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ABSTRACT 

Data-driven modeling and fault detection of multi-stage 
manufacturing processes remain challenging due to the 
increasing complexity of the manufacturing process, the 
lack of structural data, data multi-dimensionality, and the 
additional difficulty when dealing with large data sets.  The 
implementation of add-on sensors and establishing data 
acquisition, transfer, storage and analysis has the potential 
to facilitate advanced data modeling techniques. However, 
besides the associated costs, dealing with high-volume 
multi-dimensional data sets can be a major challenge. This 
paper presents a novel methodology for early fault 
identification of multi-stage manufacturing processes using 
a statistical approach. The major advantage of the proposed 
methodology is its reliance on only the product quality 
measurements and basic product manufacturing records, 
given the presence of peer sets. This leads to a feasible fault 
identification solution in a sensor-less environment without 
investing costly data collection systems. The developed 
methodology transforms the end-of-process quality 
measurements to a process performance metric based on a 
density-based statistical approach and a peer-to-peer 
comparison of the machines at one stage of the process. This 
approach allows one to be more proactive and identify the 
problematic machines that could be affecting product 
quality. A case study in an actual multi-stage manufacturing 
process is used to demonstrate the effectiveness of the 
developed methodology.  

1. INTRODCUTION 

With the increasing productivity of manufacturing systems, 
multi-stage manufacturing processes are a commonly used 

approach. High throughput and strict product quality 
specifications require that equipment at each stage work 
properly to deliver qualified products. Any type of failure 
that happens during the manufacturing process could result 
in process inefficiencies, productivity reductions, and lower 
product quality. Examples of such processes include but are 
not limited to: (i) the automotive body assembly process 
that assembles multiple parts at multiple stations; (ii) the 
machining processes that manufacture parts through 
multiple operations performed in a series of stages; (iii) the 
process of drug manufacturing that is composed of a series 
of unit operations, such as milling, granulation, coating, 
tablet pressing and others. Modeling and fault detection of 
these processes normally requires extensive efforts on 
collecting, handling and analyzing processes and product 
measurements, which often introduces higher investment in 
the necessary infrastructure in managing the high-volume 
multi-dimensional data.  Previous research has mostly been 
focused on developing multi-stage process monitoring 
methods which necessitate the measurement of product 
quality at different stages of the process (Asadzadeh & 
Aghaie, 2012; Shu & Tsung, 2000; Tsung, Li, & Jin, 2006; 
Wolbrecht, D'Ambrosio, Paasch, & Kirby, 2000; Zhou, 
Ding, Chen, & Shi, 2003; Zhou, Huang, & Shi, 2003). 

Statistical Process Control (SPC) has been widely employed 
in industrial operations to detect the changes in the process 
through monitoring process/quality variables over time and 
so to determine if the process is in control. SPC charts were 
first developed to monitor the key product variables in a 
univariate way (Scouse, 1985). The most commonly used 
traditional SPC charts include Shewhart, Cumulative Sum 
(CUSUM), and Exponentially Weighted Moving Average 
(EWMA) control charts (Rato & Reis, 2011). Shewhart 
control chart was first introduced in 1924, and has 
extensively been used to display the process data and 
determine whether the process is within the control limits or 
not. Process data samples from either fixed or variable time 
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intervals are taken. Then some statistics are computed and 
plotted from the samples in each interval (Reynolds, Amin, 
Arnold, & Nachlas, 1988). The CUSUM control chart was 
first introduced by Page (Page, 1954) and has so far been 
widely used for monitoring the quality of the manufacturing 
process. In a CUSUM control chart, samples at a fixed or 
variable time intervals are taken and the cumulative sum of 
the differences between the mean of the samples and the 
target mean is calculated and plotted (Reynolds, Amin, & 
Arnold, 1990). Unlike the Shewhart and CUSUM control 
charts which use the current samples for statistical testing, 
the EWMA chart uses previous values multiplied by a 
weighting factor. It adds the summation of past 
measurements to the current measurement (Neubauer, 
1997). EWMA has shown to be useful in detecting small 
shifts in the process mean (Lucas & Saccucci, 1990). 

