References
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues. In Ai communications.
Aha, D., Kibler, D., & Albeit, M. (1991). Instance-based learning algorithms, machine learning. In Machine learning.
Andren, L., H°akansson, L., Brandt, A., & Claesson, I. (2004). Identification of dynamic properties of boring bar vibrations in a continuous boring operation. In Mechanical systems and signal processing.
Bendat, J., & Piersol, A. (Eds.). (2010). Random data; analysis and measurement procedures. Wiley.
Berglund, K. (2013). Predicting wet clutch service life performance, (Unpublished doctoral dissertation). Lule°a University of Technology.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 79-86.
DeCarlo, L. T. (1997). On the meaning and use of kurtosis. In Psychological methods.
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the em algorithm. In Journal of the royal statistical society.
Devlin, M., Tersigni, S., Senn, J., Turner, T., Jao, T., & Yatsunami, K. (2004). Effect of friction material on the relative contribution of thin-film friction to overall friction in clutches. In Sae international.
Fatima, N., Marklund, P., & Larsson, R. (2012). Water contamination effect in wet clutch system. In Proceedings of the institute of mechanical engineers, part d, journal of automobile engineering.
Fatima, N., Marklund, P., & Larsson, R. (2013). Influence of clutch output shaft inertia and stiffness on the performance of the wet clutch. Tribology Transactions, 56(2), 310-319.
Kazunari, O., Akihiko, F., & Takeshi, H. (2009). Proposal of field life design method for wet multiple plate clutches of automatic transmission on forklifttrucks. In Sae international.
Kullback, S., & Leibler, R. (1951). On information and sufficiency. The Annals of Mathematics Statistics, 22(1),79-86.
Leake, D., & McSherry, D. (2005). Introduction to the special issue on explanation in case-based reasoning (Vol. 24; Tech. Rep. No. 2). Artificial Intelligence Review,.
Lindstr¨om, J., Plankina, D., Nilsson, K., Parida, V., Ylinen ¨a¨a, H., & Karlsson, L. (2013). Functional products: Business model elements. In Proceedings of 5th cirp international conference on industrial productservice systems.
Lingesten, N. (2012). Wear behavior of wet clutches (Unpublished doctoral dissertation). Lule°a University of Technology.
M¨aki, R. (2005). Wet clutch tribology; friction characteristics in limited slip differentials (Unpublished doctoral dissertation). Lule°a University of Technology.
Manolakis, D., Ingle, V., & Kogon, S. (Eds.). (2000). Statistical and adaptive signal processing. McGraw-Hill.
Marklund, P. (2010). Permeability measurements of sintered and paper based friction materials for wet clutches and brakes. In Sae.
Marx, S., Luck, J., Pitla, S., & Hoy, R. (2016). Comparing various hardware/software solutions and conversion methods for controller area network (can) bus data collection. Computers and Electronics in Agriculture, 128(3), 141-148.
Meier, H., Roy, R., & Seliger, G. (2008). Industrial productservice systems - ips2. CIRP Annals Manufacturing Technology, 1-24.
Murphy, K. (2012). Machine learning: a probalistic perspective (Tech. Rep.). MIT Press.
Olsson, T., Gillblad, D., Funk, P., & Xiong, N. (2014). Explaining probabilistic fault diagnosis and classification using case-based reasoning. In Proceedings of case-based reasoning reasearch and development international conference on case-based reasoning.
Olsson, T., K¨allstr¨om, E., Gillblad, D., Funk, P., Lindstr¨om, J., H°akansson, L., . . . Larsson, J. (2014). Fault diagnosis of heavy duty machines: Automatic transmission clutches. In Proceedings of workshop on synergies between cbr and data mining at 22nd international conference on case-based reasoning.
Ompusunggu, A., Papy, J., Vandenplas, S., Sas, P., & Brussel, H. (2012). Condition monitoring method for automatic transmission clutches. In International journal of prognosis and health management.
Papoulis, A. (Ed.). (1991). Probability, random variables, and stochastic processes. McGraw-Hill.
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3), e0118432.
Schwarz, G., et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461–464.
Setu, M., Wilcutts, M., Chigusa, S., Qiao, L., Choi, K., & Pattipati, K. (2006). Systematic data-driven approach to real-time fault detection and diagnosis in automative engines. In Proceedings of ieee.
Xu, C., Wedlund, D., Helgoson, M., & Risch, T. (2013). Model-based validation of streaming data. In Proceedings of the 7th acm international conference on distributed event-based systems, debs.
Zeitler, E., & Risch, T. (2011). Model-based validation of streaming data. In Proceedings of the vldb endowment.