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ABSTRACT 

This study uses nonlinear mixed effect-based degradation 

modeling that considers the influence of uncertainties on the 

state-of-charge of lithium-ion batteries to determine the 

State-of-Health (SOH) of the batteries at different End-of-

Life (EOL) failure thresholds. The results of the analysis 

obtained with lithium-ion batteries data from NASA Ames 

Centre repository, confirms that the SOH of the batteries is 

influenced by the uncertainties. This is because the random 

effects models show a better correlation with the 

experimental data than the fixed effects models that have not 

considered uncertainty. It is important therefore that battery 

prognosis is done in consideration of these parametric 

uncertainties, to forestall poor estimation of the SOH of the 

lithium-ion batteries at various stages of the lifecycle. Seeing 

that the presence of uncertainties could result in unwarranted 

failures of assets powered by the batteries, due to over-

estimation of the remaining useful life (RUL) or capital loss, 

due to early decommissioning of efficient batteries when the 

RUL is under-estimated. 

1. INTRODUCTION 

One of the challenges in asset integrity management is the 

ability to estimate the reliability of the facilities, as longer 

lifecycles of assets resulting from advanced designs and 

manufacturing technologies make it more difficult to obtain 

failure results from failure tests analysis. Historical failure 

records from component life tests, which used to be the 

primary source of information for reliability estimation is not 

providing enough information for longtime decisions as 

failure trend data are becoming sketchier. This longevity of 

components, though a good thing, has unfortunately 

impacted on the validity and accuracy of existing SOH 

estimation methodologies as rudimentary life data analysis 

does not provide enough information for the study of 

different deterioration mechanisms such as crack, wear, 

fatigue, corrosion, oxidation, and decay (Wu & Shao 1999). 

I, therefore, have to make use of degradation trends and 

physical / phenomenological models of degradation as an 

alternative tool for the prognostics of components, sub-

systems, and systems of assets.  

Lithium-ion batteries that are used in many industrial 

applications, as the source of energy, have also been 

technologically revolutionized, with enhanced lifecycle 

duration that has made it challenging to estimate the SOH at 

different EOL failure thresholds. This challenge has inspired 

this research that aims to utilize degradation modeling 

technique of nonlinear mixed effects to establish the future 

status of the battery charge decay, vis-à-vis determining the 

SOH of the battery over time, considering the uncertainties. 

The research on lithium-ion battery SOH has intensified over 

the recent years with numerous authors working on different 

techniques that help to estimate the lifetime of the batteries 

using degradation modeling (Mo, Yu, Tang & Liu, 2016; Hu, 

Jain, Tamirisa & Gorka, 2014; Xing, Ma, Tsui & Pecht, 

2013). For instance, the implementation of the degradation 

mechanism in the modeling of charge decay of lithium-ion 

batteries provided the medium for using the Dempster-Shafer 

theory and Bayesian Monte Carlo simulation to estimate the 

Remaining Useful Life (RUL) of the batteries (He, Williard, 

Osterman & Pecht, 2011). Researchers have used a data-

driven approach to the estimation of battery RUL, by 

applying a support vector machine algorithm (Nuhic, 

Terzimehic, Soczka-Guth, Buchholz & Dietmayer, 2013) 

whereas relevance vector machine, which is also a machine 

learning tool was used by other authors (Wang, Miao & 

Pecht, 2013). Other researchers who have worked on lithium-

ion battery degradation modeling using other techniques that 

were either meant for validation or completion of the 

prognostic modeling process have only done so by 

considering the fixed effect parameters, which have a global 

behavioral pattern that is assumed to be uninfluenced by any 

uncertainty. Other authors (Liu, Pang, Zhou, Peng & Pecht, 

2013) combined Gaussian process functional regression with 

sigmoidal degradation model for lithium-ion battery SOH 
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estimation while particle filter, Kalman filter, particle swarm 

