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ABSTRACT 

This study proposes a novel method for monitoring muscle 
fatigue using muscle-specific dynamic models which relate 
joint time-frequency signatures extracted from the relevant 
electromyogram (EMG) signals with the corresponding 
estimated muscle forces. Muscle forces were estimated using 
physics-driven musculoskeletal models which incorporate 
muscle lengths and contraction velocities estimated from the 
available kinematic and kinetic measurements. For any 
specific individual, such a muscle-specific dynamic model is 
trained using EMG and movement data collected in the early 
stages of an exercise, i.e., during the least-fatigued behavior. 
As the exercise or physical activity of that individual 
progresses and fatigue develops, residuals yielded by that 
model when approximating the newly arrived data shift and 
change because of the fatigue-induced changes in the 
underlying dynamics. In this paper, we propose quantitative 
evaluation of those changes via the concept of a muscle-
specific Freshness Index (FI) which at any given time 
expresses overlaps between the distribution of that muscle’s 
model residuals observed on the most recently collected data 
and the distribution of modeling residuals observed during 
non-fatigued behavior. The newly proposed method was 
evaluated using data collected during a repetitive sawing 
motion experiment with 12 healthy participants. The 
performance of the FI as a fatigue metric was compared with 

the performance of the instantaneous frequency of the 
relevant EMG signals, which is a more traditional and widely 
used metric of muscle fatigue. It was found that the FI 
reflected the progression of muscle fatigue with desirable 
properties of stronger monotonic trends and smaller noise 
levels compared to the traditional, instantaneous frequency-
based metrics. 

1. INTRODUCTION 

Muscle fatigue results from a sequence of processes in the 
nervous system and the muscle fibers which reduce neural 
drive to the muscle and/or impair the muscle’s contractile 
mechanism (Taylor, Amann, Duchateau, Meeusen, & Rice, 
2016). For healthy individuals performing strenuous or 
prolonged activities (laborers, athletes, soldiers etc.), muscle 
fatigue limits task efficiencies and performance, causes 
adverse sensations such as muscle pain and/or perception of 
increased effort, and in some occasions could lead to changes 
in biomechanical function which increases the risk of injury 
(Mizrahi, Verbitsky, & Isakov, 2000; Parijat & Lockhart, 
2008; Taylor et al., 2016; Weist, Eils, & Rosenbaum, 2004). 
Furthermore, for individuals affected by disorders caused by 
neurological or muscular diseases, or aging, muscle fatigue is 
increased and restricts daily life (Taylor et al., 2016). 
Therefore, quantitative understanding, modeling and 
monitoring of muscle fatigue is of utmost importance for 
devising appropriate training plans for athletes (Ament & 
Verkerke, 2009), design and optimization of rehabilitation 
procedures (Bonato, Roy, Knaflitz, & De Luca, 2001), 
prevention of fatigue-induced injuries, as well as reductions 
of occupational hazards.  

_____________________ 
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Traditionally, monitoring of muscle fatigue has been 
conducted by detecting and quantifying fatigue induced 
changes in the electromyography (EMG) signals of the 
relevant muscles (Bonato et al., 2001; Cifrek, Medved, 
Tonković, & Ostojić, 2009; Dimitrov et al., 2006; Karlsson, 
Yu, & Akay, 2000), or in the relevant kinematic and/or 
dynamic variables characterizing movements of the 
investigated person (Gholami, Napier, Patiño, Cuthbert, & 
Menon, 2020; Karg, Venture, Hoey, & Kulic, 2014; 
Karvekar, Abdollahi, & Rashedi, 2021; Sedighi Maman et 
al., 2020; Whelan, O'Reilly, Ward, Delahunt, & Caulfield, 
2016). EMG-signal based tracking of muscular fatigue is 
based on the fact that as muscular fatigue progresses, both the 
firing frequency of the motor units and the muscle fiber 
conduction velocity are reduced, which causes the spectrum 
of the relevant EMG signals to shift towards lower 
frequencies as fatigue progresses (Contessa & De Luca, 
2013; De Luca & Hostage, 2010; Merletti & Farina, 2016; 
Taylor et al., 2016). Consequently, various EMG-signal 
based metrics were proposed as indicators of muscle fatigue, 
including frequency-domain metrics, such as the median and 
mean power frequency (Cifrek et al., 2009) and spectral 
indices (Dimitrov et al., 2006), as well as joint time-
frequency-domain metrics, such as the instantaneous 
frequency (Bonato et al., 2001; Karlsson et al., 2000). 
Furthermore, when muscle fatigue occurs, movement 
strategies (Karg et al., 2014), leading to muscle fatigue 
monitoring strategies based on the changes of the relevant 
kinematic signatures, including but not limited to 
accelerations (Karvekar et al., 2021; Whelan et al., 2016), 
joint angles (Karg et al., 2014; Sedighi Maman et al., 2020; 
Whelan et al., 2016) and angular speeds (Karvekar et al., 
2021; Whelan et al., 2016), or gait parameters during 
walking, such as stride length and time (Gholami et al., 2020; 
Sedighi Maman et al., 2020). 

