Model-based Fusion of Surface Electromyography with Kinematic and Kinetic Measurements for Monitoring of Muscle Fatigue

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jul 7, 2022
Haihua Ou Deanna Gates Shane Johnson Dragan Djurdjanovic

Abstract

This study proposes a novel method for monitoring muscle fatigue using muscle-specific dynamic models which relate joint time-frequency signatures extracted from the relevant electromyogram (EMG) signals with the corresponding estimated muscle forces. Muscle forces were estimated using physics-driven musculoskeletal models which incorporate muscle lengths and contraction velocities estimated from the available kinematic and kinetic measurements. For any specific individual, such a muscle-specific dynamic model is trained using EMG and movement data collected in the early stages of an exercise, i.e., during the least-fatigued behavior. As the exercise or physical activity of that individual progresses and fatigue develops, residuals yielded by that model when approximating the newly arrived data shift and change because of the fatigue-induced changes in the underlying dynamics. In this paper, we propose quantitative evaluation of those changes via the concept of a muscle-specific Freshness Index (FI) which at any given time expresses overlaps between the distribution of that muscle’s model residuals observed on the most recently collected data and the distribution of modeling residuals observed during non-fatigued behavior. The newly proposed method was evaluated using data collected during a repetitive sawing motion experiment with 12 healthy participants. The performance of the FI as a fatigue metric was compared with the performance of the instantaneous frequency of the relevant EMG signals, which is a more traditional and widely used metric of muscle fatigue. It was found that the FI reflected the progression of muscle fatigue with desirable properties of stronger monotonic trends and smaller noise levels compared to the traditional, instantaneous frequency-based metrics.

Abstract 513 | PDF Downloads 595

##plugins.themes.bootstrap3.article.details##

Keywords

Muscle fatigue, System-based performance monitoring, EMG signals, time-frequency signal analysis

References
Alaswad, S., & Xiang, Y. S. (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety, 157, 54-63. Retrieved from ://WOS:000387195700006
https://www.sciencedirect.com/science/article/abs/pii/S0951832016303714?via%3Dihub. doi:10.1016/j.ress.2016.08.009

Ament, W., & Verkerke, G. J. (2009). Exercise and Fatigue. Sports Medicine, 39(5), 389-422. Retrieved from https://doi.org/10.2165/00007256-200939050-00005. doi:10.2165/00007256-200939050-00005

Anderson, F. C., & Pandy, M. G. (2001). Static and dynamic optimization solutions for gait are practically equivalent. Journal of biomechanics, 34(2), 153-161. Retrieved from ://WOS:000166718000001
https://www.sciencedirect.com/science/article/abs/pii/S002192900000155X?via%3Dihub. doi:10.1016/s0021-9290(00)00155-x

Bassani, T., & Galbusera, F. (2018). Chapter 15 - Musculoskeletal Modeling. In F. Galbusera & H.-J. Wilke (Eds.), Biomechanics of the Spine (pp. 257-277): Academic Press.

Bilodeau, M., Schindler-Ivens, S., Williams, D. M., Chandran, R., & Sharma, S. S. (2003). EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. Journal of Electromyography and Kinesiology, 13(1), 83-92. Retrieved from http://www.sciencedirect.com/science/article/pii/S1050641102000500
https://www.sciencedirect.com/science/article/abs/pii/S1050641102000500?via%3Dihub. doi:https://doi.org/10.1016/S1050-6411(02)00050-0

Blana, D., Hincapie, J. G., Chadwick, E. K., & Kirsch, R. F. (2008). A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. Journal of biomechanics, 41(8), 1714-1721. Retrieved from ://WOS:000257008800012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586642/pdf/nihms53889.pdf. doi:10.1016/j.jbiomech.2008.03.001

Bonato, P., Roy, S. H., Knaflitz, M., & De Luca, C. J. (2001). Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. Ieee Transactions on Biomedical Engineering, 48(7), 745-753. Retrieved from https://ieeexplore.ieee.org/document/930899/.

