References
Ahuja, S., & Dhanya, C. T. (2012). Regionalization of Rainfall Using RCDA Cluster Ensemble Algorithm in India. Journal of Software Engineering and Applications, vol. 5 (8), pp. 568-573. doi:
10.4236/jsea.2012.58065
Al-Dahidi, S., Baraldi, P., Di Maio, F., & Zio, E. (2014). A novel fault detection system taking into account uncertainties in the reconstructed signals. Annals of Nuclear Energy, vol. 73, pp. 131–144. doi:10.1016/j.anucene.2014.06.036
Al-Dahidi, S. (2014). The Use of Self Organizing Maps for Diagnosing Faults in Motor Bearings. Safety and Reliability: Methodology and Applications- Proceedings of the European Safety and Reliability Conference, ESREL 2014 (895-902), September 14-18, Wroclaw, Poland.
Ayad, H. G., & Kamel, M. S. (2010). On voting-based consensus of cluster ensembles. Pattern Recognition, vol. 43(5), pp. 1943-1953.
Baraldi, P., Di Maio, F., & Zio, E. (2012). Unsupervised clustering for fault diagnosis. Proceedings of Prognostics and System Health Management Conference (PHM‐2012 IEEE Conference) (1-9), May 23-25, Beijing, China.
Baraldi, P., Di Maio, F., Rigamonti, M., Zio, E., & Seraoui, R. (2013a). Unsupervised clustering of vibration signals for identifying anomalous conditions in a nuclear turbine. Special Issue RACR2013, on the Journal of Intelligent and Fuzzy Systems (JIFS). doi: 10.3233/IFS-141459
Baraldi, P., Di Maio, F., Rigamonti, M., Zio, E., & Seraoui, R. (2013b). Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients. Mechanical Systems and Signal Processing, Available online 16 January 2015. doi: 10.1016/j.ymssp.2014.12.018
Baraldi, P., Di Maio, F., & Zio, E. (2013c). Unsupervised Clustering for Fault Diagnosis in Nuclear Power Plant Components. International Journal of Computational Intelligence Systems, vol. 6 (4), pp. 764-777.
Barnard, S. T., & Simon, H. D. (1994). Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience, vol. 6(2), pp. 101-117.
Baruah, P., & Chinnam, R. B. (2005). HMMs for diagnostics and prognostics in machining processes. International Journal of Production Research, vol. 43(6), pp. 1275-1293.
Betta, G., Liguori, C., Paolillo, A., Pietrosanto, A. (2002). A DSP-based FFT-Analyzer for the fault diagnosis of rotating machine based on vibration analysis. IEEE Transactions on instrumentation and measurements, vol. 51(6), pp. 1316-1322.
Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York.
Bhavaraju K. M., Kankar, P. K., Sharma, S. C., & Harsha, S. P. (2010). A Comparative Study on Bearings Faults Classification by Artificial Neural Networks and Self- Organizing Maps using Wavelets. International Journal of Engineering Science and Technology, vol. 2(5), pp. 1001-1008.
Bocaniala, C.D., Sa Da Costa, J., & Palade, V. (2004). A novel fuzzy classification solution for fault diagnosis. Journal of Intelligent and Fuzzy Systems, vol. 15 (3-4), pp. 195-205.
Bolotin, V.V., & Shipkov, A.A. (1998). A model of the environmentally affected growth of fatigue cracks. Journal of Applied Mathematics and Mechanics, vol. 62(2), pp. 289-296. doi:10.1016/S0021-8928(98)00037-9
Bui, T., & Jones, C. (1993). A Heuristic for Reducing Fill- In in Sparse Matrix Factorization. In 6th SIAM Conference Parallel Processing for Scientific Computing (445–452), March 22-24, Norfolk, Virginia, USA.
Chakaravathy, S. V., & Ghosh, J. (1996). Scale based clustering using a radial basis function network. IEEE Transactions on Neural Networks, vol. 2(5), pp. 1250– 61. doi: 10.1109/72.536318
Chaovalit, P., & Zhou, L. (2005). Movie review mining: A comparison between supervised and unsupervised classification approaches. In System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on (112c-112c). IEEE, January 3-6, Big Island, Hawaii. doi: 10.1109/HICSS.2005.445
Charrad, M., Lechevallier, Y., Ahmed, M. B., Saporta, G. (2010). On the Number of Clusters in Block Clustering Algorithms. In 23rd International FLAIRS Conference (392-397), May 19-21, Florida, USA.
