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ABSTRACT 

The objective of the present work is to develop a novel 
approach for combining in an ensemble multiple base 
clusterings of operational transients of industrial equipment, 
when the number of clusters in the final consensus 
clustering is unknown. A measure of pairwise similarity is 
used to quantify the co-association matrix that describes the 
similarity among the different base clusterings. Then, a 
Spectral Clustering technique of literature, embedding the 
unsupervised K-Means algorithm, is applied to the co-
association matrix for finding the optimum number of 
clusters of the final consensus clustering, based on 
Silhouette validity index calculation. The proposed 
approach is developed with reference to an artificial case 
study, properly designed to mimic the signal trend behavior 
of a Nuclear Power Plant (NPP) turbine during shut-down. 
The results of the artificial case have been compared with 
those achieved by a state-of-art approach, known as Cluster-
based Similarity Partitioning and Serial Graph Partitioning 
and Fill-reducing Matrix Ordering Algorithms (CSPA-
METIS). The comparison shows that the proposed approach 
is able to identify a final consensus clustering that classifies 
the transients with better accuracy and robustness compared 
to the CSPA-METIS approach. The approach is, then, 
validated on an industrial case concerning 149 shut-down 
transients of a NPP turbine. 

Keywords: Unsupervised Learning, Ensemble Clustering, 
Final Consensus Clustering, Spectral Clustering, 
Operational Transients, Nuclear Power Plant (NPP) turbine 
shut-down. 

1. INTRODUCTION 

In industries such as nuclear, oil and gas, automotive and 
chemical, equipments are subjected to several causes of 
performance degradation and exposed to faulty conditions, 
e.g., presence of manufacturing defects, unexpected 
interactions with the environment, wear and tear (Bolotin & 
Shipkov, 1998; Muller, Suhner, & Iung, 2008; Baraldi, Di 
Maio, & Zio, 2012; Baraldi, Di Maio, & Zio, 2013c). 
Capturing the different operational conditions of these 
equipments, detecting the onset of abnormal conditions and 
classifying them in different types can aid the decision 
maker to decide a proper maintenance intervention policy 
and, hence, increase equipment reliability and system safety 
while reducing overall corrective maintenance costs 
(Jardine, Lin, & Banjevic, 2006; Al-Dahidi, Baraldi, Di 
Maio, & Zio, 2014). 

Measurements of relevant signals are collected during 
operation. These transient data are representative of 
different operational conditions of the equipment. For fault 
diagnosis, these data are manipulated with the objective of 
partitioning them into dissimilar groups, whose number is 
“a priori” unknown, such that data belonging to the same 
group are more similar than those belonging to the other 
groups, and corresponding to different equipment 
conditions. In particular, one can distinguish, among the 
groups, anomalous behaviors of the equipment and relate 
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them to specific root causes (Fred & Jain, 2005; Xiufeng & 
Changzheng, 2010; Wu & Lee, 2011; Serir, Ramasso, & 
Zerhouni, 2012; Baraldi, Di Maio, Zio, Rigamonti, & 
Seraoui, 2013a; Serir, Ramasso, Nectoux, & Zerhouni, 
2013).  

The problem of grouping the operational transients of an 
industrial equipment can be formulated as an unsupervised 
clustering problem aimed at partitioning the transient data 
into homogeneous clusters so that those data belonging to 
the same cluster are very similar to each other and dissimilar 
to those of the other clusters (Salvador, 2002; Bocaniala, Sa 
Da Costa, & Palade, 2004; Zhou, Zhang, & Wang, 2004; 
Chaovalit & Zhou, 2005; Wang, Yu, Siegel, & Lee, 2008; 
Wang, 2010; Baraldi et al. 2013a; Lin, Chen, & Zhou, 
2013). 