optimization, auto-regression and the genetic algorithm have 

also been combined in one form or another by other 

researchers (Mo et al., 2016; Orchard, Hevia-Koch, Zhang & 

Tang, 2013; An, Choi & Kim 2013; Miao, Xie, Cui, Liang & 

Pecht, 2013; Xian, Long, Li & Wang, 2014; Long, Xian, 

Jiang & Liu, 2013) to predict the RUL of lithium-ion 

batteries. Despite numerous researches in lithium-ion battery 

prognosis, as exemplified by the literatures reviewed above, 

one of the most fundamental causes of flawed prognostic 

estimation – uncertainty, has not been considered by most of 

these studies. Given the fact that this omission could be a 

fundamental source of faulty prognosis and unreliable RUL 

estimation, it became imperative that this study explores the 

influences of uncertainties on the lifetime estimation of 

lithium-ion battery. This is via a comparative analysis that 

considered the charge decay estimation with both the fixed 

effects and random effects (parameters that are individually 

driven by uncertainties and have the potential of causing 

imbalance in the state of charge capacity decay). 

Uncertainties such as manufacturing defects, environmental 

conditions, experimentation measurement errors, physical 

and chemical characteristics of the defects in materials (He et 

al., 2011) can influence the charging and discharging pattern 

of the batteries. This action is through the electrolyte 

medium, which allows for transfer of the lithium ions (Li+) 

between the positive and negative electrodes during the 

diffusion process (Daigle & Kulkarni, 2016). This makes it 

imperative to incorporate the impact of these uncertainties in 

degradation modeling. Again, the SOH of the battery, which 

is a measure of the stored energy, is dependent on the electron 

transfer process that is also linked to the diffusion rate of the 

lithium-ions in the electrolyte. 

In this research, the influence of uncertainties in the SOH of 

the lithium-ion batteries with reference to the battery charge 

capacity decay will be studied with nonlinear mixed effect 

degradation model. The aim of which is to determine the 

influence of the random effects on the prognostics of the 

lithium-ion battery, by establishing the remaining useful life 

at 70%, 60% and 50% EOL failure thresholds. The SOH of 

the battery at these EOL thresholds will be estimated with 

fixed (uncertainties are not considered) and random effects 

(uncertainties are considered) and comparison of both will be 

done to establish the flaws associated with the prognostic 

health monitoring of lithium-ion batteries without the 

consideration of uncertainties. The consideration of random 

effects in prognostic will enhance the accuracy of the RUL 

estimation of the lithium-ion batteries. 

2. DEGRADATION MODELING OF LITHIUM-ION 

BATTERY CHARGE DECAY 

In this study, the lithium-ion battery charge capacity decay 

has been assumed to follow a physical degradation trend of 

sigmoidal model per previous researchers (Mo et al. 2016, He 

et al. 2011). The degradation model uses charge decay (units 

of Ah) as a measured physical characteristic, with the number 

of cycles (the period between successful charging and 

discharging) to develop a charge decay behavioral trend of 

the battery per Eq. (1), 

 

𝑄(𝑘) = 𝑃1𝑒
−𝑟1𝑘 + 𝑃2𝑒

−𝑟2𝑘                                                 (1) 
 

where Q(k) represents the charge decay at a given cycle k, P1 

and P2 represent the constants that are related to the battery 

internal impedance whereas r1 and r2 are the charge decay 

constants that are related to battery usage. P1, P2, r1, and r2 

are the fixed effect parameters. 
 
Mixed effect modelling as a dynamic estimation concept is 

vital for predicting the response of parameters in a system 

that shows significant variabilities but has global behavioral 

pattern due to the accumulation of uncertainties that can be 

associated with multiple experimental observations of the 

battery capacity decay at various charging cycles. Hence, for 

different experimental replicates (at the same conditions), a 

multilevel nonlinear mixed effect model can be used to 

determine the time-dependent battery charge capacity decay 

at the charging cycles. Since the charge capacity decay 

observations can be treated as a multilevel nonlinear mixed 

effect model, it can be classified as a level 1 observation, 

which is nested to level 2 (charging cycles) that is nested to 

level 3, involving many observations of experimental 

replicates. The fundamental form of the responses (battery 

charge capacity) of parameters in mixed effect models are 

expected to be the same for some individual parameters 

(fixed effects) of the population, which in this study has been 

assumed to be associated with the sigmoidal model 

parameters shown in Eq. (1). The other variables have 

individually driven known and unknown effects that 

generally create an imbalance in the state of the system 

(random effects). The combination of the fixed and random 

effects in lithium-ion battery charge decay modelling will 

result in the inferential knowledge of the model parameters, 

their influences on the charge fade pattern and parametric 

interactions. 
 