In processes where multiple quality characteristics need to 
be monitored, the traditional SPC charts which individually 
monitor the key quality characteristics are not sufficient 
(Macgregor & Kourti, 1995). That led to the development of 
multivariate control charts such as Hotelling’s T2, 
MEWMA, MCUSUM and PCA (Rato & Reis, 2011). 
Hotelling in 1947 developed T2 statistic as a solution for the 
problem of controlling several variables. The Hotelling 
control chart is a multivariate extension of the Shewhart 
chart that takes into account the correlation between the 
measurements. MEWMA was introduced by Lowry et al.  
(Lowry, Woodall, Champ, & Rigdon, 1992) as an extension 
of EWMA charts. In this approach, the measurement values 
of EWMA chart are replaced by vectors of measurements. 
MCUSUM was introduced by Woodall et al. (Woodall & 
Ncube, 1985) to replace the implementation of several 
CUSUM procedures for multivariate processes. 
Dimensionality reduction using PCA techniques also serves 
the purpose of considering multiple quality characteristics. 
PCA is a well-established and commonly used procedure for 
reducing the dimensionality in the data by projecting it to 
another space and taking the components which contain 
maximum variance. By building a PCA model based on 
historical data while the process is in normal condition, the 
future behavior of the process can be referenced against the 
“in-control” process model (Macgregor & Kourti, 1995). 

Once process faults are detected, the immediate challenge 
becomes how to identify the root cause in order to direct 
maintenance actions to a specific equipment in a multistage 
process. Further developments from the traditional SPC 
methods to address this problem include the regression-
adjustment method developed by Hawkins (Hawkins, 1993), 
and applied in multiple case studies by others. This method 
regresses quality variables on subsets of the other quality 
variables and monitor the residuals from the regression 
models for each stage. An alternative is the cause-selecting 
method (Asadzadeh & Aghaie, 2008), where the regression 
of quality variable is based on the previous stage. Another 
class of methods for root cause identification steams from 

the Stream of Variation (SoV). SoV was developed based 
on previous researches on identifying sources of variation in 
auto body assembly (Ceglarek, Shi, & Wu, 1994; Hu & Wu, 
1992; Liu & Hu, 1997) and was designed to predict and 
diagnose the dimensional variation in a multi-leveled 
automotive body assembly system. SoV methodology was 
further transformed into a State-Space model introduced by 
Jin et al. (Jin & Shi, 1999). In this method, —which was 
originally developed to model error propagation in sheet 
metal assembly process—the inherent relationships between 
errors from various sources was developed to describe the 
variation process throughout the assembly process. Despite 
the robustness of this approach in the modeling and 
diagnosis of multistage manufacturing processes, it requires 
integration of engineering domain knowledge that varies 
greatly with manufacturing processes of different nature, 
limiting the application to certain processes such as the auto 
body assembly, metal machining processes where process 
faults are fixture error, machining errors etc. 

A crucial requirement when applying the above techniques 
for diagnosing process faults is to have product quality 
measurements at each stage of the process. The specific 
quality measurements differ depending on the 
manufacturing processes, examples include but are not 
limited to: deviations from the nominal dimensions for 
machined parts in a machining process, surface quality 
measurements for machining operations, the concentration 
of a composite in a tablet during drug manufacturing 
processes etc. Without tracking the product quality 
throughout the process at each stage, the SPC and SoV-
based methods would not be effective. Despite the rapid 
advancement in information technology and data 
processing, the product quality measurement at each stage is 
not practical in many processes, in extreme cases, only the 
quality of the finished product is evaluated. Oftentimes, the 
finished product may have several quality characteristics 
being measured. It is thus clear that existing methods will 
not suffice and a multivariate multistage monitoring 
approach based on only the quality measurements of the 
finished products needs to be considered. 

This paper introduces a novel methodology for fault 
identification in a multistage environment, given basic 
product manufacturing records and the presence of peer sets, 
where only multiple quality characteristics from the final 
manufacturing stage are available and no expert knowledge 
is needed. The analysis model for calculating a product 
inspection metric is developed and utilized for process 
monitoring. A peer-comparison approach, applicable to a 
class of manufacturing types, is integrated to isolate process 
faults to a specific stage. Section 2 introduces the main 
aspects in implementing this methodology, which include 
the modeling for the product inspection metric and machine 
performance metric. Section 3 contains the full details of 
implementing the developed methodology for an industrial 
case study and highlights the results from this real-world  
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Figure 1. Flowchart of the developed methodology 

 
case study.  Conclusions from this study are presented in 
Section 4, and Section 5 proposes the future work needed 
for generalizing this methodology.  

