A Novel Methodology for Fault Identification of Multi-stage Manufacturing Process Using Product Quality Measurement

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 16, 2020
Xiaorui Tong Hossein D. Ardakani David Siegel Ellen Gamel Jay Lee

Abstract

Data-driven modeling and fault detection of multi-stage manufacturing processes remain challenging due to the increasing complexity of the manufacturing process, the lack of structural data, data multi-dimensionality, and the additional difficulty when dealing with large data sets. The implementation of add-on sensors and establishing data acquisition, transfer, storage and analysis has the potential to facilitate advanced data modeling techniques. However, besides the associated costs, dealing with high-volume multi-dimensional data sets can be a major challenge. This paper presents a novel methodology for early fault identification of multi-stage manufacturing processes using a statistical approach. The major advantage of the proposed methodology is its reliance on only the product quality measurements and basic product manufacturing records, given the presence of peer sets. This leads to a feasible fault
identification solution in a sensor-less environment without investing costly data collection systems. The developed methodology transforms the end-of-process quality measurements to a process performance metric based on a density-based statistical approach and a peer-to-peer comparison of the machines at one stage of the process. This approach allows one to be more proactive and identify the problematic machines that could be affecting product quality. A case study in an actual multi-stage manufacturing process is used to demonstrate the effectiveness of the developed methodology.

Abstract 17 | PDF Downloads 8

##plugins.themes.bootstrap3.article.details##

Keywords

fault diagnosis, multi-stage manufacturing process, product quality measurement, industrial big data analytics

References
Asadzadeh, S., & Aghaie, A. (2008). A Review of Cause Selecting Control Charts in Multistage Processes. Proceedings of the 38th International Conference on Computers and Industrial Engineering, Vols 1-3, 1657-1665.
Asadzadeh, S., & Aghaie, A. (2012). Improving the Product Reliability in Multistage Manufacturing and Service Operations. Quality and Reliability Engineering International, 28(4), 397-407. doi: 10.1002/qre.1254
Ceglarek, D., Shi, J., & Wu, S. M. (1994). A Knowledge- Based Diagnostic-Approach for the Launch of the Auto-Body Assembly Process. Journal of Engineering for Industry-Transactions of the Asme, 116(4), 491-499. doi: Doi 10.1115/1.2902133
Chan, W. M., & Ibrahim, R. N. (2004). Evaluating the quality level of a product with multiple quality characterisitcs. International Journal of Advanced Manufacturing Technology, 24(9-10), 738-742. doi: 10.1007/s00170-003-1751-6
Chan, W. M., Ibrahim, R. N., & Lochert, P. B. (2005a). Evaluating the product quality level under multiple Ltype quality characteristics. International Journal of Advanced Manufacturing Technology, 27(1-2), 90-95.doi: 10.1007/s00170-004-2158-8
Chan, W. M., Ibrahim, R. N., & Lochert, P. B. (2005b). Quality evaluation model using loss function for multiple S-type quality characteristics. International Journal of Advanced Manufacturing Technology, 26(1-2), 98-101. doi: 10.1007/s00170-003-1980-8
Hawkins, D. M. (1993). Regression Adjustment for Variables in Multivariate Quality-Control. Journal of Quality Technology, 25(3), 170-182.
Hu, S. J., & Wu, S. M. (1992). Identifying Sources of Variation in Automobile Body Assembly Using Principal Component Analysis. Transactions of the North American Manufacturing Research Institution of Sme, Vol 20, 1992, 311-316.
Jin, J., & Shi, J. (1999). State space modeling of sheet metal assembly for dimensional control. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 121(4), 756-762. doi: Doi 10.1115/1.2833137
Kapur, K. C., & Cho, B. R. (1996). Economic design of the specification region for multiple quality characteristics. Iie Transactions, 28(3), 237-248. doi: Doi 10.1080/07408179608966270
Liu, S. C., & Hu, S. J. (1997). Variation simulation for deformable sheet metal assemblies using finite element methods. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 119(3), 368-374. doi: Doi 10.1115/1.2831115
Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A Multivariate Exponentially Weighted Moving Average Control Chart. Technometrics, 34(1), 46-53. doi: Doi 10.2307/1269551
Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes - Properties and Enhancements. Technometrics, 32(1), 1-12. doi: Doi 10.2307/1269835
Macgregor, J. F., & Kourti, T. (1995). Statistical Process- Control of Multivariate Processes. Control Engineering Practice, 3(3), 403-414. doi: Doi 10.1016/0967-0661(95)00014-L
Neubauer, A. S. (1997). The EWMA control chart: Properties and comparison with other quality-control procedures by computer simulation. Clinical Chemistry, 43(4), 594-601.
Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1-2), 100-&. doi: DOI 10.1093/biomet/41.1-2.100
Rato, T. J., & Reis, M. S. (2011). Statistical Process Control of Multivariate Systems with Autocorrelation. 21st European Symposium on Computer Aided Process Engineering, 29, 497-501.
Reynolds, M. R., Amin, R. W., & Arnold, J. C. (1990). Cusum Charts with Variable Sampling Intervals - Response. Technometrics, 32(4), 393-396.
Reynolds, M. R., Amin, R. W., Arnold, J. C., & Nachlas, J. A. (1988). Xbar Charts with Variable Sampling Intervals. Technometrics, 30(2), 181-192. doi: Doi 10.2307/1270164
Scouse, R. A. (1985). Introduction to Statistical Quality- Control. Plastics & Rubber International, 10(1), 30-32.
Shu, L. J., & Tsung, F. (2000). Multistage process monitoring and diagnosis. Proceedings of the 2000 Ieee International Conference on Management of Innovation and Technology, Vols 1 and 2, 881-886.
Tsung, F. G., Li, Y. T., & Jin, M. (2006). Statistical process control for multistage manufacturing and service operations: A review. 2006 Ieee International Conference on Service Operations and Logistics, and Informatics (Soli 2006), Proceedings, 752-757. doi: Doi 10.1109/Soli.2006.329084
Wolbrecht, E., D'Ambrosio, B., Paasch, R., & Kirby, D. (2000). Monitoring and diagnosis of a multistage manufacturing process using Bayesian networks. Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 14(1), 53-67.
Woodall, W. H., & Ncube, M. M. (1985). Multivariate Cusum Quality-Control Procedures. Technometrics, 27(3), 285-292. doi: Doi 10.2307/1269710
Zhou, S. Y., Ding, Y., Chen, Y., & Shi, J. J. (2003). Diagnosability study of multistage manufacturing processes based on linear mixed-effects models. Technometrics, 45(4), 312-325. doi:
10.1198/004017003000000131
Zhou, S. Y., Huang, Q., & Shi, J. J. (2003). State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors. Ieee Transactions on Robotics and Automation, 19(2), 296-309. doi: 10.1109/Tra.2003.808852
Section
Technical Papers