Over the last few decades, several clustering algorithms 
have been proposed and used in practice, like K-Means 
(Hartigan, 1975; Vlachos, Lin, Eamonn, & Dimitrios, 2003; 
Siegel & Lee, 2011), Self-Organizing Maps (SOM) 
(Bhavaraju, Kankar, Sharma, & Harsha, 2010; Gonçalves, 
Bosa, Balen, Lubaszewski, Schneider, & Henriques, 2011; 
Al-Dahidi, 2014), Fuzzy C-Means (FCM) (Bezdek, 1981; 
Leguizamón, Pelgrum, & Azzali, 1996; Baraldi et al. 2012; 
Di Maio, Hu, Tse, Pecht, Tsui, & Zio, 2012; Baraldi et al. 
2013c), Spectral Clustering (Von Luxburg, 2007; Zhao & 
Liu, 2007; Baraldi, Di Maio, Zio, Rigamonti, & Seraoui, 
2013b), Hierarchical clustering (Johnson, 1967; Van Wijk & 
Van Selow, 1999; Datta, Mavroidis, & Hosek, 2007), and 
Hidden Markov Models (HMMs) (Baruah & Chinnam, 
2005). However, there is no unique clustering algorithm 
capable of correctly identifying the underlying structure of 
any kind of dataset. Even the application of different 
clustering algorithms to the same set of data, or the same 
algorithm with different parameter settings leads to different 
clustering results (Fred & Jain, 2005; Fern & Lin, 2008; 
Vega-Pons & Ruiz-Shulcloper, 2011).  

To handle this, ensemble approaches have been proposed 
that combine multiple base clusterings into a single 
consolidated clustering, i.e., the final consensus clustering 
P* (Strehl & Ghosh, 2002; Topchy, Jain, & Punch, 2004; 
Topchy, Jain, & Punch, 2005; Chen, 2007; Vega-Pons & 
Ruiz-Shulcloper, 2011; Iqbal, Moh'd, & Khan, 2012). 

A typical ensemble clustering scheme is shown in Figure 1. 
For a given dataset ,X  the construction of the ensemble 
amounts to the aggregation of the results of multiple base 
clusterings. The base clusterings composing the ensemble 
can be different because of the different algorithms used 
and/or because of the different data and features upon which 
clustering is performed. The outcome of the multiple base 
clusterings are aggregated into a final consensus clustering 
P*, by a given method of aggregation (Strehl & Ghosh, 
2002; Topchy et al. 2004; Chen, 2007; Greene & 

Cunningham, 2007; Vega-Pons & Ruiz-Shulcloper, 2011; 
Ahuja & Dhanya, 2012). 

 
Figure 1. Scheme of ensemble clustering approach 

The main challenges for an effective consensus strategy of 
aggregation are (Topchy et al. 2004): 1) different base 
clusterings group data differently and, maybe, in different 
numbers of clusters, 2) the correspondence between the 
clusters labels of different base clusterings is unknown, 3) 
the number of clusters M in the final consensus clustering is 
“a priori” unknown, 4) some base clusterings might not 
label some data (missing labels), and 5) for large datasets, 
large computational times might be needed.   

Several methods have been used to obtain the final 
consensus clustering, for example Relabeling and Voting 
(Ayad & Kamel, 2010), Co-association Matrix (Vega-Pons 
& Ruiz-Shulcloper, 2011), Genetic Algorithms (Ghaemi, 
bin Sulaiman, Ibrahim, & Mustapha, 2011; Chatterjee & 
Mukhopadhyay, 2013), Finite Mixture Models (Topchy et 
al. 2004; Topchy et al. 2005), and Graph and Hypergraph 
partitioning (Karypis, Aggarwal, Kumar, & Shekhar, 1997; 
Strehl & Ghosh, 2002; Vega-Pons & Ruiz-Shulcloper, 
2011). The success of these consensus strategies in 
addressing the above mentioned challenges is reported in 
Table 1. 

Ensemble clustering 
approach 1 2 3 4 5 

Relabeling and Voting  Χ √ Χ Χ No 
Co-association matrix √ Χ  √ √ Yes 
Genetic algorithm √ √ Χ Χ Yes 
Finite Mixture Models √ Χ  √ √ Yes 
Graph and Hypergraph 
partitioning √ Χ  Χ √ Yes 

Table 1. Capabilities of ensemble clustering approaches (√ 
solved, Χ unsolved): 1= Different number of clusters for 
each base clustering, 2= Label correspondence problem, 

3=“A priori” knowledge of M, 4= Missing labels, 5= 
Computational limitations 

The Relabeling and Voting method solves the 
correspondence between the labels provided by different 
base clusterings, even for large datasets, by using a simple 
voting procedure to partition data in clusters (Dimitriadou, 
Weingessel, & Homik, 2001; Dudoit & Fridlyand, 2003), 
but it requires the number of clusters in the base clusterings 
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to be the same and known “a priori” (Ghaemi, Sulaiman, 
Ibrahim, & Mustapha, 2009).   