Whether using EMG features or kinematic and dynamic 
signatures, the above-mentioned approaches can be seen as 
muscle fatigue monitoring methods that use a purely signal-
based paradigm for monitoring the system condition 
(Alaswad & Xiang, 2017). Signal-based monitoring 
associates the underlying system condition with the system 
outputs in the sense that anomalous system behavior is 
associated with observing anomalous outputs from the 
system. An underlying assumption associated with this 
paradigm is that the system inputs and environment are 
stationary. This, however, is an unrealistically restrictive 
assumption when monitoring highly complex dynamic 
systems, such as the human musculoskeletal systems, where 
highly variable muscle activities (R. A. Miller, Thaut, 
McIntosh, & Rice, 1996) and motion patterns (Hausdorff, 
Peng, Ladin, Wei, & Goldberger, 1995) usually occur. This 
greatly limits the applicability of purely signal-based 

 
1 vARX models are essentially linear dynamic models relating inputs and 
outputs of a system. 

methods in monitoring muscle fatigue, especially during 
long-term and highly dynamic activities. 

As an alternative to the signal-based paradigm, the so-called 
system-based condition monitoring paradigm utilizes both 
inputs and outputs of a system to construct and track dynamic 
relationships between them (Isermann, 2011). Tracking the 
changes of the relationship between the system inputs and 
output instead of the changes of only the output enables 
monitoring of systems that undergo highly variable operating 
regimes with a wide spectrum of inputs. Therefore, the 
stationary input assumption is no longer required in the 
system-based paradigm. Consequently, system-based 
approaches have seen numerous applications in monitoring 
of systems that undergo highly dynamic operating regimes, 
such as automotive engine systems (Cholette & 
Djurdjanovic, 2012; Liu, Djurdjanovic, Marko, & Ni, 2009), 
electricity generators (Djurdjanovic, Hearn, & Liu, 2010), 
robotics (Bryant, 2014; Costuros, 2013) and manufacturing 
systems (Shi, 2006). 

Recently, the system-based monitoring paradigm also gained 
attention in the domain of monitoring of muscular fatigue 
during human body movements and this paper can be seen as 
a contribution to the research in that direction. In the next 
section, we offer a brief review of the state-of-the-art in 
system-based monitoring of muscular fatigue and outline 
unique contributions of the novel research presented in this 
paper. As will be shown, the previous system-based 
monitoring of muscular fatigue faced challenges in 
establishing muscle-specific fatigue indicators, as it relied on 
purely data-driven modeling of dynamics between readily 
measurable signals, which mean that muscles forces, which 
are not readily measurable, could not be considered. To 
address this challenge, in this work, we combine data-driven 
approaches with physics-based musculoskeletal models to 
formulate and track muscle-specific dynamic models relating 
the EMG signals and the corresponding estimated muscle 
forces. 

2. REVIEW OF PRIOR RESEARCH IN SYSTEM BASED 
APPROACHES TO MONITORING OF MUSCULAR 
FATIGUE 

The earliest work pursuing system-based paradigm for 
monitoring of muscular performance can be found in 
(Musselman, Gates, & Djurdjanovic, 2016), where 
musculoskeletal dynamics was modeled using vectorial 
autoregressive models with exogenous inputs (vARX 
model) 1 , which took the instantaneous intensity and 
frequency features from relevant EMG signals as model 
inputs, while angular velocities of the joints involved in the 
motion were as the outputs. For each participant in the study, 
the vARX model describing his/her musculoskeletal 
dynamics in its fresh, non-fatigued condition was built using 
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the EMG and limb motion data observed in the earliest stages 
of the exercise, while degradation in the musculoskeletal 
performance was quantitatively evaluated by tracking 
changes in the distributions of the residuals of that model 
which occurred as each participant’s exercise progressed. In 
a later study (Musselman, Gates, & Djurdjanovic, 2017), the 
authors analyzed the same dataset as the one used in 
(Musselman et al., 2016), but with a significant improvement 
in the sense that the study reported in (Musselman et al., 
2017) took into account inherent non-linearities in the 
dynamics of human body motion by replacing the vARX 
models from (Musselman et al., 2016) with non-linear 
dynamic models relating instantaneous EMG intensities and 
frequencies to the joint angular velocities. Specifically, the 
study reported in (Musselman et al., 2017) used the so-called 
Growing Structure Multiple Model System (GSMMS) 
(Cholette & Djurdjanovic, 2012) models to represent 
musculoskeletal dynamics. This was motivated by the 
capability of those “divide-and-conquer” type models 2  to 
elegantly identify situations in which model inputs 
significantly differ from those observed during the model-
building process. Consequently, GSMMS models used in 
(Musselman et al., 2017) enabled detection of situations in 
which participants, consciously or subconsciously, changed 
the way they were executing the pre-described motion, 
leading to unusual EMG patterns unseen during the model-
training process. Regardless of the model form, model 
predictions in such “untrained” situations cannot be trusted to 
reflect the behavior of the actual system and, consequently, 
large modeling residuals observed in those situations can lead 
to false alarms. The ability of the GSMMS models to detect 
such situations and avoid outputting the corresponding 
monitoring results led to smoother, more intuitive fatiguing 
curves than what was observed in (Musselman et al., 2016).  

