0.12 0.46 0.35 0.14 0.63 0.52 0.28
M0(M) 0.34 0.23 0.09 0.30 0.19 0.07 0.29 0.21 0.09 0.35 0.26 0.12

Mmax(A) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mmax(M) 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.93
�M (A) 0.42 0.59 0.86 0.53 0.66 0.87 0.54 0.65 0.86 0.37 0.48 0.72
�M (M) 0.66 0.77 0.91 0.71 0.81 0.91 0.71 0.79 0.90 0.65 0.74 0.81

DT(A) [min.] - 105 305 20 145 265 5 85 195 - - 95
DT(M) [min.] 145 165 360 145 205 430 145 225 350 70 120 175

counted for a part of high ranks of Adjusted-MSPC. Taking
Figure 5 as an example, the top two of Modular-MSPC are
the MLSS, the most directly relevant variable, and the third is
also a relevant variable to the event as the NH4-N is a compo-
nent to be removed but it will be deteriorated by this abnormal
event. On the other hand, the ORP, which is not relevant to
the event, was ranked as the third by Adjusted-MSPC despite
it not fluctuating and one of the MLSS was not included in
the top three contributors. We have observed that cause local-
ization/isolation ability in Modular-MSPC was better than or
at least almost equal to that in Adjusted-MSPC for the events
reported in the B-DASH project (BDASH-Project, 2016), the
reason has not yet been clarified completely. However, less
cause localization ability by the contribution in the conven-
tional PCA-MSPC has been pointed out in literature such as
(Camacho et al., 2016; Alcala & Qin, 2009; Joe Qin, 2003;
Westerhuis et al., 2000). It was pointed out in these papers
that the reasons for the failure of cause localization will be
smearing out of information due to data compression by PCA,
which can lead to misdiagnosis and fail to identify the cause
variables correctly even for simple sensor faults. Thus, the di-
agnosability of Adjusted-MSPC, a slightly modified conven-
tional PCA-MSPC, will exhibit similar behavior. In addition,
the contributions for Q statistic and T 2 statistic are combined
after normalizing by control limits Q↵ and T 2

↵ in Adjusted-
MSPC, and thus the rank of contributions could fluctuate de-
pending on the significance level ↵ setting. Hence, cause
localization by contributions in Adjusted-MSPC sometimes
fail to identify correct cause variables. On the other hand,
Modular-MSPC was developed in a constructive manner, it is
clear under what situations the contribution of a specific vari-
able increases, so the smearing effect observed in the con-
tributions of conventional PCA-MSPC does not occur. We
believe that this simple and explainable structure of Modular-
MSPC could be related to the improvement in diagnosability.

In the second phase, the M-values sometimes exceeded the
threshold 0.5. From such cases, we have identified the 26 no-
table events including process faults and intentional changes
of operating condition by interviewing the operators. The de-
tected notable events could be classified into the following 6
categories:

A. Sensor failures of wastewater quality and flow-rate (8
events)

B. Degradation of control performances such as the so-called
controller hunting for DO concentration control and/or
not-well controlled DO (6 events)

C. Large and sudden influent load variation (6 events)
D. Treated effluent water quality problems such as degrada-

tion of NH4-N (3 events)
E. Intentinal operational mode changes such as the set-point

changes of the waste and return sludge flow-rates to ad-
just the MLSS (2 events)

F. Maintenance of pumps and blowers (1 event)

Among these notable events, the following are two examples
from category A and category B.

Figure 6 is an example of the screenshot of the developed
UI when the influent flow-rate sensor failure occurred. The
measured flow-rate fluctuated, which is inconsistent with the
expected behavior of the real flow-rate. This phenomenon
was caused by the failure of the circuit board connected to the
flow-rate sensor, as confirmed in a post-experiment interview.

Figure 6. Screenshot of UI when flow-rate sensor failure oc-
cured

Figure 7 is another example of the screenshot of the devel-
oped UI when controller hunting of DO concentration PI con-
trol occured. As can be seen, the measured DO, air flow
rate, blower motor rotational speeds (RPM:Revolutions Per
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Minute) are started to oscillate near the right end of the trend
graphs. This phenomenon, known as feedback controller hunt-
ing, is caused by a mismatch between the feedback PI con-
troller parameters and the process response. This phenomenon
occurs when the PI control parameter values are too strong,
which may lead to poor energy efficiency and process per-
formance and has the potential to damage equipment such as
blowers as well. In this experiments, this PI controller hunt-
ing occured due to the change of the operating point.