Co-association based methods summarize similarities 
among base clusterings into a co-association matrix (Strehl 
& Ghosh, 2002), even for different numbers of clusters for 
the base clusterings, without any previous knowledge on M, 
but with high computational demands (Fred & Jain, 2005; 
Vega-Pons & Ruiz-Shulcloper, 2011).  

In genetic algorithm-based methods, the search capability of 
genetic algorithms is used to identify the most stable 
clusters once the label correspondence problem is solved 
(Ghaemi et al. 2009). The plus of the method is its ability to 
identify clusters that are not easily found by other methods, 
even for different numbers of clusters for each base 
clustering; on the other hand, its computational burden, and 
its inability to deal with the missing labels constitute 
practical limitations (Topchy et al. 2004; Vega-Pons & 
Ruiz-Shulcloper, 2011).  

In Finite Mixture Models, the final consensus clustering is 
seen as a probability model in the space of the base clusters 
and is found as a solution to the maximum likelihood 
problem for a given ensemble clustering (Topchy et al. 
2004; Di Maio, Nicola, Zio, & Yu, 2014). The method does 
not solve the label correspondence problem, it is able to 
handle missing labels, it deals with different numbers of 
clusters for each base clustering and does not need any 
previous knowledge on M (Figueiredo & Jain, 2002), but its 
computational burden due to the estimation of the 
covariance matrices, makes the method difficult to apply in 
practice.  

Graph and Hypergraph partitioning algorithms, such as the 
Cluster-based Similarity Partitioning (CSPA), construct a 
graph from the similarities among the base clusterings, and 
cluster it using a graphic-based clustering algorithm, such as 
Serial Graph Partitioning and Fill-reducing Matrix Ordering 
Algorithm (METIS) (Karypis & Kumar, 1995; Karypis & 
Kumar, 1998; Strehl & Ghosh, 2002; Topchy et al. 2004), 
for a predetermined value of M (Topchy et al. 2004; Ghaemi 
et al. 2009). The method does not solve the correspondence 
between the base clusterings labels, can handle the missing 
labels and different numbers of clusters for each base 
clustering, but it suffers computation limitations for large 
datasets. Despite this, CSPA and METIS algorithms have 
been taken as reference for comparison in this paper because 
CSPA-METIS is the simplest and “often” best performing 
method for consensus aggregation among other Graph and 
Hypergraph partitioning algorithms, e.g., Meta-CLustering 
Algorithm (MCLA) and HyperGraph-Partitioning Algorithm 
(HGPA) (Strehl & Ghosh, 2002; Chen, 2007), whose pitfall 
is that the number of final consensus clusters cannot exceed 
the maximum number of the individual base clusters.  

The novelty of the proposed approach is to replace METIS 
algorithm with Spectral Clustering (Von Luxburg, 2007; 

Baraldi et al. 2013b) and Silhouette validity index 
(Rousseeuw, 1987), to automatically determine M which by 
most industrial applications, is not known “a priori” 
(Chakaravathy & Ghosh, 1996; Strehl & Ghosh, 2002; Li & 
Chen, 2011). More specifically, the Spectral Clustering 
technique, embedding the unsupervised K-Means algorithm, 
is applied to the co-association matrix that describes the 
similarity among the different base clusterings obtained on a 
set of diverse sources of data (features) (e.g., vibration, 
temperature signals), rather than to the similarity values 
among the data themselves, for mining the clusters that are 
formed by the most similar data. Then, the optimum number 
of clusters C* is selected among several candidates Ccandidate, 
based on the morphology of the obtained final consensus 
clusters evaluated by the Silhouette validity index that 
measures the similarity of the data belonging to the same 
cluster and the dissimilarity of these in the other clusters (a 
large Silhouette value indicates that the obtained clusters of 
the final consensus clustering are well separated and 
compacted (Rousseeuw, 1987; Charrad, Lechevallier, 
Ahmed, & Saporta, 2010).  