Unfortunately, the dataset used in (Musselman et al., 2016) 
and (Musselman et al., 2017) corresponded to only one 
fatiguing cycle of each participant, i.e. it did not contain data 
related to the resting process and repeated fatiguing cycles. 
This motivated the study in (Xie & Djurdjanovic, 2019), 
where the authors measured EMG signals of relevant muscles 
and the corresponding forces/velocities associated with 
fatiguing and resting during lower limb muscle isometric 
contraction, as well as during a cyclic motion involving the 
temporomandibular joint (TMJ). In both cases, vARX 
models were used to describe the relevant system dynamics 
and, in both cases, system dynamics described by those 
models showed remarkably consistent recoveries after the 
participants rested. Similar recovery behavior over a longer 
time span has also been observed in (Madden, Djurdjanovic, 
& Deshpande, 2018), where a study of arm muscle fatigue 
during the use of a spacesuit glove was reported. In addition, 

 
2 The divide-and-conquer type models tackle the challenge of model 
nonlinearity by partitioning the input space of the model into a set of disjoint 
regions, with a relatively simple local model describing the system dynamics 
within each of those regions. In particular, the GSMMS model performs the 

the study in (Madden et al., 2018) involved activities with 
two different load settings – one with the glove being 
powered on, and another one involving the same motion 
performed with the unpowered glove. Results clearly showed 
faster-developing and more pronounced fatiguing process 
when the task loads were higher, i.e. when the glove was not 
powered, as opposed to when the same participants did the 
same tasks, but with a powered glove.  

The above mentioned investigations were further extended in 
(Yang, Nicolini, Kuang, Lu, & Djurdjanovic, 2019) by 
tracking the fatigue and recovery process of a grasping task 
over multiple days using the skin-compliant tattoo-like 
sEMG sensors described in (Kabiri Ameri et al., 2017). These 
sensors enable a close electrode-to-skin contact and, unlike 
traditional EMG electrodes, can be left on the skin of a person 
over multiple days without causing irritation or intrusion, 
which greatly reduces sensor-to-noise ratio associated with 
EMG sensing (Kabiri Ameri et al., 2017). The study was 
conducted across multiple days, with three types of trials: 
repetitive trials within the same day, repetitive trials across 
multiple days and repetitive fatigue and recovery trials. 
Throughout all trials and across multiple subjects, consistent 
patterns of system degradation and system recoveries were 
observed during the exercising and recovery portions of the 
trials, respectively. 

However, even though model-based fatigue metrics reported 
in all the previously discussed papers clearly show intuitively 
plausible patterns consistent with muscular fatigue and 
recovery, a quantitative relationship between newly proposed 
system-based condition-monitoring metrics of muscle 
fatigue, and more traditional and widely accepted metrics of 
muscular fatigue was established only recently. Namely, in 
(Madden, Djurdjanovic, & Deshpande, 2021), the authors 
report the first study in which a strong quantitative 
connection was established between fatigue metrics yielded 
by the system-based monitoring approach and two 
traditionally utilized measures of fatigue - the maximum 
voluntary contraction force and the ratings of perceived 
exertion (Madden et al., 2021). These findings further 
corroborated the viability of using the system-based 
monitoring paradigm for continuous quantitative assessment 
of muscle fatigue. 

One should note at this point that all prior studies in the realm 
of system-based monitoring of muscular fatigue relied on 
purely data-driven models of the relevant system dynamics. 
In those studies, the underlying models were built using only 
signatures that could be obtained from readily measurable 
signals, which included (1) EMG sensor readings and (2) the 
corresponding limb kinematic/force variables estimated from 
trajectories of motion tracking markers and external forces 

partitioning of the input space using a Fritzke’s growing gas based growing 
self-organizing network (Fritzke, 1994), which creates clusters of inputs in 
an unsupervised manner, while locally linear dynamic models are fit inside 
each cluster. 
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measured during a person’s motion. Actual muscle forces 
were not among the variables considered in (Madden et al., 
2018, 2021; Musselman et al., 2016, 2017; Xie & 
Djurdjanovic, 2019; Yang et al., 2019) simply because those 
forces cannot be readily obtained in a non-intrusive way, 
especially during movement and exercises. On the other 
hand, from a purely physiological perspective, a dynamic 
model of the forces any individual muscle produces as a 
response to neural excitation would be a much more direct 
reflection of its performance and fatigue condition, simply 
because the limb kinematics and forces are inherently a result 
of a combination of multiple muscle forces moving the body. 
Hence, there could be significant potential benefits if one 
could utilize the readily available sensor readings, such as 
trajectories of motion tracking markers and external forces 
observed during one’s motion, to estimate the relevant 
muscle forces which led to those movements, based on which 
a more immediate system-based approach to monitoring of 
individual muscle-specific fatigue could be pursued. This 
paper aims to exploit the aforementioned opportunity. 