Figure 7. Screenshot of UI when PI controller huting occured

While details of other detected events are omitted here, we
have confirmed through the interview that the detected 26
events provided some useful information for the operator. Also,
we received operators’ feedback that the developed UI is easy
to understand and helpful for process monitoring. This is be-
cause a single fault indicator was used and access to the trend-
graph of a variable included in top contributing variables was
easy.

5. CONCLUSION

This paper has presented a practical monitoring method based
on a modified MSPC and has demonstrated its effectiveness
through application to a real municipal WWTP in Japan, in
both offline and online manners. Firstly, a novel user interface
was developed by integrating the conventional PCA-MSPC
with existing SPC-like process monitoring. Subsequently, a
simplified and reconfigurable PCA-MSPC, termed ”Modular-
MSPC”, was proposed. The adoption of the Modular-MSPC
not only improved model tractability, but also demonstrated
good performance in terms of detectability and diagnosabil-
ity, as shown through the WWTP application. Future works
will involve long-term evaluation of Modular-MSPC across
various real plants, and the development of an effective model
update algorithm and a useful automatic input variable selec-
tion method.
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APPENDIX: THRESHOLD DERIVATION

In this section, we derive the control limit (19) under some
acceptable assumptions. First, we make the following two
assumptions.

H1) Each univariate statistic ti(t), i = 1, 2, · · · ,m in the
definition of the univariate T 2 statistic in (13) follows a
standard normal distribution, namely, a normal distribu-
tion with zero mean and unit variance.

H2) Each pairwise statistic qij(t), i, j = 1, 2, · · · ,m, i 6= j
defined in (16) follows a standard normal distribution.

The assumption that a certain statistic follows a normal distri-
bution is often accepted, which simplifies statistical analysis
while maintaining a degree of rationality. From assumptions
H1) and H2), each of the statistics T 2

i (t), i = 1, 2, · · · ,m
and Qij(t), i, j = 1, 2, · · · ,m, i 6= j follows a �2 distribu-
tion with one degree of freedom. Therefore, the non-scaled S
statistic S0, which is defined as the total sum of all the statis-
tics T 2

i (t), i = 1, 2, · · · ,m and Qij(t), i, j = 1, 2, · · · ,m, i 6=
j, is expected to follow a sum of �2 distributions. Although

the sum of p �2 random variables with one degree of free-
dom follows a �2 distribution with p degrees of freedom if the
component random variables are independent, this is not the
case for the S0 statistic since the component univariate statis-
tics T 2

i (t), i = 1, 2, · · · ,m and Qij(t), i, j = 1, 2, · · · ,m, i 6=
j are typically correlated with each other. This is because the
univariate statistics T 2

i (t), i = 1, 2, · · · ,m and Qij(t), i, j =
1, 2, · · · ,m, i 6= j are defined using input process variables
x(t) that are often correlated with each other in nature. To
address this problem, consider a linear transformation that
transforms the set of m(m+1)

2 correlated variables,

z(t) = [t1(t), · · · , tm(t), q12(t), · · · , q(m�1)m(t)]T (20)

into another set of m(m+1)
2 uncorrelated variables, without

changing the value of the S0 statistic. That is, the challenge
is to find a matrix L of size m(m+1)

2 ⇥ m(m+1)
2 and a cor-

responding transformed vector w(t), which satisfies the fol-
lowing properties.

P1) w(t) = Lz(t) = [w1(t), w2(t), · · · , wm(m+1)
2

(t)]T for

any t, where each wi(t), i = 1, 2, · · · m(m+1)
2 follows a

normal distribution independently.

P2) zT (t)z(t) = wT (t)w(t) for any t.

Property P1) is necessary to apply well-known statistical tech-
niques for the sum of p(> 1) i.i.d. (independently and identi-
cally distributed) �2 random variables (Bodenham & Adams,
2016). Property P2) is considered because our goal is to de-
rive the control limit of the statistic S0 = zT (t)z(t).