The proposed approach is developed on an artificial case 
study properly designed to mimic the signal trend behavior 
of Nuclear Power Plants (NPPs) turbines during shut-down 
transients. Different sets of features have been simulated 
and used to obtain different base clusterings, representative 
of different groupings of the shut-down transients of the 
turbine. The correct number of clusters, for each base 
clustering, has been identified by the Davies-Bouldin (DB) 
criterion: the minimum DB value is reached for the number 
of clusters which gives optimal separation and compactness 
(Davies & Bouldin, 1979). Three controlled datasets 
containing M sparse or overlapping clusters of their base 
clusterings results have been considered. The results 
obtained have been compared with those achieved by 
CSPA-METIS. It has been found that the proposed approach 
is able to identify the final consensus clustering with better 
accuracy and robustness compared to the CSPA-METIS 
approach.  

The approach is, then, applied to a real industrial case 
concerning 149 shut-down transients of a NPP turbine: 
different base clusterings representative of different 
groupings of the shut-down transients of the turbine are 
obtained by using multiple different sources of data 
(features), i.e., vibration, turbine shaft speed, vacuum, and 
temperature signals, and a final consensus clustering is 
obtained that gives the optimal grouping of the shut-down 
transients of the NPP turbine, in terms of groups separation 
and compactness.  

The remainder of the paper is organized as follows. In 
Section 2, the basics of CSPA-METIS ensemble approach 
are recalled. In Section 3, the proposed ensemble clustering 
approach is presented. The artificial case study 
representative of the signal trend behavior of a Nuclear 
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Power Plant (NPP) turbine during shut-down transients is 
introduced in Section 4. Furthermore, the results obtained 
with the application of the proposed approach to the 
artificial case and the comparison with CSPA-METIS, are 
discussed. Section 5 verifies the robustness of the proposed 
approach to clustering overlapping, in identifying the 
number M for three controlled datasets containing sparse or 
overlapping clusters of their base clusterings results. The 
real industrial case concerning 149 shut-down transients of a 
NPP turbine is introduced in Section 6 and the results of the 
application of the proposed approach to the case study are 
discussed. Finally, Section 7 concludes the paper with some 
considerations. 

2. THE CSPA-METIS ENSEMBLE CLUSTERING APPROACH 

In this Section, the combination of CSPA and METIS is 
described and considered as reference ensemble clustering 
approach, for the case when the number M of clusters in the 
final consensus clustering is known. 

The flowchart for the method is sketched in Figure 2. The 
algorithm goes along the following two phases: a procedure 
(i.e., CSPA) for establishing a co-association matrix and a 
procedure (i.e., METIS) for partitioning the graph obtained 
from the co-association matrix to obtain the final consensus 
clustering P* (Strehl & Ghosh, 2002; Topchy et al. 2004).  

We consider N data belonging to the dataset X that are 
clustered into H base clusterings. For each j-th base 
clustering, j=1,…,H, each datum is labeled by an integer 
number ranging in [1, ]j

optC , where j
optC is the number of 

clusters for each j-th base clustering. The problem of 
clustering the N data is, thus, transformed into an 
aggregation problem of the base clusterings outcomes Y of 
size NxH. 

The algorithm entails three main steps; without loss of 
generality, these are hereafter described on a simple 
numerical example where X contains N=5 data, clustered 
into H=3 base clusterings: 

Step 1: Adjacency matrix computation. In practice, for each 
j-th base clustering (reported in Table 2 for the simple 
explanatory example), if two data belong to the same cluster 
they are considered similar, i.e., similarity μ=1, and if not 
they are dissimilar, i.e., similarity μ=0. Thus, for each j-th 

base clustering, an adjacency binary similarity matrix, 
j

A , 
of size NxN, is built (Strehl & Ghosh, 2002) (Figure 3, left, 
where the different black entries are μ=1 and the white 
entries are μ=0). 

 
 Figure 2. Flowchart of the CSPA-METIS approach 

 j=1 j=2 j=3 
x1 1 2 1 
x2 1 2 2 
x3 2 1 3 
x4 2 1 1 
x5 2 1 2 

Table 2. The H=3 base clusterings results of the N=5 data 
(illustrative example of CSPA) 
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Step 2: Similarity matrix computation. The entry-wise 
average of the obtained H binary similarity matrices leads to 

obtaining the overall similarity matrix 1 T
S A A

H
 (Figure 

3, right), of size NxN (Strehl & Ghosh, 2002). In this way, 
each entry of the similarity matrix has a value in [0,1], 
which is proportional to how likely a pair of data is, when 
grouped together. 