This work will be focusing on the general form of nonlinear 

mixed effect model that can be written per Eq. (2). 
 

𝑄𝑖𝑗 = 𝑓(𝑘𝑖𝑗 , 𝑃1, 𝑟1, 𝑃2, 𝑟2) + 𝜀𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖   (2) 
 
where εij is the error, which is assumed to be independent and 

identically distributed (iid) Gaussian number with zero mean 

and unknown variance σ2 → N (0, σ2), n is the number of 

covariates, mi is the number of observations of ith covariate 

and f represents the degradation of the lithium-ion battery 

charge capacity, which is a nonlinear function of the fixed 

and random effects and Qij is the actual level of lithium-ion 

battery charge capacity observed at a given cycle kij.  
 
Re-parameterization of the charge decay rates in Eq. (1) was 

done to ensure better fitting of the data, reduce error inherent 

in the data and increase the chances of obtaining optimal 
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solutions. This can be seen in the expression shown in Eq. 

(3). 

 

{𝑄𝑖𝑗 = 𝑃1𝑒
−(𝑒

𝜆1𝑘𝑖𝑗) + 𝑃2𝑒
−(𝑒

𝜆2𝑘𝑖𝑗) + 𝜀𝑖𝑗
𝜆1 = log(𝑟1) , 𝜆2 = log(𝑟2)                      

                          (3) 

 

The charge capacity decay over the charging cycles can now 

be expressed by Eq. (4). 

 

𝑄𝑖𝑗 = 𝑓(𝑘𝑖𝑗 , 𝑃1, 𝜆1, 𝑃2, 𝜆2) + 𝜀𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖 (4) 

 

If β represents the parameters such that фij = {P1i, λ1ij, P2i, λ2ij} 

denotes the individual observation, i for cycle kij, then the 

relationship can be further expressed in Eq. (5).  

 

{
 
 

 
 ф1𝑖𝑗 = 𝑃1𝑖 = 𝛼1 + 𝜃1𝑖
ф2𝑖𝑗 = 𝜆1𝑖𝑗 = 𝛼2 + 𝜃2𝑖
ф3𝑖𝑗 = 𝑃2𝑖 = 𝛼3 + 𝜃3𝑖
ф4𝑖𝑗 = 𝜆2𝑖𝑗 = 𝛼4 + 𝜃4𝑖

                                                      (5) 

 

where θi = (θ1i, . . ., θ4i)T represents the random effects vector 

of the parameters and αi = (α1i, . . ., α4i)T represents the fixed 

effect vector of the model. Hence, the charge capacity of the 

lithium-ion battery can thus be represented by Eq. (6) in 

consideration of the expression in Eq. (5). 

 

𝑄𝑖𝑗 = 𝑓(𝑘𝑖𝑗 , 𝛼, 𝜃𝑖) + 𝜀𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖            (6) 

 

Since the vector combining the fixed and random effects, 

which are the known values (measured charge decay at the 

charge cycles) and the unknown values (random effects), is 

represented by ɸ, the relationship in Eq. (7) follows.  

ɸ𝑖𝑗 = 𝐴𝑖𝑗𝛼 + 𝛽𝑖𝑗𝜃𝑖                                                               (7) 

 

where Aij is the matrix for combining the fixed effects while 

βij is the matrix for combining the random effects. 

It, therefore, follows that the charge capacity decay at the 

charging cycles of the lithium-ion battery can be represented 

by Eq. (8). 
 

{
𝑄𝑖𝑗 = 𝑓(ɸ𝑖𝑗 , 𝑘𝑖𝑗) + 𝜀𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑖

𝜃𝑖   𝑖𝑖𝑑~  𝑁(0, 𝜓)                                                              
     (8) 

where ψ is the covariance of the random effects. 

To solve for the fixed and random effect parameters in Eq. 