Bryant, M. D. (2014). A data driven method for model based diagnostics and prognostics. Paper presented at the Annual Conference of the PHM Society.

Caruthers, E. J., Thompson, J. A., Chaudhari, A. M. W., Schmitt, L. C., Best, T. M., Saul, K. R., & Siston, R. A. (2016). Muscle Forces and Their Contributions to Vertical and Horizontal Acceleration of the Center of Mass During Sit-to-Stand Transfer in Young, Healthy Adults. Journal of Applied Biomechanics, 32(5), 487-503. Retrieved from ://WOS:000384950800008
https://journals.humankinetics.com/view/journals/jab/32/5/article-p487.xml. doi:10.1123/jab.2015-0291

Cholette, M. E., & Djurdjanovic, D. (2012). Precedent-free fault isolation in a diesel engine exhaust gas recirculation system. Journal of dynamic systems, measurement, and control, 134(3).

Cifrek, M., Medved, V., Tonković, S., & Ostojić, S. (2009). Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 24(4), 327-340. Retrieved from https://www.clinbiomech.com/article/S0268-0033(09)00025-4/fulltext.

Cohen, L. (1995). Time-frequency analysis (Vol. 778): Prentice hall.

Contessa, P., & De Luca, C. J. (2013). Neural control of muscle force: indications from a simulation model. Journal of Neurophysiology, 109(6), 1548-1570. Retrieved from ://WOS:000316205100008
https://journals.physiology.org/doi/pdf/10.1152/jn.00237.2012. doi:10.1152/jn.00237.2012

Costuros, T. V. (2013). Application of communication theory to health assessment, degradation quantification, and root cause diagnosis. Ph.D. Thesis. University of Texas at Austin

De Luca, C. J., & Hostage, E. C. (2010). Relationship Between Firing Rate and Recruitment Threshold of Motoneurons in Voluntary Isometric Contractions. Journal of Neurophysiology, 104(2), 1034-1046. Retrieved from ://WOS:000280932400043
https://journals.physiology.org/doi/pdf/10.1152/jn.01018.2009. doi:10.1152/jn.01018.2009

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E. & Thelen, D. G. (2007). OpenSim: open-source software to create and analyze dynamic simulations of movement. Ieee Transactions on Biomedical Engineering, 54(11), 1940-1950. Retrieved from https://ieeexplore.ieee.org/document/4352056/.

Dimitrov, G. V., Arabadzhiev, T. I., Mileva, K. N., Bowtell, J. L., Crichton, N., & Dimitrova, N. A. (2006). Muscle fatigue during dynamic contractions assessed by new spectral indices. Medicine and science in sports and exercise, 38(11), 1971.

Djurdjanovic, D., Hearn, C., & Liu, Y. (2010). Immune systems inspired approach to anomaly detection, fault localization and diagnosis in complex dynamic systems. Paper presented at the Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, Ottawa, Ontario, Canada.

Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22(2), 131-154. Retrieved from ://WOS:000244166700001
https://www.clinbiomech.com/article/S0268-0033(06)00183-5/fulltext. doi:10.1016/j.clinbiomech.2006.09.005

Gates, D. H., & Dingwell, J. B. (2008). The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Experimental brain research, 187(4), 573-585. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825378/pdf/nihms-177767.pdf.

Gholami, M., Napier, C., Patiño, A. G., Cuthbert, T. J., & Menon, C. (2020). Fatigue Monitoring in Running Using Flexible Textile Wearable Sensors. Sensors, 20(19), 5573. Retrieved from https://www.mdpi.com/1424-8220/20/19/5573.