 
Figure 3. Base clusterings adjacency matrices (left) and the 

similarity matrix (right) of the numerical example 

Step 3: Final consensus clustering computation. To produce 
a final consensus clustering P*, the graphic-based clustering 
algorithm METIS is adopted to partition the obtained 
similarity graph (shown in Figure 3, right) (Strehl & Ghosh, 
2002). METIS is a multilevel graph partitioning algorithm 
that entails three main steps (refer to Karypis & Kumar, 
1998, for more details): 
1. the original graph is collapsed (coarsed) in smaller 

graphs (where the vertices are the data and the edges 
are the similarities), by resorting to Random Matching 
(RM) (Bui & Jones, 1993),  

2. Spectral Bisection is used for partitioning the coarsened 
graphs (Barnard & Simon, 1994),  

3. The partitions effectiveness is quantified by 
successively projecting the partitions into the original 
graph. It has been shown that METIS produces a high 
quality partitioning in a relatively small amount of time. 
However, the number of partitions to be found and, 
hence, the number of clusters in the final consensus 
clustering, has to be known “a priori”. One option can 
be to assign the number of clusters in the final 
consensus clustering to be equal to the maximum 
number of clusters in the H base clusterings, M=max (

j
optC ), j=1,…,H. 

In the following Section, an ensemble approach is proposed 
to overcome the requirement of an “a priori” knowledge of 
the number of clusters M in the final consensus clustering. 

3. THE PROPOSED ENSEMBLE CLUSTERING APPROACH 

In this Section, an ensemble approach is proposed, that 
evolves from that of Section 2 to avoid the hypothesis on 
the number of clusters M in the final consensus clustering. 
The proposed approach is based on the combination of: 1) 
CSPA method to compute the similarity matrix ,S 2) 

Spectral Clustering to transform S into a normalized 

laplacian matrix ,rsL and then, compute its spectrum 
information (eigenvectors) (see Appendix A.1), 3) a 
clustering algorithm, e.g., the K-means algorithm, that is fed 
with the eigenvectors calculated in the previous step 2), to 
find the final consensus clustering, and 4) the Silhouette 
index to quantify the goodness of the obtained clusters (see 
Appendix A.2).  
The flowchart for the method is sketched in Figure 4. The 
method goes along the following steps: 

Step 1: Adjacency matrix computation. This Step 
corresponds to Step 1 of Section 2. 

Step 2: Similarity matrix computation. This Step 
corresponds to Step 2 of Section 2. 

Step 3: Spectral Clustering. Once the overall similarity 
matrix S is computed, Spectral Clustering (Appendix A.1) 
is used to reveal the hidden structure of .S  The basic idea of 
Spectral Clustering is to extract the relevant information of 
the matrix ,S by considering the eigenvectors associated to 
the ascended eigenvalues 1 2, ,..., ,...,

candidate NCO O O O  of the 
normalized laplacian matrix rsL of ,S to perform 
dimensionality reduction before clustering in fewer 
dimensions (see Step 1 in Appendix A.1) (Von Luxburg, 
2007; Baraldi et al. 2013c). The eigenvectors 

1 2, ,..., ,...,
candidate NCu u u u of the eigenvalues 

1 2, ,..., ,...,
candidate NCO O O O  are calculated and stored in a matrix 

U with a size NxN (see Steps 2 and 4 in Appendix A.1), 
where Ccandidate=[Cmin,Cmax] and Cmin and Cmax are the 
minimum and maximum numbers of clusters considered for 
the final consensus clustering, respectively.  

Step 4: Clustering algorithm. For each candidate number of 
clusters Ccandidate, the reduced matrix of U with a size 
NxCcandidate is partitioned into Ccandidate clusters by using a 
single clustering algorithm and the final consensus 
clustering *

candidateCP is obtained. In this work, we resort to the 
K-means algorithm, one of the most used clustering 
methods, to partition U  into K=Ccandidate clusters (Su & 
Chou, 2001; Fern & Lin, 2008). 