(2), different techniques that include least square estimation, 

Bayesian hierarchical method and Maximum Likelihood 

Estimation (MLE) (Kuhn & Lavielle, 2005; Wu & Shao, 

1999) can be adopted. In this research, the MLE technique 

has been used for estimating the values of the parameters 

because of the robustness and generality of the technique for 

solving problems with known and unknown values (Harter & 

Moore, 1965; Aslam, Kazim, Ahmad & Shah, 2014), since, 

the random effect represents the unknown values associated 

with the observed values of the charge decay at different 

cycles that represent the known values based on the sigmoidal 

equation (Eq. 1). If L represents the likelihood function for 

the charge capacity decay, it will be estimated by using the 

joint density of the known parameters and its unknown 

counterparts, as shown in Eq. (7) (Kuhn & Laville, 2005; 

Aslam et al., 2014). 

𝐿(ɸ𝑖𝑗 , 𝑄𝑖𝑗) =∏∏𝑃(𝑄𝑖𝑗 , ɸ𝑖𝑗)

𝑚𝑖

𝑗=1

𝑛

𝑖=1

 

=∏∏∫𝑃(𝑄𝑖𝑗 , 𝜃𝑖 , ɸ𝑖𝑗)  𝑑𝜃                                         (7)

𝑚𝑖

𝑗=1

𝑛

𝑖=1

 

 

where 𝑃(𝑄𝑖𝑗 , ɸ𝑖𝑗) represents the probability density function 

of the nonlinear battery charge decay denoted by f, which 

depends on the experimental observed lithium-ion battery 

charge capacity decay at different cycles and the unknown 

random effect parameters. 

 

Since the maximum likelihood estimator for the parameter ɸ 

results in the maximization of the value of the likelihood 

function L, the solution of the MLE problem is obtained by 

determining the logarithmic value of L as per Eq. (8) (Harter 

& Moore, 1965; Aslam et al., 2014).  

𝜕 log(𝐿)

𝜕𝜃
= 0                                                               (8) 

Due to the complexity of Eq. (7) and Eq. (8), a numerical 

approach that solves for the model parameters iteratively is 

utilized. For this study, stochastic approximation expectation 

and maximization technique that uses Markov Chain Monte 

Carlo (MCMC) simulation in a Metropolis-Hasting 

computational framework has been adopted.  

 

3. DATA ACQUISITION SETUP AND FAILURE 

CRITERIA DEFINITION 

 

The fact that the use of lithium-ion batteries results in the loss 

of charge capacity over time of usage, due to aging (Daigle 

& Kulkarni, 2016; Broussely et al., 2005; Sarre, Blanchard & 

Broussely, 2004), which is related to the number of charging 

cycles, makes the degradation continuous and irreversible, 

thereby making f (kij, α, θi) a decreasing function with the 

number of cycles. The failure of the battery is expected to 

occur when a certain critical threshold, fc, of the degradation 

which has been taken as 70%, 60% and 50% of the original 

retained charge capacity of the lithium-ion battery, is 

reached. This End-of-Life (EOL) charge capacity 

corresponds to the expected failure charge cycle of the 

batteries and forms the basis for the comparative study of the 

battery SOH estimated with the fixed and random effect 

models.  
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Lithium-ion battery data from NASA® AMES research 

Centre (Saha & Goebel, 2007) was used for this study, 

considering four sets of battery data – B0025, B0026, B0027 

and B0028, obtained via a three-stage operational profile of 

charging, discharging and impedance at 24oC. The lithium-

ion batteries were charged at constant current of 1.5A until 

the battery voltage reached 4.2V and the voltage was 

maintained until the charge current dropped to 20mA. The 

discharge was done at a constant current level of 2A until the 

battery voltages fell to 2.7V, 2.5V, 2.2V and 2.5V for 

batteries B0025, B0026, B0027 and B0028 respectively 

while the impedance measurement was carried out from 

0.1Hz to 5kHz using the electrochemical impedance 

spectroscopy (EIS). The repeated charging and discharging 

accelerated the battery aging mechanism whereas the 

impedance measurement helped to understand the changing 

trend of the internal mechanisms with the progression of the 

battery deterioration. The experimental results of the four 

batteries are shown in Fig 1. 

 

 

Fig 1: Experimental data of Lithium-ion battery charge 

capacity-decay for B0025, B0026, B0027 and B0028. 