Chatterjee, S., & Mukhopadhyay, A. (2013). Clustering Ensemble: A Multiobjective Genetic Algorithm based Approach. Procedia Technology, vol. 10, pp. 443-449. doi:10.1016/j.protcy.2013.12.381
Chen, K. (2007). Trends in neural computation. Springer. Datta, A., Mavroidis, C., & Hosek, M. (2007). A Role of Unsupervised Clustering for Intelligent Fault Diagnosis. In ASME 2007 International Mechanical Engineering Congress and Exposition. , vol. 9: Mechanical Systems and Control, pp. 687-695. doi:10.1115/IMECE2007-43492.
Davies, D.L., & Bouldin, D.W. (1979). A cluster separation measure. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-1(2), pp. 224-227. doi: 10.1109/TPAMI.1979.4766909
Di Maio, F., Hu, J., Tse, P., Pecht, M., Tsui, K., & Zio, E. (2012). Ensemble-approaches for clustering health status of oil sand pumps. Expert Systems with Applications, vol. 39(5), pp. 4847-4859.
Di Maio, F., Nicola, G., Zio, E., & Yu, Y. (2014). Ensemble-based sensitivity analysis of a Best Estimate Thermal Hydraulics model: Application to a Passive Containment Cooling System of an AP1000 Nuclear Power Plant. Annals of Nuclear Energy, vol. 73, November 2014, pp. 200-210. doi:10.1016/j.anucene.2014.06.043
Dimitriadou, E., Weingessel, A., & Homik, K. (2001). Voting-merging: an ensemble method for clustering. In Proc. 2001 International Conference Artificial Neural Networks (ICANN'01) (217-224), August 21–25, Vienna, Austria. doi : 10.1007/3-540-44668-0_31
Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure. Bioinformatics, vol. 19(9), pp. 1090-1099.
Fern, X. Z., & Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and Data Mining, vol. 1(3), pp. 128-141.
Figueiredo, M. A., & Jain, A. K. (2002). Unsupervised learning of finite mixture models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24(3), pp. 381-396. doi: 10.1109/34.990138
Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27(6), pp. 835-850.
Ghaemi, R., Sulaiman, M. N., Ibrahim, H., & Mustapha, N. (2009). A survey: clustering ensembles techniques. World Academy of Science, Engineering and Technology, vol. 50, pp. 636-645.
Ghaemi, R., bin Sulaiman, N., Ibrahim, H., & Mustapha, N. (2011). A review: accuracy optimization in clustering ensembles using genetic algorithms. Artificial Intelligence Review, vol. 35(4), pp. 287-318.
Gonçalves, L. F., Bosa, J. L., Balen, T. R., Lubaszewski, M. S., Schneider, E. L., & Henriques, R. V. (2011). Fault detection, diagnosis and prediction in electrical valves using self-organizing maps. Journal of Electronic Testing, vol. 27(4), pp. 551-564.
Greene, D., & Cunningham, P. (2007). Constraint selection by committee: An ensemble approach to identifying informative constraints for semi-supervised clustering. In Machine Learning: ECML 2007, pp. 140-151. Springer Berlin Heidelberg.
Hartigan, J. (1975). CLUSTERING ALGORITHMS. New York, Wiley.
Iqbal, A. M., Moh'd, A., & Khan, Z. (2012). Semisupervised clustering ensemble by voting. In: Proceeding of the International Conference on Information and Communication Systems (ICICS
2009) (1–5), December 8-10, Macau, China.
Jardine, A.K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, vol. 20(7), pp. 1483–1510. doi:10.1016/j.ymssp.2005.09.012
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, vol. 32(3), pp. 241-254.
Karypis, G., & Kumar, V. (1995). METIS - Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0 (Technical report).
Karypis, G., Aggarwal, R., & Kumar, V., Shekhar, S. (1997). Multilevel Hypergraph Partitioning: Applications in VLSI Design, In Proc. ACM/IEEE Design Automation Conference, pages 526-529.
Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing, vol. 20(1), pp. 359-392.
Legány, C., Juhász, S., & Babos, A. (2006). Cluster validity measurement techniques. Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (388-393), December 16-18, Tenerife, Canary Islands, Spain
Leguizamón, S., Pelgrum, H., & Azzali, S. (1996). Unsupervised Fuzzy C-means classification for the determination of dynamically homogeneous areas. Revista SELPER, vol. 12(12), pp. 20-24.
Li, Y. S., & Chen, K. C. (2011). Graph partition and identification of cluster number in data analysis. In Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication (ICUIMC '11) (5), vol. 62(5), February 21-23, Seoul, korea. doi=10.1145/1968613.1968688.
Lin, Y., Chen, M., & Zhou, D. (2013). Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods. Reliability Engineering & System Safety, vol. 119, pp. 150-157. doi:10.1016/j.ress.2013.05.018
Mohar, B. (1997). Some Applications of Laplace Eigenvalues of Graphs. Graph Symmetry: Algebraic Methods and Applications, vol. 497, pp. 225-275. doi: 10.1007/978-94-015-8937-6_6
Muller, A., Suhner, M. C., & Iung, B. (2008). Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system. Reliability Engineering & System Safety, vol. 93(2), pp. 234-253. doi:10.1016/j.ress.2006.12.004
Ng, A.Y., Jordan, M.I., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems (NIPS), vol. 14, pp. 849-856.