To that end, various physics and physiology driven muscular 
and musculoskeletal models provide foundations for the 
estimation of muscle-related variables that are otherwise 
challenging to measure. One of the most commonly used 
forms of muscle models is the so-called Hill-type muscle 
model form (Hill, 1938; R. H. Miller, 2018; Zajac, 1989). In 
these models, force produced by a muscle is considered to be 
dependent on the summed motor unit action potentials of that 
muscle, as well as the corresponding muscle length and 
contraction velocity. During movement, EMG electrodes can 
be used to non-intrusively obtain measurements of the 
summed motor unit action potentials of a muscle. 
Nevertheless, the corresponding muscle lengths, contraction 
velocities and associated forces cannot be measured directly 
and non-intrusively as the movements take place. Instead, 
muscle lengths and contraction velocities as well as the 
corresponding muscle forces can be estimated from the 
available limb movement and force measurements using 
physics-driven musculoskeletal models (Caruthers et al., 
2016; Gomes, Ackermann, Ferreira, Orselli, & Sacco, 2017; 
Ng, Mantovani, Modenese, Beaule, & Lamontagne, 2018; 
Trinler, Schwameder, Baker, & Alexander, 2019). Typical 
musculoskeletal models describe the kinematics and 
dynamics of human limb movements by approximating 
bones as rigid segments connected by joints and muscles, 
with muscles being modeled as tensile actuator elements 
(Bassani & Galbusera, 2018). The governing equations in 
such musculoskeletal models are the physics-based dynamic 
equations of motion which link the limb and joint kinematics 
and geometries with the muscle forces and external loads on 
the body. Based on those governing equations, inverse 
dynamics can be used to estimate the hard-to-measure 
lengths, contraction velocities and forces of the relevant 
muscles from the relatively easily available measurements of 
external forces acting on the body, and limb geometries and 

kinematics characterizing the motion (Anderson & Pandy, 
2001). Together with measurements of EMG signals, 
estimates of muscle lengths and contraction velocities 
provide inputs for Hill-type models of individual muscles 
during motion, while estimates of individual muscle forces 
provide the corresponding model outputs. Thus, physics-
based musculoskeletal models of relevant movements can be 
used to convert readily available measurements of EMG 
activity and kinematic and dynamic variables into inputs and 
outputs of muscle-specific dynamic models, based on which 
performance and degradation of individual muscles could be 
tracked during movement using the system-level condition 
monitoring paradigm. 

To that end, the aim of this study is to facilitate improved 
system-based monitoring of muscle fatigue through a merger 
of data-driven dynamic modeling and monitoring methods 
with physics-based musculoskeletal models. Improvements 
in the performance of the newly constructed fatigue metric 
will be evaluated through comparison with the traditional, 
EMG-based muscle fatigue indicators. The remainder of this 
paper is structured as follows. Section 3 describes the novel 
system-based approach to monitoring of muscle-specific 
fatigue levels and the setup of the experimental case study in 
which the new method is evaluated. Section 4 presents the 
results of applying the proposed method to monitoring of 
muscle fatigue and compares its performance to the results 
obtained using a traditional EMG-signal based fatigue 
indicator. Finally, summary of the finding of this work and 
several directions for possible future research are enclosed in 
Section 5. 

3. METHODS 

3.1. General Method Description 

The proposed system-based approach for monitoring of 
muscle fatigue tracks the changes in individual muscle 
dynamics based on the available measurements of limb 
movements and external forces. Inspired by the Hill-type 
muscle models  (Hill, 1938; Zajac, 1989), we describe the 
dynamics of each individual muscle using a model whose 
inputs are muscle lengths and contraction velocities, as well 
as selected key signatures characterizing the electrical 
excitations associated with that muscle, while model outputs 
are the corresponding muscle forces. Figure 1 shows an 
overview of the data and models used in the proposed 
approach. Details of the data and the models involved are 
described in the remainder of this subsection. 

Electrical activities associated with muscle excitation can be 
continuously sensed during motion using EMG electrodes. 
Such measurements are well-known to be highly noisy and 
non-stationary (Musselman et al., 2016), which is why all 
EMG signals were first transformed into their binomial-
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kernel based joint time-frequency distributions 3  (TFDs) 
(Jeong & Williams, 1992). Instantaneous intensities and 
instantaneous frequencies were then extracted from EMG 
TFDs and used as muscle-activity related inputs into the Hill-
type muscle models because of their well-documented 
relationship with the corresponding muscle forces (Marieb & 
Hoehn, 2007) and muscle fatigue (Bilodeau, Schindler-Ivens, 
Williams, Chandran, & Sharma, 2003; Potvin, 1997). 