4. RESULTS AND DISCUSSION 

In this study, the battery charge capacity at the cycles is used 

as an indicator of the state-of-health of the batteries because 

the stored energy in the battery cells reflects the charge 

capacity of the batteries (Hu et al., 2014). With the initial 

charge capacity of 2 Ah, it is expected that the EOL of the 

battery, which was assumed to be at 70%, 60% and 50% of 

the retained original charge of the battery, will be reached 

when the charge capacity of the batteries dropped to 1.4 Ah, 

1.2 Ah and 1.0 Ah respectively for 70%, 60% and 50% of 

EOL. The parametric values of the fixed and random effects 

of the batteries were obtained by MLE using the stochastic 

approximation expectation and maximization algorithm (see 

Table 1).  
 
The information in Table 1 was used to determine the fixed 

and random effects of the batteries, which was compared with 

the experimental data in Fig 2. This figure indicated that the 

random effect was a better fit to the experimental data than 

the fixed effect. To further validate this result, the Root Mean 

Square Error (RMSE) shown in Eq. (9) was used as a metric 

to compare the errors in describing the real data. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑖
∑(𝑄𝑒𝑥𝑝 − 𝑄𝑝𝑟𝑒𝑑)

2

𝑛𝑖

𝑖=1

                                 (9) 

 
Table 1: Fixed and random effect parametric values of the 

lithium-ion battery charge capacity decay model. 
Fixed effect 

Parameters 

Random effect parameters 

 Value   B0025 B0026 B0027 B0028 

P1 1.8066 Ψ11 1.8066     1.8066     1.8066     1.8066     

λ1 5.7847 Ψ22 6.6627     5.1922     6.2691 4.6680     

P2 1.8117 Ψ33 1.8366    1.7896    1.8210    1.7994    

λ2 -8.2961 Ψ44 -7.9857 -8.6873 -8.2803 -8.0179 

 

where Qpred represents the predicted battery charge capacity 

with fixed or random effect, Qexp represents the battery charge 

capacity obtained from experiment and ni represents the 

number of samples.  
 
The results of the RMSE of the fixed and random effects at 

99% confidence interval, which is shown in Table 2, further 

confirm that the RMSE of the random effect models is 

smaller than those of the fixed effect model for the batteries. 

This is an indication that the random effect predicted the 

battery charge decay better than the fixed effects, a proof that 

the uncertainties associated with battery manufacturing, 

measurement and environmental conditions indeed have a 

notable influence on the battery charge capacities. 
  
This result has ramifications for the prognostic health 

monitoring of lithium-ion batteries, since the estimated 

charge capacity at the EOL will deviate a little or 

significantly from the actual battery charge capacity, 

depending on the use of fixed effect or random effect models 

(Fig 3). However, the fact that random effect models have 

consistently shown better prediction across the battery data 

set is an indication that it is a better prediction model. Figs 3 

also clearly showed the variation in the predicted future 

battery charge capacities at different charge cycles with 

battery B0027 having the least variation among all the battery 

sets. This could be attributed to the limited influence of 

uncertainties on the battery in comparison to batteries B0025, 

B0026 and B0028.  
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Y

 

 

 

 

Fig 2: Comparison of the Random and Fixed effects estimations of battery charge capacity decay with the experimental 

results for batteries – (a) B0025, (b) B0026, (c) B0027 and (d) B0028

Table 2: RMSE of the batteries obtained at 99% 

confidence interval considering fixed and random effects. 

 

The Probability Density Function (pdf) of the charging 

cycles of the batteries is exemplified at 70% EOL (Fig 4). 

The figures distinctively showed the variation in the 

predicted EOL cycles at the failure thresholds. Again, 

B0027 can be clearly seen to have limited variation at the 

failure thresholds, when compared with the other batteries. 

The information about the EOL charging cycles at the 

failure thresholds in Fig 4 provides an additional indication 

of the expected flaws in the prognostic health estimation of 

the batteries when the random effect is not considered. 