2. TECHNICAL APPROACH 

The developed methodology aims to first detect the process 
anomalies in a multivariate multi-stage manufacturing 
process and then identify the root causes of the anomalies, 
using only product quality measurements. To achieve this 
goal, quality measurement data sets are initially studied to 
understand the variable correlations and the criticality of 
each variable. After selecting the critical variables, 
relationships between the overall product quality level and 
these variables are modeled to obtain a process performance 
metric, indicative of the overall multistage process 
performance. The obtained inspection metrics then are used 
to detect anomalies of the manufacturing process. Finally, 
the root causes of detected anomalies are isolated within the 
machines in the two stages of the process by a peer-to-peer 
comparison method. The performance metric at machine 
level indicates the performance of a specific machine at a 
certain manufacturing stage. A flow chart of the proposed 
methodology is shown in Figure 1. 

While requiring little expert knowledge on the 
manufacturing processes, the developed methodology can 
be readily applied to a range of multi-stage processes where 
product quality measurement contains all continuous 
variables or discreet variables over a considerable range (so 
that a distribution can be formed). Manufacturing process 
information, meaning IDs of machines that have 
manufactured the product being measured, is also necessary. 
While the above two requirements can be easily satisfied for 
many manufacturing process lines, a more stringent premise 
comes with the peer-to-peer (P2P) comparison, which 
enables a performance metric at the process level to be 
converted to a machine level metric. Applying the P2P 
comparison requires the presence of peer sets in the 
manufacturing process being studied. The concept of peer 
sets is introduced in subsection 2.4 where detailed 
information regarding this important premise can be found. 

This section focuses on the key components of this 
methodology. The steps of the training data configuration 
are therefore not included in this section. However, these 
steps are also of great importance since they serve as inputs 
that are processed downstream by this analysis method. 
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Detailed discussion of these steps is presented in Section 3 
with the analysis results. 

2.1. Development of Product Inspection Metrics for 
Anomaly Detection 

When monitoring the process performance through product 
quality measurements, several issues are identified with the 
general approach of judging quality solely based on a 
specification cut-off value (Chan & Ibrahim, 2004). Some 
of these concerns include the following: 

• Products judged to be of the same quality level could 
have slightly different quality characteristics as can be 
seen in Figure 2. Since product quality is indicated with 
a binary value based on the specification cut-off, the 
period during which product quality begins to 
deteriorate while still within the specifications cannot 
be captured. This period, however, can be used 
effectively for early detection of performance drift in a 
manufacturing process. 

• For the dataset utilized in this paper, there are multiple 
sets of quality specification cut-off thresholds 
depending on the expectations of each customer. This 
means that if customer A has higher requirements than 
customer B, products that are within specifications for 
customer B can fail the quality test for customer A. 
Therefore, even the binary values indicating whether a 
product is within quality specifications or not, may not 
be completely comparable. 

 
Figure 2. Quality difference between products in the same 

quality category 

Considering such concerns, judging the manufacturing 
process performance based on product yield may not always 
be sufficient. Therefore, this paper proposes a novel 
approach for evaluating overall product quality on a 
continuous scale that is purely dependent on product 
inspection measurements instead of product yield. The 
methodology is based on using a product inspection metric 
that attributes a score to each product depending on its 
inspection measurements.  

2.2. Density-based Product Inspection Metric 

In this paper, the concept of density rate is introduced as a 
feature extraction method for product inspection variables. 
The extracted density rates for all the critical variables are 
combined in a weighted summation to obtain the final 
inspection metric for the manufactured product.  

Generally, three types of quality characteristics that have 
been researched are nominal-the-better (N-Type)(Kapur & 
Cho, 1996), larger-the-better (L-Type)(Chan, Ibrahim, & 
Lochert, 2005a) and smaller-the-better (S-Type)(Chan, 
Ibrahim, & Lochert, 2005b). N-Type means that as the 
quality measurement gets closer to its targeted mean value, 
the quality of this product increases. For S-Type, the smaller 
the measurement is, the higher the quality is. The feature 
extraction technique proposed in this study is applicable to 
these three types of quality characteristics in the sense that 
both N-Type and L-Type can be transformed into S-Type 
through subtracting from the maximum. To be consistent 
with the latter case study, quality characteristics of S-Type 
are considered here. It is worth mentioning that one of the 
characteristics in the case study belongs to N-Type 
(Symmetric around 0) and has been transformed to S-Type 
by taking the absolute value.  