Step 5: Final consensus clustering selection. For each 
Ccandidate, the obtained consensus clustering *

candidateCP is 
evaluated by computing its Silhouette validity index 

candidateCSV (Rousseeuw, 1987). The most appropriate 

consensus clustering *
*

C
P  is the one for which the Silhouette 

reaches a maximum, for which clusters are well separated 
and compacted (see also Appendix A.2). 
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 Figure 4. Flowchart of the proposed approach 

4. ARTIFICIAL CASE STUDY 

An artificial case study has been designed to generate 
N=149 data representative of the signals trends behaviors of 
M=7 different settings of shut-down operations. This is done 
to mimic the real industrial case of Section 6, concerning 
N=149 real shut-down transients of a NPP turbine. Each 
datum is described by F=7 features (as for the real case 
study of Section 6), representative of the turbine condition, 
e.g., mean value of the vibration signals, and of the 
environmental and operational conditions that can influence 
the turbine behavior, e.g., mean values of the vacuum and 
temperature signals. These data are stored in a matrix X of 
a size 149x7. 

The objective is to reveal the “hidden” (but simulated and, 
thus, known) structure P* of the dataset X by identifying 
groups of data with similar functional behaviors, 
representative of different operational conditions of the 
turbine. Without loss of generality, it is assumed that the 
operational conditions of the NPP turbine are M=7: 1) three 
classes of normal condition (NC1, NC2, NC3), 2) three 
classes of abnormal condition (AC1, AC2, AC3), and 3) one 
class of outliers (i.e., unknown behaviours). The dataset X  
is pictorially shown in Figure 5: data with similar 
characteristics, e.g., vibration signals, and environmental 
and operational conditions which can influence the turbine 
behavior, e.g., vacuum and temperature signals, have been 
grouped together and will be treated within the same base 
clustering.  

As shown in Figure 5, H=3 sets of features jX have been 
simulated and considered: the set of features 1, 2, and 3 
(j=1), that of features 4 and 5 (j=2), and that of features 6 
and 7 (j=3). This is found by a filter approach for which the 
optimal subsets of features are selected on the basis of 
statistical properties. 

 
Figure 5. The seven operational conditions of the artificial 

case study 
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The values of the features for different classes of data have 
been created by randomly sampling their realization from 
different multivariate normal and log-normal distribution 
functions (1 to 10 in Figure 5), whose combination 
characterizes the class.   

Figure 6 shows the sampled data of the three sets of 
features: it is worth noticing that clustering each j-th set of 
features independently may reveal only some groups of the 
“hidden” NPP turbine operational conditions indicated in 
Figure 5, whereas only a final consensus clustering would 
enlighten all the M=7 clusters. In particular: 

1. Figure 6 (Left) shows the dataset of the j=1 set of 
features: clusters can be seen for NC1 and NC2 in squares, 
NC3 in diamonds, and there are also three outliers (147-
149). Base clustering of this set of features cannot reveal 
any abnormal operational condition.  

2. Figure 6 (Middle) shows the dataset of the j=2 set of 
features: clusters can be seen for NC1 in squares, NC2 and 
NC3 in diamonds, and there is also one outlier (149). Again, 
base clustering of this set of features cannot reveal any 
abnormal operational condition.  

3. Figure 6 (Right) shows the dataset of the j=3 set of 
features: clusters can be seen for all normal operational 
conditions in squares, and abnormal operational conditions 
AC1 in diamonds, AC2 in circles, and AC3 in triangles. Base 
clustering of this set of features cannot reveal any outlier. 

The objective is to aggregate these base clusterings into a 
final consensus clustering P*, capable of identifying the 
“true” grouping of the shut-down transients of the NPP 
turbine. 