Table 3 shows the estimated EOL cycles of the lithium-ion 

batteries at 70%, 60% and 50% failure thresholds for the 

fixed and random effect models.  The percentage variation 

of the EOL cycles of the random effects (KRE) and fixed 

effects (KFE) model was determined with Eq. (10).  
 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (%) =
𝐾𝑅𝐸 − 𝐾𝐹𝐸

𝐾𝑅𝐸
∗ 100%                     (10) 

 
Since the RMSE of the random effect model is smaller than 

that of the fixed effect model (Table 2), it can be inferred 

from Table 3 that predicting the state-of-health of the 

batteries with fixed effects model will result in prognostic 

health estimations that will vary considerably with those 

predicted by random effects model. This scenario will have 

Battery Fixed effect Random effect 

Lower 

bound 

Mean Upper 

bound 

Lower 

bound 

Mean Upper 

bound 

B0025 0.1471 0.1608 0.1741 0.1016 0.1042 0.1223 

B0026 0.2899 0.2916 0.2938 0.287 0.2871 0.2874 

B0027 0.1063 0.121 0.1368 0.0993 0.0987 0.1095 

B0028 0.1496 0.1628 0.1758 0.1063 0.111 0.1271 

(c) 

(b) 

(a) 

(b) 

(c) 
(d) 
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significant ramification for cost and reliability of assets that 

depend on the batteries for energy. For instance, at 70% 

EOL threshold, battery B0025 is expected to fail 30% 

earlier with the random effect model prediction than when 

it will fail with fixed effect modeling. This can result in 

unplanned breakdown and the associated consequences if 

fixed-effect model was used for the prognosis. Moreover, 

decommissioning of the battery due to shorter EOL cycle  

prediction with fixed effect model can also occur. This is 

evident with battery B0026 that will work 29% more, when 

prognostics is done with random effects model than when 

fixed effect model is used.  

 

Fig 3: Estimated Fixed and Random effects models predicted future charge decay pattern of batteries for batteries: (a) -

B0025, (b) - B0026, (c) - B0027 and (d) - B0028 

Table 3: Variation of the estimated EOL cycle of the 

batteries with Fixed and Random effects models 

EOL Criteria (%)  70% 60% 50% 

B0025 

Random effect  797 1250 1786 

Fixed effect  1033 1651 2381 

Difference  -236 -401 -595 

% Variation  -30% -32% -33% 

B0026 

Random effect  1455 2368 2700 

Fixed effect  1033 1651 2381 

Difference  422 717 319 

% Variation  29% 30% 12% 

                          B0027 

Random effect  1037 1645 2364 

Fixed effect  1033 1651 2381 

Difference  4 -6 -17 

% Variation  0% 0% 1% 

B0028 

Random effect  761 1229 1782 

Fixed effect  1033 1651 2381 

Difference  -272 -422 -599 

% Variation  -38% -34% -34% 

 

 

 

(a) 
(b) 

(c) (d) 
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5. CONCLUSIONS 

This study used degradation modelling of battery charge 

capacity decay at different cycles to determine the 

reliability of lithium-ion batteries, by considering the 

uncertainties associated with the charge decay, using the 

nonlinear mixed effects model.  This comparative study of 

the fixed and random effects models, for remaining useful 

life estimation of the lithium-ion battery was intended to 

show the influence of uncertainties, which can originate 

from the manufacturing process, measurements and 

operational environmental conditions of the battery. 
 
After using maximum likelihood estimate (MLE) to 

determine the likelihood value of the nonlinear function of 

the fixed and random effects, stochastic approximation, 

expectation and maximization algorithm was used for 

determining the parametric values of the fixed and random 

effects. Lithium-ion battery datasets of four batteries – 

B0025, B0026, B0027 and B0028 obtained from NASA 

AMES research Centre were used to test the models and it 

was observed that the random effect models had smaller 

Root Mean Square Errors (RMSEs) than the fixed effect 

models; an indication that uncertainties inherent in the 

battery charge capacity decay, influenced the state of 

charge of the batteries, vis-à-vis the reliability estimated at 

the End-of-Life (EOL) thresholds that were taken to be 

70%, 60% and 50% of the retained original battery charge 

capacity of 2.0Ah. The uncertainties in the battery charge 

capacity decay influenced the reliability of the batteries in 

diverse ways because of the level of the accumulated 

uncertainties inherent in the battery charge with some 

resulting in overestimation and others ending up with a 

conservative estimate of the remaining useful life. 

 

 

 

Fig 4: Probability Density Function of battery charging cycle at 70% End-of-Life for: (a) - B0025, (b) - B0026, (c) - B0027 

and (d) - B0028 

 

(c) 

(a) 

(c) 

(b) 

(d) 
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