One can obtain a candidate for L to satisfy the properties P1)
and P2) by using the SVD for the data matrix 1

nZ
TZ,

1

n
ZTZ = Q�QT , (21)

where Z is the n ⇥ m(m + 1)/2 data matrix defined by
Z := [z(1), z(2), · · · z(n)]T , n is the number of samples,
m is the number of variables. In (21), Q is a unitary ma-
trix and � = diag(�1, �2, · · · , �m(m+1)/2) is a diagonal ma-
trix. It should be noted the equation (21) is the same as the
PCA for the data matrix Z. Thus, the score matrix V :=
[v(1),v(2), · · ·v(n)]T can be defined by V := ZQ, which
can be rewritten as V T = QTZT . Since each element of
z(t), t = 1, 2, · · · , n in the data matrix ZT follows a stan-
dard normal distribution, then the corresponding element of
the v(t), t = 1, 2, · · · , n also follows a (non-standard) nor-
mal distribution since the score matrix V T is a linear trans-
formation of the data matrix ZT by QT . Furthermore, the
m(m+1)

2 elements of v(t) := [v1(t), v2(t), · · · , vm(m+1)
2

(t)],

that is, vi(t), i = 1, 2, · · · , m(m+1)
2 , are uncorrelated with

each other, which implies that they are independent since un-
correlation and independence are equivalent if data are as-
sumed to follow normal distributions.
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Next, it should be noted that the average of the S0 statistic
1
n

Pn
t=1 z

T (t)z(t) is equal to tr( 1nZ
TZ) and the value is ex-

actly the same as the sum of the diagonal matrix �, that is,
Pm(m+1)

2
k=1 �k. It is also equal to tr( 1nV

TV ) since the equa-
tion (21) can be rewritten as 1

nV
TV = �.

Therefore, the properties P1) and P2) could be satisfied, if
one defines w(t) and L as w(t) := v(t) and L := QT ,
respectively. Precisely speaking, the properties P1) and P2)
are satisfied only for the finite samples w(t) and z(t), t =
1, 2, · · · , n. But one can expect that the properties P1) and
P2) would be satisfied if sufficiently many samples are used
for the data matrix Z,i.e., n ! 1.

Based on the above understanding, it would be reasonable to
make the following additional assumption.

H3) The newly defined m(m+1)
2 variables u1(t), u2(t), · · ·

, um(m+1)
2

(t) follow an identical standard normal distri-
bution and are independent, where,
ui(t) := wi(t)/

p
�i, i = 1, 2, · · · m(m+1)

2 ,
w(t) :=Lz(t)=QTz(t)=[w1(t),w2(t),· · · ,wm(m+1)

2
(t)]T ,

Q and � = diag(�1,�2,· · · ,�m(m+1)/2) are defined in
(21).

Under the assumption H3), the S0 statistic follows a weighted
sum of m(m+1)

2 i.i.d. �2 distribution since the following equa-
tion holds.

S0(t) = zT (t)z(t) = wT (t)w(t)

=

m(m+1)
2X

i=1

w2
i (t) =

m(m+1)
2X

i=1

�iu
2
i (t) (22)

Now, one can apply an efficient approximation of the cumu-
lative distribution function (cdf) of a positively weighted sum
of N i.i.d. �2 random variables as presented in (Bodenham &
Adams, 2016). The paper (Bodenham & Adams, 2016) com-
pared several approximation methods in terms of the com-
putation time and the accuracy, and recommended to use the
Hall-Buckley-Eagleson method to approximate the calcula-
tion of the cdf of a weighted sum of N i.i.d. �2 random vari-
ables. The direct application of the Hall-Buckley-Eagleson
method by setting a proper confidence level leads to the con-
trol limit presented in (19).

It should be noted that one has to calculate m(m+1)
2 eigen-

values �i, i = 1, 2, · · · m(m+1)
2 of 1

nZ
TZ to estimate the

control limit, which may require considerable computation
burden if the number of the variables m increases. How-
ever, the non-zero eigenvalues of 1

nZ
TZ are equal to those

of 1
nZZT , thus one can also calculate the eigenvalues by us-

ing the matrix 1
nZZT instead if m(m+1)

2 > n. Moreover, it is
often the rule rather than the exception that the several largest
�i, i = 1, 2, · · · dominate the sum of all the eigenvalues, thus
it is often sufficient only to calculate the several largest eigen-
values in practice.
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