To mine the clusters shown in Figure 6, the j-th base 
clustering outcomes are obtained by the unsupervised Fuzzy 
C-Means (FCM) algorithm (Baraldi et al. 2013c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

For identifying the correct number of clusters j
optC  for each 

base clustering, single clustering validity index (e.g., 
Silhouette, Davies-Bouldin (DB), etc.) or a combination of 
different validity indices can be used (Onanena, Oukhellou, 
come, Jemei, Candusso, Hissel, & Aknin, 2013). In this 
work, Davies-Bouldin (DB) validity criterion has been 
considered for mining the clusters of the base clusterings 
(Davies & Bouldin, 1979) (whereas, the Silhouette validity 
index is used for identifying the optimum number of 
clusters in the final consensus clustering). The Davies-
Bouldin (DB) criterion is based on the ratio of within-cluster 
and between-cluster distances: the optimal clustering, which 
gives optimal separation and compactness of the obtained 
clusters, has the smallest DB index value (Davies & 
Bouldin, 1979; Legány, Juhász, & Babos, 2006; Onanena et 
al. 2013).   

Figure 7 shows the DB values for different numbers of 
clusters in the range of [2,10], for each j-th set of features: 
the star indicates the optimum number of clusters j

optC . For 

validation of the DB validity criterion to decide j
optC , we 

use the information on the “simulated” classes to which the 
data belong, to calculate the misclassification rate (Table 3) 
(it is worth noticing that in real industrial applications the 
real class is unknown). 

Set of  
features 

j
optC

 
Misclassification 
rate 

j=1 2 8.1% 
j=2 2 5.3% 
j=3 4 6.1% 

Table 3. Optimum numbers of clusters and misclassification 
rates of clustering for the three sets of features 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

Figure 6: The artificial datasets of the three sets of features 
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The obtained base clustering labels for each set of features 
have been, then, stored in a matrix Y of size 149x3. The 
application of the clustering ensemble approach aims at 
finding the final consensus clustering of the data. In Section 
4.1 and Section 4.2 the CSPA-METIS approach and the 
proposed approach are applied, respectively. 

4.1. Application of CSPA-METIS approach 

The application of the CSPA-METIS approach is here 
described according to the steps illustrated in Section 2: the 
overall adjacency matrix A  and the overall similarity 
matrix S have been computed (Steps 1 and 2), respectively. 
A graph is obtained from S and METIS is used to produce a 
final consensus clustering (Strehl & Ghosh, 2002; Topchy et 
al. 2004). 

To this aim, the number of clusters M=7 in the final 
consensus clustering is assumed to be known “a priori”. 
Figure 8 shows the obtained results of the aggregation P* 
(left) compared to the true clustering (right). 

The Figure shows the N=149 data (middle) in chronological 
order from top to bottom, with the associated true clustering 
labels located on the right coordinate, i.e., NC1, NC2, NC3, 
AC1, AC2, AC3, and Outliers with different color shades for 
their transients allocations. A fully symmetric plot would 
mean 100% of correct label assignment, whereas the blurrier 
the plot, the larger the misclassification rate. The application 
of CSPA-METIS leads us to distinguish mainly three 
clusters, i.e., NC1, NC2 and NC3, whereas the remaining 
data have not been correctly clustered. Comparing the 
obtained clustering results with the true “simulated” 
clustering, one can calculate the misclassification rate to be 
equal to 41.6% (62 out of 149 data incorrectly classified), 
which is not a satisfactory result.  

 

 

 
Figure 8. The obtained final consensus clustering by CSPA-

METIS for M=7 vs. the true clustering 

One might be wondering whether the result would change if 
a different validity index would be used at this stage of the 
approach. For completeness, we use the Silhouette for 
selecting the number of clusters from the interval [2,16], 
where the lower bound (2) is the minimum number of base 
clusters (see Table 3), whereas the upper bound (16) is the 
number of the largest combination of the three base clusters 
(i.e., 2x2x4). The optimum number of clusters C* in the 
final consensus clustering is found for the value at which the 
Silhouette measure is maximized, i.e., C* =3 (star in Figure 
9) (for which the obtained clusters are well separated and 
compacted). Despite that, again the clusters are not 
representative of the true “simulated” clustering, i.e., M=7.  

The obtained results of the aggregation P*, compared with 
the true clustering are shown in Figure 10 (left and right, 
respectively). Comparing the obtained clustering results 
with the true “simulated” clustering, one can calculate the 
misclassification rate to be equal to 36.9% (55 out of 149 
data incorrectly classified). 
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Figure 9. Silhouette values vs. cluster numbers 

 
Figure 10. The obtained final consensus clustering by 

CSPA-METIS for C* = 3 vs. the true clustering 

In the following Section, the application of the developed 
approach is shown to improve the final consensus 
clustering. 