For quality measurement of S-Type, smaller value means 
higher quality. Therefore, features can be extracted by 
evaluating how small this value is. Figure 3 shows the 
histogram of the baseline (product with good quality) for 
one inspection variable and the color lines indicate the 
positions of this inspection measurement for three product 
samples. It is apparent that as the sample line moves to the 
right, its corresponding quality decreases in terms of the one 
inspection variable.  

 
Figure 3. Quality variable locations of three different data 

points 

In terms of distribution, the density rate can be obtained 
from the cumulative distribution of the baseline data. For a 
given measurement reading x!, its density rate equals one 
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minus its corresponding function value on the cumulative 
distribution curve of the baseline data. Figure 4 shows the 
empirical Cumulative Distribution Function (CDF) of the 
distribution shown in Figure 3 along with the density rate 
values for the three shown samples. The empirical CDF is 
obtained based on the proportion of population less than the 
value x for the corresponding quality variable. 

 
Figure 4. Cumulative function value of the chosen three data 

points 

The relationship between density rate and the cumulative 
distribution function of the training data distribution is 
formulated as: 

d! = 1 − F x!                                                               1  

where F(x!) is the corresponding value of the cumulative 
distribution function for the data point  x!. 

Figure 5 below shows the density rate of two critical 
inspection variables for product from different categories in 
the latter case study. Each blue point represents a product 
that passed the quality check and each red point represents a 
product that failed the quality check. Although most of the 
failed products are close to the zero lines, some 
inconsistency can be observed because of the different 
quality check thresholds that are set based on different 
customer expectations. A certain amount of overlap is 
expected and unavoidable because of the customer-
dependent quality check standards. However, a key message 
from Figure 5 is that the unqualified products failed the 
quality check because their density rate is low in the 
dimension of d1 or d2. There is a tiny portion of unqualified 
products that have high value for both, therefore, the reason 
of these products being unqualified is due to low density 
rates corresponding to other variables. Therefore, this snap 
shot of the data taught us that a proper combination of the 
density rates of the quality measurements is an appropriate 
tool for defining the quality of the products although each 
quality variable is not adequate individually. As there are 
multiple quality variables to consider, the next section will 

be dedicated to fusing these variables to generate a unified 
metric that represents the quality of the production process. 

 
Figure 5. Density rates of two inspection variables 

2.3. Weighted feature summation 

The extracted features from the previous section are 
combined to build a product inspection metric that rates 
each product on a continuous scale from 0 to 1. For defining 
an appropriate way of building an overall product inspection 
metric, the following logic is adopted: 

• Among all the significant quality variables, the one 
with the smallest density rate is the main cause of the 
quality problem for one observation. 

• Besides the variable with the smallest density rate, the 
other variables also contribute to the quality problem 
with their significances decreasing as the corresponding 
density rate increases. 

Based on the mentioned rules, the product inspection metric 
should consider the weighted density rates according to their 
contributions to possible quality problems. Therefore, the 
overall product inspection metric is designed to be the 
summation of the density rates for all the significant quality 
measurements and exponentially weighted according to the 
value of each density rate. The exponential function 
f x = x/e! is used to weight the density rates, since this 
function decreases faster approaching 0 and increases 
slower approaching 1, which approximates the contributions 
of the density rates to the overall production inspection 
metric. Assuming that there are n  significant quality 
variables for product a, known as X!!, X!!,… , X!!   with density 
rates of  d!!, d!! ,… , d!! , the density-based quality metric q! 
can be defined as:  

q! =
d!!/e!!

!!
!!!

n/ e!!!!
!!!

                                                       (2) 
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The metric defined above thus becomes an overall quality 
indicator for product, reflecting the effect of all significant 
variables according to each variable’s density rate. In the 
latter case study, the suggested metric will be calculated and 
its performance will be evaluated. The next section explains 
a comparison-based approach for finding the machines that 
are the root cause of the detected anomalies.  