In order to transform trajectories of motion tracking markers 
and external forces measured during a person’s motion into 
estimates of the corresponding muscle-specific lengths, 
contraction velocities and forces 4 , we use the inverse 
dynamics procedure based on the physics-based 
musculoskeletal model of the relevant motion. Specifically, 
for each participant, individualized geometries for that 
person’s musculoskeletal model are obtained by scaling a 
generic form model to match the participant’s anthropometry, 
as described in (Delp et al., 2007). Based on those 
geometries, trajectories of joint rotations are calculated using 
the weighted least-squares based inverse kinematics 
procedure, which determines the joint rotations that most 
accurately reproduce the trajectories of motion tracking 
markers. Finally, based on the joint rotations and model 
geometries, muscle lengths and muscle contraction velocities 
can then be calculated. The corresponding muscle forces are 
estimated through the so-called static optimization procedure 
which finds a set of muscle forces that can produce the joint 
rotations, while minimizing some physiologically-inspired 
cost function (Anderson & Pandy, 2001). Following 
(Anderson & Pandy, 2001), in this paper we pursue this step 
via minimization of the sum of squared muscle activations, 
which hypothesizes that the neuromuscular system 
minimizes the amount of neuromuscular activations to 
achieve muscular contractions. Other cost functions, such as 
the sum of muscle forces, the sum of muscle stresses, or the 
metabolic cost on the muscles, can also be used. A 
comprehensive review of different cost functions used in 
static optimization for estimating muscle forces can be found 
in (Erdemir, McLean, Herzog, & van den Bogert, 2007). 

Following Musselman et al. (Musselman et al., 2017), in 
order to capture the least degraded dynamics of muscle q for 
person p, the GSMMS model Mp,q was built using data 
collected at the beginning of the person’s exercise (the initial 
part of each person’s exercise), during which the muscle’s 
performance is believed to be the least degraded. Inputs into 
these data driven models were the instantaneous intensities 
and frequencies extracted from the relevant EMG signals, as 
well as the estimated muscle lengths and the contraction 
velocities, while the model outputs were the muscle forces 
estimated using physics-based musculoskeletal modeling. 

 
3 Binomial kernel is a signal independent member of the so-called reduced 
interference distribution family of Cohen’s class time-frequency kernels 
(Jeong & Williams, 1992). The signal independent nature of this kernel 
enables a faster calculation of time-frequency distributions compared to 
signal dependent kernels, while delivering the favorable mathematical 

The term modeling residual in this modeling setup, therefore, 
refers to the difference between the muscle forces predicted 
by the GSMMS model and the muscle forces estimated using 
musculoskeletal modeling. The model Mp,q built in this least 
degraded state will be referred to as the “fresh model”, and 
the data used to train it will be referred to as the “fresh data”. 
Let !!,#$%&'(  denote the distribution of modeling residuals 
produced by the fresh model Mp,q on the fresh dataset. As the 
exercise progresses and new data arrive, the distribution of 
the most recently observed modeling errors produced by the 
fresh model Mp,q can be generated. Let us denote this 
distribution by !!,#) , where " denotes the time interval over 
which the performance of muscle q for person p is evaluated, 
i.e., the time interval over which the distribution !!,#)  of 
modeling errors produced by the fresh model is evaluated. If 
the dynamic behavior of muscle q for person p during the 
time interval T is the same or similar to that observed on the 
fresh data, the distributions !!,#$%&'(  and !!,#)  should be 
similar to each other. However, if the muscle dynamics in the 
interval T have changed compared to those observed on the 
fresh data, due to, e.g. fatigue or injury, the distribution !!,#)  
will be different from the fresh distribution !!,#$%&'(.  

This discrepancy between the template distribution of 
modeling residuals !!,#$%&'(  and the distribution  !!,#)  
generated by the fresh model Mp,q during time-interval T can 
be quantified and used to track the degradation of the muscle 
condition. Following (Musselman et al., 2017), the similarity 
between the two distributions is evaluated using the 
Matusita’s coefficient of overlap between two distributions 
(Matusita, 1955), expressed in the form  

#$%!,#) = '(!!,#$%&'((*)!!,#) (*),* (1) 

where the overlap coefficient #$%!,#)  will be referred to as the 
System Freshness Index (SFI) for muscle q of person p, 
observed during the interval T. Please note that SFI 
coefficients can range between 0 and 1, with 1 indicating a 
perfect match between the two distributions of modeling 
residuals, and thus a perfect match between the fresh and 
most recently observed muscle dynamics. Other symmetric 
and bounded measures of the overlap/distance between two 
distributions, such as the Jenson-Shannon divergence, may 
also be used for defining the SFI metrics. A comprehensive 
survey of such metrics can be found in (Cha, 2007). 