Gomes, A. A., Ackermann, M., Ferreira, J. P., Orselli, M. I. V., & Sacco, I. C. N. (2017). Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy. Journal of Neuroengineering and Rehabilitation, 14. Retrieved from ://WOS:000414914200001
https://jneuroengrehab.biomedcentral.com/track/pdf/10.1186/s12984-017-0327-x.pdf. doi:10.1186/s12984-017-0327-x

Hausdorff, J. M., Peng, C. K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1995). IS WALKING A RANDOM-WALK - EVIDENCE FOR LONG-RANGE CORRELATIONS IN STRIDE INTERVAL OF HUMAN GAIT. Journal of Applied Physiology, 78(1), 349-358. Retrieved from ://WOS:A1995QC30100050
https://journals.physiology.org/doi/abs/10.1152/jappl.1995.78.1.349?rfr_dat=cr_pub%3Dpubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org.

Isermann, R. (2011). Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems: Springer Science & Business Media.

Jeong, J., & Williams, W. J. (1992). Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing, 40(2), 402-412.
Kabiri Ameri, S., Ho, R., Jang, H., Tao, L., Wang, Y., Wang, L., . . . Lu, N. (2017). Graphene electronic tattoo sensors. ACS nano, 11(8), 7634-7641. Retrieved from https://pubs.acs.org/doi/10.1021/acsnano.7b02182.

Karg, M., Venture, G., Hoey, J., & Kulic, D. (2014). Human Movement Analysis as a Measure for Fatigue: A Hidden Markov-Based Approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(3), 470-481. Retrieved from ://WOS:000342079300005
https://ieeexplore.ieee.org/document/6716986/. doi:10.1109/tnsre.2013.2291327

Karlsson, S., Yu, J., & Akay, M. (2000). Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. Ieee Transactions on Biomedical Engineering, 47(2), 228-238. Retrieved from https://ieeexplore.ieee.org/document/821766/.

Karvekar, S., Abdollahi, M., & Rashedi, E. (2021). Smartphone-based human fatigue level detection using machine learning approaches. Ergonomics, 1-13. Retrieved from https://doi.org/10.1080/00140139.2020.1858185. doi:10.1080/00140139.2020.1858185
Kendall, M. G. (1948). Rank correlation methods.

Liu, J., Djurdjanovic, D., Marko, K., & Ni, J. (2009). Growing Structure Multiple Model Systems for Anomaly Detection and Fault Diagnosis. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 131(5). Retrieved from ://WOS:000269131600001. doi:10.1115/1.3155004

Madden, K. E., Djurdjanovic, D., & Deshpande, A. D. (2018, 3-10 March 2018). Monitoring human neuromusculoskeletal system performance during spacesuit glove use: A pilot study. Paper presented at the 2018 IEEE Aerospace Conference.

Madden, K. E., Djurdjanovic, D., & Deshpande, A. D. (2021). Using a System-Based Monitoring Paradigm to Assess Fatigue during Submaximal Static Exercise of the Elbow Extensor Muscles. Sensors (Basel), 21(4). doi:10.3390/s21041024

Marieb, E. N., & Hoehn, K. (2007). Human anatomy & physiology: Pearson education.

Matusita, K. (1955). Decision Rules, Based on the Distance, for Problems of Fit, Two Samples, and Estimation. The Annals of Mathematical Statistics, 26(4), 631-640, 610. Retrieved from https://doi.org/10.1214/aoms/1177728422.

Merletti, R., & Farina, D. (2016). Surface Electromyography: Physiology, Engineering, and Applications: Wiley.

Miller, R. A., Thaut, M. H., McIntosh, G. C., & Rice, R. R. (1996). Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology, 101(1), 1-7. Retrieved from ://WOS:A1996UB64200001
https://www.sciencedirect.com/science/article/abs/pii/001346949500209X?via%3Dihub. doi:10.1016/0013-4694(95)00209-x

Miller, R. H. (2018). Hill-Based Muscle Modeling. In B. Müller, S. I. Wolf, G.-P. Brueggemann, Z. Deng, A. McIntosh, F. Miller, & W. S. Selbie (Eds.), Handbook of Human Motion (pp. 1-22). Cham: Springer International Publishing.