Onanena, R., Oukhellou, L., come, E., Jemei, S., Candusso, D., Hissel, D., & Aknin, P. (2013). Fuel Cell Health Monitoring Using Self Organizing Maps. Chemical Engineering Transactions, vol. 33, pp. 1021-1026. doi: 10.3303/CET1333171
Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65. doi:10.1016/0377-0427(87)90125-7
Serir, L., Ramasso, E., & Zerhouni, N. (2012). Evidential evolving Gustafson–Kessel algorithm for online data streams partitioning using belief function theory. International journal of approximate reasoning, vol. 53(5), pp. 747-768. doi:10.1016/j.ijar.2012.01.009
Serir, L., Ramasso, E., Nectoux, P., & Zerhouni, N. (2013). E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications. Mechanical Systems and Signal Processing, vol. 37(1), pp. 213-228. doi:10.1016/j.ymssp.2012.06.023
Siegel, D., & Lee, J. (2011). An Auto-Associative Residual Processing and K-means Clustering Approach for Anemometer Health Assessment. International Journal of Prognostics and Health Management, vol. 2(2) 014, pp. 1-12. ISSN 2153-2648
Strehl, A., & Ghosh, J. (2002). Cluster ensembles-a knowledge reuse framework for combining partitions. The Journal of Machine Learning Research, vol. 3, pp. 583-617. doi: 10.1162/153244303321897735
Salvador, A. (2002). Faults diagnosis in industrial processes with a hybrid diagnostic system. In MICAI 2002: Advances in Artificial Intelligence, vol. 2313, pp. 536- 545. Springer Berlin Heidelberg. doi: 10.1007/3-540-46016-0_56
Su, M. C., & Chou, C. H. (2001). A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Transactions on pattern analysis and machine intelligence, vol. 23(6), pp. 674-680.
Topchy, A., Jain, P., & Punch, W. (2004). A Mixture Model for Clustering Ensembles. Proceedings of the 2004 SIAM International Conference on Data Mining (379- 390), April 22-24, Florida. doi: 10.1137/1.9781611972740.35
Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: Models of consensus and weak partitions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27(12), pp. 1866-1881.
Van Wijk, J., & Van Selow, E. (1999). Cluster and calendar based visualization of time series data. Proceedings of IEEE Symposium on Information Visualization (4-9), October 24-29, San Francisco, CA. doi: 10.1109/INFVIS.1999.801851
Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and Artificial Intelligence, vol. 25(03), pp. 337-372.
Vlachos, M., Lin, J., Eamonn K., & Dimitrios G. (2003). A wavelet-based anytime algorithm for k-means clustering of time series. In Proc. Workshop on Clustering High Dimensionality Data and Its Applications (23-30), San Francisco, CA.
Von Luxburg, U. (2007). A Tutorial on Spectral Clustering. Statistics and Computing, vol. 17(4), pp. 395-416.
Wang, T., Yu, J., Siegel, D., & Lee, J. (2008). A similarity based prognostics approach for remaining useful life estimation of engineered systems. In Prognostics and Health Management, 2008. PHM 2008. International Conference on, (1-6). IEEE., October 6-9, Denver, CO. doi: 10.1109/PHM.2008.4711421
Wang, T. (2010). Trajectory Similarity Based Prediction for Remaining Useful Life Estimation. Doctoral dissertation. University of Cincinnati, U.S. http://gradworks.umi.com/3432353.pdf
Wu, F., & Lee, J. (2011). Information Reconstruction Method for Improved Clustering and Diagnosis of Generic Gearbox Signals. International Journal of the Prognostics and Health Management Society, vol. 2(1) 004, 9 pages. ISSN 2153-2648
Xiufeng, G., & Changzheng, X. (2010). K-means Multiple Clustering Research Based on Pseudo Parallel Genetic Algorithm. In Information Technology and Applications (IFITA), 2010 International Forum on (1, pp. 30-33). IEEE, July 16-18, Kunming. doi : 10.1109/IFITA.2010.186
Zhou, S., Zhang, J., & Wang, S. (2004). Fault diagnosis in industrial processes using principal component analysis and hidden Markov model. In American Control Conference, 2004. Proceedings of the 2004, vol. 6, pp. 5680-5685. IEEE.
Zhao, Z., & Liu, H. (2007). Spectral feature selection for supervised and unsupervised learning. Proceedings of the 24th international conference on Machine learning (1151-1157), June 20-24, Corvalis, Oregon.