2.4. Peer-to-peer (P2P) comparison for anomaly 
identification 

For the fault diagnosis of manufacturing equipment 
involved in a multistage process, a peer set refers to a 
cluster of machines sharing the same throughput resources 
and environmental conditions. A Peer-to-Peer (P2P) 
comparison approach compares the performances of all 
peers within one peer set and evaluates the consistency of 
these peers, and classifies peers that show a large deviation 
to most the other peers as abnormal ones. In the current 
study, a peer set is defined as multiple machines in the same 
stage producing the same type of product that has been 
processed by the same machine in a previous stage. It is 
assumed that the products are being distributed between the 
machines randomly from one stage to the next. The peer-to-
peer comparison approach is applied to the product quality 
measurement data to identify the root causes of anomalies in 
a multistage manufacturing process. This method takes 
advantage of the fact that one upstream stage can diverge to 
multiple downstream processes. The root causes can be 
identified in a certain stage by evaluating performance 
consistency of a peer set sharing the same previous stage.  

Figure 6 shows two possible cases in a two-stage 
manufacturing process in which one machine in stage 1 
diverges to peer sets of multiple machines in stage 2 or vice 
versa, where multiple machines in stage 1 converge to one 
machine in stage 2. The manufacturing routes from stage 1 
to stage 2 are shown in blue arrows. In any of these two 
situations, evaluating the inconsistencies in the performance 
level of peers in one stage can lead to determining the root 
cause of quality issues. In peer set type 1 for example, if one 
or more than one of the machines performs significantly 
lower than the average of other peers, they will be the root 
cause of the anomaly. However, if all peers perform 
similarly, the existing anomaly can be associated with the 
machine in stage 1. Likewise, the peer comparison approach 
can be applied to the scenario of peer set type 2 in Figure 6, 
in which products manufactured by M!.!, M!.!, … , M!.! are 
processed by the same second-stage equipment M!.!. The 
first sub-index indicates the stage number and the second 
sub-index indicates the machine number. This notation will 
be used throughout the paper. Later, a demonstration in this 
paper considers peer set type 1, as it is the case for the 
dataset available for this study. 

 
Figure 6. Peer sets in a two-stage manufacturing process for 

product type A 

For applying the peer comparison method to the available 
data set, two assumptions have been considered: 

1. During a regular operation, more than half of stage 2 
machines M!.!, M!.!… M!.! belonging to one peer set 
are in good condition. 

2. Products manufactured by M!.!  are randomly 
distributed among machines at the second stage.  

These assumptions are required to select the median value 
from all the manufacturing routes in one peer set and set it 
as the baseline value to be used for evaluating the machines 
in the peer set. The case being studied in this paper includes 
multiple two-stage manufacturing processes of peer set type 
1, and the evaluation is done for product type A. 

Based on this type of manufacturing processes, all 
individual processes following the same first stage 
equipment at stage 2 are selected as in the same peer set. A 
given peer set includes n (n > 5) manufacturing routes all 
diverging from one machine in stage 1, and ending in n 
machines in stage 2. At a specific time t, the product quality 
metrics of all the manufacturing routes are q!", q!",⋯ , q!". 
Then, Q!  is calculated as the nominal value from 
q!", q!",⋯ , q!" following the rule of  

Q! = median q!", q!",… , q!"                                   (3)  

Q! is the nominal value representing the performance of the 
machine in stage 1 (M!.!) for all the manufacturing routes in 
this peer set. Considering the scenario in which M!.! is in 
good condition, it is expected that the median value of 
product quality metrics of all peers in stage 2 would be good 
based on the assumption that more than half of stage 2 
machines belonging to one peer set are in good condition. 
Thus, it is reasonable to use Q! as the performance metric 
for stage 1 machine. When Q! is lower than the threshold of 
the allowable quality of products, an anomaly in M!.! is 
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detected. Subtracting Q! from q!" gives a normalized metric 
for machines in stage 2, as it indicates the difference 
between the performances of each machine with the median 
of all other machines in stage 2. Let R!"  represent the 
performance metric for machine i in stage 2 at time t. This 
metric can be defined as: 

R!" = q!" − Q!                                                           (4) 

If R!"<0, the quality of the products manufactured from 
route i (or by machine i in stage 2) at time t is lower than 
the nominal quality of product manufactured from all other 
routes. The smaller the value of R!", the worse the condition 
of   M!.! . When R!"  is less than a certain threshold, an 
anomaly in   M!.!  will be detected. The proper threshold 
should consider the product quality requirements and is not 
discussed in this paper. Instead, this paper is focused on the 
verification of the proposed method through observing the 
trend development of machine performance metrics and 
how it relates to possible maintenance actions in the 
manufacturing plant.  