Mizrahi, J., Verbitsky, O., & Isakov, E. (2000). Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann Biomed Eng, 28(4), 463-469. doi:10.1114/1.284

Musselman, M., Gates, D., Djurdjanovic, D., & Ieee. (2017). System Based Monitoring of a Neuromusculoskeletal System Using Divide and Conquer Type Models. In 2017 Ieee Aerospace Conference.

Mussleman, M., Gates, D., & Djurdjanovic, D. (2016). A System-Based Approach to Monitoring the Performance of a Human Neuromusculoskeletal System. International Journal of Prognostics and Health Management, 7, 14.

Ng, K. G., Mantovani, G., Modenese, L., Beaule, P. E., & Lamontagne, M. (2018). Altered Walking and Muscle Patterns Reduce Hip Contact Forces in Individuals With Symptomatic Cam Femoroacetabular Impingement. American Journal of Sports Medicine, 46(11), 2615-2623. Retrieved from ://WOS:000443315000014
https://spiral.imperial.ac.uk:8443/bitstream/10044/1/62948/8/NG%20et%20al.%202018%20Am%20J%20Sports%20Med.pdf. doi:10.1177/0363546518787518

Parijat, P., & Lockhart, T. E. (2008). Effects of lower extremity muscle fatigue on the outcomes of slip-induced falls. Ergonomics, 51(12), 1873-1884. Retrieved from https://pubmed.ncbi.nlm.nih.gov/19034783
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892174/. doi:10.1080/00140130802567087

Potvin, J. (1997). Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. Journal of Applied Physiology, 82(1), 144-151. Retrieved from https://journals.physiology.org/doi/pdf/10.1152/jappl.1997.82.1.144.

Sedighi Maman, Z., Chen, Y.-J., Baghdadi, A., Lombardo, S., Cavuoto, L. A., & Megahed, F. M. (2020). A data analytic framework for physical fatigue management using wearable sensors. Expert Systems with Applications, 155, 113405. Retrieved from https://www.sciencedirect.com/science/article/pii/S0957417420302293. doi:https://doi.org/10.1016/j.eswa.2020.113405

Shi, J. (2006). Stream of variation modeling and analysis for multistage manufacturing processes: CRC press.

Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: from the brain to the muscle and back again. Medicine and science in sports and exercise, 48(11), 2294. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033663/pdf/nihms-766306.pdf.

Trinler, U., Schwameder, H., Baker, R., & Alexander, N. (2019). Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. Journal of biomechanics, 86, 55-63. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S002192901930082X?via%3Dihub.

Weist, R., Eils, E., & Rosenbaum, D. (2004). The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures. American Journal of Sports Medicine, 32(8), 1893-1898. Retrieved from ://WOS:000225380900014. doi:10.1177/0363546504265191

Whelan, D., O'Reilly, M., Ward, T. E., Delahunt, E., & Caulfield, B. (2016). Evaluating performance of the lunge exercise with multiple and individual inertial measurement units. Paper presented at the Proceedings of the 10th EAI International Conference on Pervasive Computing Technologies for Healthcare, Cancun, Mexico.

Xie, Y. Y., & Djurdjanovic, D. (2019). Monitoring of human neuromusculoskeletal system performance through model-based fusion of electromyogram signals and kinematic/dynamic variables. Structural Health Monitoring, 1475921719848006. Retrieved from https://doi.org/10.1177/1475921719848006. doi:10.1177/1475921719848006

Yang, K. W., Nicolini, L., Kuang, I., Lu, N. S., & Djurdjanovic, D. (2019). Long-Term Modeling and Monitoring of Neuromusculoskeletal System Performance Using Tattoo-Like EMG Sensors. International Journal of Prognostics and Health Management, 10. Retrieved from ://WOS:000524976600004.

Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in biomedical engineering, 17(4), 359-411.
Section
Technical Papers