Prognostics Health Estimation of Lithium-ion Batteries in Charge-Decay Estimation Uncertainties – A Comparative Analysis

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 19, 2020
Chinedu I. Ossai

Abstract

This study uses nonlinear mixed effect-based degradation modeling that considers the influence of uncertainties on the state-of-charge of lithium-ion batteries to determine the State-of-Health (SOH) of the batteries at different End-of-Life (EOL) failure thresholds. The results of the analysis obtained with lithium-ion batteries data from NASA Ames Centre repository, confirms that the SOH of the batteries is influenced by the uncertainties. This is because the random effects models show a better correlation with the experimental data than the fixed effects models that have not considered uncertainty. It is important therefore that battery prognosis is done in consideration of these parametric uncertainties, to forestall poor estimation of the SOH of the lithium-ion batteries at various stages of the lifecycle. Seeing that the presence of uncertainties could result in unwarranted failures of assets powered by the batteries, due to over-estimation of the remaining useful life (RUL) or capital loss, due to early decommissioning of efficient batteries when the RUL is under-estimated.

Abstract 246 | PDF Downloads 234

##plugins.themes.bootstrap3.article.details##

Keywords

Charge capacity decay, degradation model, nonlinear mixed effect models, lithium-ion battery, reliability, uncertainty

References
An, D., Choi, J. H., & Kim, N. H. (2013). Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliability Engineering & System Safety, 115, 161-169
Aslam, M., Kazmi, S. M. A., Ahmad, I., & Shah, S. H. (2014). Bayesian estimation for parameters of the Weibull distribution. Science International, 26(5), 1915-1920.
Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K., & Staniewicz, R. J. (2005). Main aging mechanisms in Li ion batteries. Journal of power sources, 146(1-2), 90-96.
Daigle, M., & Kulkarni, C. S. (2016). End-of-discharge and End-of-life Prediction in Lithium-ion Batteries with Electrochemistry-based Aging Models. In AIAA Infotech@ Aerospace (p. 2132).
Harter, H. L., & Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples. Technometrics, 7(4), 639-643.
He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321.
Hu, C., Jain, G., Tamirisa, P., & Gorka, T. (2014). Method for estimating capacity and predicting remaining useful life of lithium-ion battery. Applied Energy, 126, 182-189.
Kuhn, E., & Lavielle, M. (2005). Maximum likelihood estimation in nonlinear mixed effects models. Computational Statistics & Data Analysis, 49(4), 1020-1038.
Liu, D., Pang, J., Zhou, J., Peng, Y., & Pecht, M. (2013). Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability, 53(6), 832-839.
Long, B., Xian, W., Jiang, L., & Liu, Z. (2013). An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. Microelectronics Reliability, 53(6), 821-831.
Miao, Q., Xie, L., Cui, H., Liang, W., & Pecht, M. (2013). Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectronics Reliability, 53(6), 805-810.
Mo, B., Yu, J., Tang, D., & Liu, H. (2016, June). A remaining useful life prediction approach for lithiumion batteries using Kalman filter and an improved particle filter. In Prognostics and Health Management
(ICPHM), 2016 IEEE International Conference on (pp. 1-5). IEEE.
Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688.
Orchard, M. E., Hevia-Koch, P., Zhang, B., & Tang, L. (2013). Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Transactions on Industrial Electronics, 60(11), 5260-5269.
Saha, B., & Goebel, K. (2007). Battery data set, NASA ames prognostics data repository. NASA Ames, Moffett Field, CA, USA. Available from <(http://ti.arc.nasa.gov/project/prognostic-data-repository) > 22/7/2017
Sarre, G., Blanchard, P., & Broussely, M. (2004). Aging of lithium-ion batteries. Journal of Power Sources, 127(1), 65-71.
Wang, D., Miao, Q., & Pecht, M. (2013). Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model. Journal of Power Sources, 239, 253-264.
Wu, S. J., & Shao, J. (1999). Reliability analysis using the least squares method in nonlinear mixed-effect degradation models. Statistica Sinica, 855-877.
Xian, W., Long, B., Li, M., & Wang, H. (2014). Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter. IEEE Transactions on Instrumentation and Measurement, 63(1), 2-17.
Xing, Y., Ma, E. W., Tsui, K. L., & Pecht, M. (2013). An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectronics Reliability, 53(6), 811-820.
Section
Technical Papers