In the suggested approach, the stage 1 machine performance 
metric Q! is designed to represent the overall quality of the 
products manufactured by  M!.! . Similarly, the stage 2 
machine performance metric R!" represents the deviation of 
 M!.! from the nominal performance of its peers. 

In the next section of the paper, the results obtained by 
applying the suggested approach on the available data set is 
presented and explained.   

3. CASE STUDY: RESULTS AND DISCUSSIONS 

In this section, the results obtained by applying the 
suggested methodology to the available data are presented. 
The results include the identified anomaly root causes for 
different manufacturing routes with a relatively large 
number of samples.  

The data under consideration is collected from a multistage 
manufacturing plant producing products with different 
specifications based on their intended applications. It 
contains the barcode for each product, product type, the 
machines’ IDs that were used to produce each product in the 
last two stages of the process, 16 product quality 
measurements for each product, and the final quality of the 
products, whether it passed or failed. Table 1 shows the 
summary of the collected data set.  

With the manufacturing process being multi-stage by nature, 
according to the maintenance experts at the specific 
industrial facility, the last two stages of the process are the 
most likely problematic stages and are therefore the focus of 
this case study. The products to be evaluated are of two 
categories: passed, rejected. Passed category includes those 
products that have passed quality check and are therefore 
within customer specifications. Those products are regarded 
as having good quality compared with products from the 

other category and are labeled as healthy class in this 
section. Rejected category includes those products that have 
failed quality check and are therefore out of customer 
specifications. Those products are regarded as having low 
quality comparing with products from the other category 
and are labeled as faulty class in this section. 

Product Information Barcode, product type 

Manufacturing Path 
Machine ID in stages 1 and 

2 

Quality Measurements 
16 variables measured from 

each product 

Product Quality Control 

Result 

 

Flag determining whether 

each product passed, 

rejected or needed rework. 

Duration of Data 

Collection 
3 months 

Number of Samples 210K samples 

Table 1. Summary of the collected dataset 

To select critical variables, the variable correlation is 
studied for both the healthy and faulty class separately as it 
is unknown if the correlation relationship will change when 
product quality level differs. For example, if variable a and 
b are highly correlated for the healthy class but are not 
correlated for the faulty class, both variables need to be 
retained since they are both useful in abnormality detection 
and they contain no redundant information for one of the 
classes. 

The correlation between each pair of variables is calculated 
for the product data taken from different quality groups 
separately. Pairs of variables having correlation coefficients 
larger than 0.9 are considered as highly correlated. For those 
highly correlated variables, only the variable with the higher 
Fisher value will be included in the later modeling stage. 

Table 2 includes an example of the correlation coefficients 
of the highly correlated variable pair among the 16 product 
quality variables for the healthy class and the faulty class 
respectively.  

Table 2 provides the linear correlation coefficient (Chun and 
Keleş 2010, 3-25) between each pair of the highly correlated 
variables (having a linear correlation coefficient larger than 
0.9). Integers for V1 and V2 are the variable numbers in one 
correlated pair (variable numbers are labeled from 1 to 16 
for the 16 quality variables) and Corr is the linear 
correlation coefficient between each variable pair V1 and 
V2. Tables of correlation values for both classes lead to the  
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Table 2. Correlation values of highly correlated inspection variables 

 
Table 3. Fisher values of product type A inspection variables 

conclusion that high correlations of variable pairs are 
consistent for both classes. Therefore, it is reasonable to 
reduce the dimension by removing one variable from each 
highly correlated variable pair. 

Table 3 gives the Fisher value of each inspection variable 
using Fisher criterion and those highly correlated ones are 
highlighted in the same color. For highly correlated 
variables, only one variable in a correlated pair is preserved 
for later analysis. Based on the Fisher selection, those 
variables having a higher Fisher value than the mean Fisher 
value of all variables are selected. For the product type A 
being studied here, the final selected critical variables V11, 
V12, V13, V14 and V16, are indicated in red. 