To evaluate the performance of the newly proposed fatigue 
metric, we compared it to the performance of a muscle fatigue 
index based on the instantaneous frequency of EMG signals, 
which is widely seen as a traditional EMG-based muscle 

properties, including signal filtration based on the suppression of the so-
called time-frequency cross-terms (Cohen, 1995). 
4 As mentioned earlier, estimated muscle lengths, contraction velocities and 
extracted EMG signatures form inputs for the Hill-type muscle models, 
while estimated muscle forces constitute outputs of those models. 
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fatigue indicator (Bonato et al., 2001). Let $!,#$%&'( denote the 
distribution of the instantaneous EMG frequencies in the 
fresh dataset and let $!,#)  denote the distribution of the 
instantaneous frequencies during some interval T. Following 
the way we introduced the system-based fatigue indices in 
(1), let us define the purely EMG based fatigue index for 
muscle q of person p during time interval T using the 
Matusita’s overlap coefficient,  

-$%!,#) = '($!,#$%&'((*)$!,#) (*),* (2) 

Once again, one should note that the EMG-based Freshness 
Index (EFI) defined by (2) can take values between 0 and 1, 
with 1 indicating a perfect match between the two 
distributions of instantaneous EMG frequencies, and thus 
lack of fatigue-induced changes relative to the template 
distribution $!,#$%&'(. 

The force recorded during fatigue produced by repeated 
tetanic stimulation of individual muscle fiber shows a 
progressive declining trend (Allen, Lamb, & Westerblad, 
2008). This suggests a well-behaved fatigue index should 
show a monotonic trend over time, depicting progression of 
fatigue-induced changes in the corresponding muscle’s 
behavior away from its fresh performance. Following this 
logic, in this study, we used the one-tailed Mann-Kendall test 
for monotonic trends (Kendall, 1948) to statistically assess 
(. < 0.05) existence of monotonic trends over time in the 
SFI and EFI indices.  

In addition to the monotonicity, we also compared the levels 
of noise in the fatigue indices generated from the system-
based and signal-based approaches. Let {$%*; 5 = 1,… , 9} 
denote a time-series of fatigue indices, where 9 is the number 
of elements of the time series. We assessed the relative noise 

level at sample i of that time-series using the quantity ;* =
|$,!-$,	/ !|

$,	/ !
, where $%	= * denotes the denoised value of the time-

series sample i, which was obtained by applying a simple 
moving average to the time-series {$%*; 5 = 1,… , 9}. Then, 
for each muscle of each participant in the study, a one-tailed 
two-sample t-test (. < 0.05) was used to test if the relative 
noise of the system-based SFI indices, >;*'0'; 5 = 1,… , 9?, 
was smaller than or equal to the relative noise of the purely 
EMG-based indices EFI, {;*123; 5 = 1,… , 9}.  

3.2. Description of the Experiment 
The data used for muscle fatigue monitoring was collected 
from 12 healthy individuals who performed a repetitive 
sawing motion. The experiment and collected data are 
originally described in the previous study by Gates and 
Dingwell (Gates & Dingwell, 2008) and the data were used 
in (Musselman et al., 2016, 2017) for system-based 
monitoring of the performance of the neuromusculoskeletal 
system using purely data-driven dynamic models. The 
following will offer the essential information in the exercise 
protocol, as well as the kinematic, kinetic and EMG 
measurements in this study, while a more detailed description 
can be found in (Gates & Dingwell, 2008). 

As illustrated in Figure 2, subjects were seated in a high-back 
chair with a belt to restrain the trunk movement. They were 
directed to push and pull a handle attached to a weight stack 
over a low-friction metal track in the anterior-posterior 
direction until voluntary exhaustion. The weight stack was 
adjusted for each subject to be 15% of their maximum 
isometric pushing/pulling strength. The frequency of the 
movement was guided by a metronome, whose frequency 
was approximately 1 Hz and was fixed during the movement. 

 
Figure 1: Data and models used in the proposed system-based monitoring approach. 
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For kinematic measurement, sixteen reflective markers were 
placed on the participant’s trunk, upper arm, lower arm and 
hand to track the movement of each body segment. An extra 
marker was placed on the handle to determine the motion 
cycle. The spatial position of these markers was collected at 
60 Hz by an eight camera Vicon-612 motion analysis system 
(Oxford Metrics, Oxford, UK), while the forces and moments 
exerted on the handle were concurrently measured by a six-
axis	 load	cell	(JR3	Inc.,	Woodland,	CA,	USA)	mounted at	
the	base	of	 the	handle. The EMG signals of the arm and 
torso muscles of each participant were recorded at 1,080 Hz 
using a Delsys Bagnoli-8 (Delsys Inc., Boston, MA, USA) 
system and were integrated with the Vicon-612 motion 
measurements. The main muscles involved in the exercise are 
the middle trapezius (MT), pectoralis major (PM), anterior 
deltoid (AD), lateral deltoid (LD), posterior deltoid (PD), 
triceps (T), and biceps (B). 