Using the selected critical variables, peer comparison 
performance metrics of machines in stages 1 and 2 for 
product type A are shown in Figure 7 and Figure 8. Results 
for potentially problematic machines are included and those 
of high performance machines are selectively presented due 
to their similar trends. Using the performance metrics of 
each stage, the presented approach enabled the fault 
diagnosis of a two-stage manufacturing process by relying 
only on the product quality measurements. As the first step, 
the product quality metrics q!", q!",… , q!"# for the 24 
manufacturing routes (from M!.!  to M!.! , M!.!  … , M!.!") 
were calculated using Eq. (2). Then, Q! was calculated as 
the median of q!", q!",… , q!"# to represent the performance 
metric of M!.!. The metrics for the 24 machines in stage 2 
(M!.!, M!.! … , M!.!") were obtained using Eq. (4). These 
metrics, namely R!",R!",… and R!"#, are selectively shown 
in Figure 8. 

It is observed from Figure 8 that the machine performance 
metrics of M!.! and M!.!  decreased around August 18th, 
2012. At this time, the second-stage equipment M!.! and 
M!.! were identified as the root cause of the anomalies in 
the production due to the developing trends of their 
performance metrics. This conclusion agrees with the fact 
that M!.!and M!.!were no longer used to manufacture this 
product type starting from the end of August. 

A more important observation from Figure 7 is that starting 
from mid-October, the performance metric of the first-stage  

 

 
Figure 7. Peer comparison results of stage 1 for product type 
A 

 

 
Figure 8. Selective peer comparison results of stage 2 for 

product type A 

equipment M!.! began a gradual decrease. The performance 
metric was originally at a high level around 0.9 and later 
began to descend to around 0.8. Then the decreasing trend 
became more severe until it dropped below 0.65. This 
agrees with one’s expectation that the equipment anomaly 
usually develops over time. The anomaly at its beginning 
stage results in a gradual decrease in the health value or 
health metric. Since the anomaly in this stage is still 
incipient, the quality of the manufactured products may 
remain within the specifications. The magnitude of the 
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negative slope value then starts to increase, as the anomaly 
gets more severe. Such behavior can be clearly seen in the 
health value of M!.! in Figure 7. With the dataset provided, 
around the beginning of November, this machine was no 
longer dedicated to manufacturing any product, which can 
be a plausible indication that maintenance actions were 
performed on this machine. 

Monitoring the health value of these machines can help the 
maintenance crew to detect the anomalies when they are still 
incipient. This leads to more proactive maintenance actions 
and the avoidance of failures, which can significantly reduce 
the costs of both equipment repair and production 
downtime. It is notable that the presented method does not 
require additional sensors and equipment to collect in-
process measurements; it only relies on the production 
quality data. 

4. CONCLUSIONS 

This paper introduces a novel methodology for identifying 
the root cause of the anomalies that affect the product 
quality in multi-stage manufacturing processes. The key 
advantage of the proposed method over previously 
developed methods is that the proposed technique only 
relies on the product quality measurement from the final 
stage, given basic manufacturing records and the presence 
of peer sets, instead of requiring availability of measurement 
data at each manufacturing stage. Implementation is also 
simple and computationally efficient, making it effective in 
helping the manufacturing and maintenance personnel with 
improved productivity.  The methodology was validated and 
demonstrated using an industrial case study. The obtained 
results are proven to be effective in identifying the root 
cause of process anomalies and showed consistency with the 
real-world behavior of the machines involved in the 
manufacturing process.  

5. FUTURE WORK 

The methodology has the potential to be effective in various 
types of manufacturing processes. Thus, there are several 
directions that future work can be taken to further enhance 
its value.  One area of future research is to design a 
predictive manufacturing scheme based on the limited data 
resources in product quality measurement. Such a scheme 
can be further developed based on a peer-to-peer 
comparison approach to incorporate the intelligent 
maintenance systems into the manufacturing processes. 
While two key manufacturing stages have been considered 
in this study, measurement from other manufacturing stages 
becomes necessary when utilizing this methodology to 
study more than 2 manufacturing stages. Future work on 
designing different sensor distribution and process 
measurement strategies will facilitate diagnosis in multi-
stage manufacturing process with less data resource and 
associated implementation cost.  
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