An upper extremity musculoskeletal model called Dynamic 
Arm Simulator (Blana, Hincapie, Chadwick, & Kirsch, 2008) 
was used in this study for estimating the muscle lengths, 
muscle contraction velocities and muscle forces during the 
sawing motion. The model comprises seven body segments, 
including thorax, clavicle, scapula, humerus, ulna, radius and 
hand. The eleven degrees of freedom in the model are 
distributed in the sternoclavicular, acromioclavicular and 
glenohumeral joints, elbow flexion-extension and forearm 
pronation-supination. A total of 29 shoulder and arm muscles 
are modeled, including all the muscles described in the 
previous paragraph. The model was verified by comparing 
estimated muscle activations to  EMG signals recorded from 
the shoulder and arm muscles (Blana et al., 2008). Subject-
specific scaling of model geometries was performed in 

Opensim 4.0 (Delp et al., 2007), while inverse kinematics, 
inverse dynamics and static optimization stages were 
conducted using Opensim 4.0 API with MATLAB for 
automatic processing. 

4. RESULTS AND DISCUSSION 

The SFI for each of the 84 muscles from the 12 subjects 
displayed a statistically significant (. < 0.05) monotonically 
decreasing trend, as per Mann-Kendall tests. On the other 
hand, the EFI of 15 muscles (17.86% of the total of 84 
analyzed muscles) failed to show statistically significant 
monotonically decreasing trends. Figure 3 shows detailed 
results of statistical monotonicity tests for EFI metrics 
obtained for all muscles and all 12 subjects. 

 
Figure 2: The left plot shows schematic illustration of the repetitive sawing motion (left) (Gates & Dingwell, 2008), while 

the right plot illustrates the corresponding musculoskeletal model rendered by the Opensim 4.0 software (Delp et al., 
2007). White circles on the left plot represent the kinematic markers used to track the subject’s motion via motion capture 

system, while pink circles on the right plot are the corresponding virtual markers defined in the musculoskeletal model. 

 
Figure 3: The EFI showing (1) or not showing (0) a 

significant (. < 0.05) monotonically decreasing trend 
by the Mann-Kendall test. 
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Furthermore, as illustrated in Figure 4, statistical tests 
showed that the SFI had significantly (. < 0.05)  smaller 
noise levels in all but one of the studied muscles, compared 
to the purely EMG-based fatigue indices. This reduction in 
noise levels is even more evident from Figure 5, which shows 
the muscle-specific box and whisker plots of the relative 
noise terms obtained from the SFI and EFI metrics for all 
participants. There was only one exception (the B muscle of 
Subject 11) in which case the relative noise associated with 
the SFI was not significantly smaller than the relative noise 
associated with the EFI. The corresponding EFIs and SFIs are 
shown in Figure 6, where one can see that the two indices 
behave in a relatively similar way, with similar levels of 
noise. Nevertheless, even in that case, SFIs show lower levels 

(0.73%) of relative noise compared to the EFIs (0.80%), only 
with false alarm levels slightly higher than the standard . =
0.05 (significance is established only at false alarm rate of 
. = 0.1183). For comparison, Figure 7 shows a more typical 
case in which SFIs show much lower noise levels compared 
to the EFIs. 

Besides observing the overall stronger monotonicity and 
reduced noise levels provided by the SFI metric, we also 
observed some interesting differences in temporal evolutions 
of SFIs for different participants. Namely, we observed that 

 
Figure 4: The noise level of the SFI significantly (. <
0.05) smaller (1) or not significantly smaller (0) than 

the relevant EFI. 

 
Figure 5: Box and whisker plots illustrating distributions 
of the relative noise levels across all participants of the 

SFI and the EFI metrics for each muscle. 

 

 
Figure 6: The SFI and EFI of the B muscle of Subject 11, an example when the SFI and EFI both showed monotonically 
decreasing trend and had similar noise level. The gray patches indicate the portion of data used for training the model and 

constructing the fresh distribution of model residuals for the SFI or for constructing the fresh distribution of the EMG 
instantaneous frequency for the EFI. 

 

 
Figure 7: The SFI and EFI metrics of the MT muscle of Subject 3. This is an example in which the SFI has a statistically 

lower levels of relative noise compared to the EFI indices. Furthermore, unlike EFIs, SFIs for this muscle show a 
significant (. < 0.05) monotonically decreasing trend, as per Mann-Kendall test. 
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exercise durations for various participants varied widely5 , 
from 274 seconds for the participant who exercised the 
shortest amount of time, to 2688 seconds for the participant 
who exercised the longest and who also just happened to be 
a triathlete. Furthermore, we also observed that in many 
cases, certain muscles showed slight recoveries of SFIs in 
later stages of the exercise, as if there was some recovery in 
the performance of those muscles. Anecdotally, endurance 
athletes often report the ability to change the way they 
perform an exercise or a task to rest some muscles and thus 
endure that task or exercise longer. We wanted to 
quantitatively evaluate if there was a relation between the 
time-durations of each participant’s exercise and their 
muscles showing signs of performance recovery in their 
corresponding SFIs. 

To do that, we evenly divided temporal evolutions of each 
SFI into five segments. If the SFI during one segment showed 
a statistically significant ( p < 0.05 ) monotonically 
increasing trend as per the Mann-Kendall test, the segment 
would be identified as a recovery segment. A Pearson 
correlation coefficient was then computed to assess the 
relationship between the exercise duration and the total 
number of recovery segments for each subject. We found 
there was a strong, statistically significant positive 
correlation between the two variables, r = 0.78 , n = 12 , 
p = 0.0028. The scatterplot in Figure 9 summarizes exercise 
durations and numbers of recovery segments for each 
participant, while Figure 8 shows temporal evolutions of 
muscle-specific SFIs of the shortest and the longest 
performing participant in the study, with degradation and 
recovery segments highlighted within the plots. One can 
clearly see many more recovery segments (13 recovery 
segments) in the SFI evolutions of the longest performing 

 
5 The three shortest performing participant exercised between 274 to 375 
seconds, while the two longest performing participants exercised for 2147 

participant, compared to what we see with the shortest 
performing participant (only 3 recovery segments). 

5. CONCLUSIONS AND FUTURE WORK 
In this study, we proposed a novel system-based approach for 
monitoring muscle fatigue by merging physics-based and 
data-driven approaches which enable fusion of EMG 
signatures with measurements of kinematic and kinetic 
variables. The method is evaluated using data obtained from 
a repeated sawing motion experiment involving 12 
participants. The proposed system-based fatigue metric 
consistently reflected the progression of muscle fatigue with 
stronger monotonicity and reduced noise levels compared to 
a traditional muscle fatigue indicator based solely in EMG 
signal analysis. Furthermore, the novel system-based 
monitoring approach revealed different muscle fatigue 
progression patterns among different participants in the 
experiment. Notably, a statistically significant, strong 
correlation was established between the time each participant 
was able to perform the exercise until voluntary exhaustion 
and the number of time segments in the exercise during which 

and 2688 seconds respectively. The exercise time of the other participants 
varied between 609 and 973 seconds. 

 
Figure 8: The SFI of the shortest (left) and the longest 

performing subject (right). Each SFI was divided evenly 
into five segments. The green dashed line in each 

segment indicates a significant negative slope of the 
linear fit to the SFI, while the red dashed line indicates a 
significant positive slope and was regarded as recovery 

behavior in the SFI. 

 
Figure 9: Number of recovery segments versus exercise 

duration. 
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at least some muscles of that participant showed temporary 
performance recoveries. This observation quantitatively 
points to the ability of those who exercised longer to 
temporarily change the way they executed the prescribed 
motion in order to briefly rest some muscles and thus extend 
the exercise duration. This is something endurance athletes 
intuitively understand and report and one should note that the 
participant who exercised the longest in our study was indeed 
a triathlete. 

Future work may be needed to formally evaluate connections 
between the newly introduced SFI indices and other, non-
intrusively obtained metrics of muscular fatigue, such as 
Maximal Voluntary Contraction (MVC) (Vøllestad, 1997) or 
Rate of Perceived Exhaustion (RPE) (Borg, 1990). Even 
though, unlike SFI measures of muscle fatigue, MVC and 
RPE metrics cannot be obtained in real-time, during exercise, 
and are less quantitative in their nature than SFI or EFI 
indices, they are more prevalent in literature and can be 
considered as relatively accepted macroscale indicators of 
muscle fatigue among clinicians and researchers (Debold, 
2012). In addition, comparing the system-based and the 

symptom-based approach may be conducted by monitoring 
muscle fatigue during less constrained motion, such as 
running or biking at different speeds. This could further 
demonstrate the benefits of the system-based monitoring 
paradigm because of the higher variability in both the system 
inputs (EMG, kinematics) and outputs (muscle forces) during 
such motions. Furthermore, system-based fatigue metrics 
analyzed in this study occasionally indicated brief, localized 
muscle performance recoveries during exercise and 
occurrence of those performance recovery segments was 
shown to be correlated with exercise durations. Future 
research involving system-based performance metrics, such 
as the one introduced in this paper, should further investigate 
if and how muscle fatigue progression patterns of highly 
trained endurance athletes determine their ultimate 
performance, or how those patterns compare against what we 
see in the general population. Finally, enhanced ability to 
accurately track muscle fatigue has significance in eventually 
guiding the prescription of customized training and 
rehabilitation plans, as well as design of precision-
customized orthotic and assistive devices. 
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