4.2. Application of the proposed ensemble clustering 
approach 

The application of the proposed ensemble clustering is here 
described according to the steps presented in Section 3: the 
method entails a similar procedure of CSPA-METIS for 
calculating S  and a procedure to identify the final 
consensus clustering P*. 

Given the similarity matrix ,S we calculate rsL  and its 
eigenvectors 1 2 149, ,..., ,..., ,

candidateCu u u u  and the corresponding 

eigenvalue 1 2 149, ,..., ,..., .
candidateCO O O O The obtained eigenvectors 

are stored in the matrix U  with size 149x149 (see also 
Appendix A.1). The number M of clusters in the final 
consensus clustering is selected according to the values of 
the Silhouette index for different numbers of clusters 

Ccandidate that span the interval [2,16], where the lower bound 
(2) is the minimum number of base clusters (see Table 3), 
whereas the upper bound (16) is the number of the largest 
combination of the three base clusters (i.e., 2x2x4): the 
optimum number of clusters C* in the final consensus 
clustering is the value at which the Silhouette is maximized, 
i.e., C* =6 (star in Figure 11). 

 
Figure 11. Silhouette values vs. cluster numbers 

The results of the application of the proposed method to the 
artificial case study are represented in Figure 12. Comparing 
the obtained clustering results (left) with the true 
“simulated” clustering (right), one can recognize that the 
misclassification rate has been reduced to 4.03% (6 out of 
149 data incorrectly classified).   

 
Figure 12. The obtained final consensus clustering by the 

proposed approach vs. the true clustering 

It is worth noticing that only six out of seven operational 
conditions have been recognized (C* =6, while M=7). The 
outliers (three transients – class 7) have not been grouped 
together: this depends on the capability of the base 
clustering algorithm in recognizing the outliers (Topchy et 
al. 2004; Topchy et al. 2005; Serir et al. 2012). 
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For example, the optimum number of clusters for the j=1 set 
of features is  1 2optC   (see Figure 7), whereas it should be 
equal to 3 (see Figure 5). This sensitivity to the quality of 
the data at hand calls for an investigation on the robustness 
of the proposed method to different dataset characteristics, 
as it will be discussed in the following Section. 

5. ROBUSTNESS OF THE  ENSEMBLE CLUSTERING 
APPROACH TO CLUSTERING OVERLAPPING 

To verify the robustness of the proposed approach, a 
controlled sensitivity test has been designed. By robustness, 
here we intend the property of the approach to provide final 
consensus clustering with low misclassification rate even in 
case of a large overlap or separation of the real clusters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With this aim, the clusters of Figure 6 have been modified 
by changing the parameters of the multivariate distributions 
from which the data are sampled, as follows: 

1. Case I (Large separation): in this case, the clusters of 
the j-th set of features, j=1,…,3 are designed to be well 
separated and compacted.  

2. Case II: this is typically the case of Section 4. In this 
case, the clusters of the j-th set of features, j=1,…,3, are 
slightly overlapped compared to Case I. 

3. Case III (Large overlap): in this case, the obtained 
clusters from the j-th set of features, j=1,…,3, are 
overlapped and less compact. 

Figure 13 shows the three cases for the three sets of 
features. As long as we are moving from Case I to Case III, 
the clusters identified start overlapping and become less 
compact. 

  

   

   

   
Figure 13: The three controlled cases for the three sets of features 
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Figure 14 shows the results of the application of the 
proposed method to Cases I, II and III. The maximum 
Silhouette values (star in Figure 14 (left)) of the three cases 
indicate that the optimum number of clusters C* in the final 
consensus clustering is still equal to 6. 

The corresponding final consensus clustering (Figure 14 
(right)) is compared with the one obtained by CSPA-METIS 
for the predetermined value M=7 (Figure 14 (middle)). It is 
interesting to notice that the clusters of the final consensus 
clustering obtained by the proposed approach are well 
representative of the true clusters, contrarily to the final 
consensus clustering obtained by CSPA-METIS.  

The performances of the two approaches can be more 
precisely compared by calculating the misclassification rates 
in the three test cases by using the information on the real 
classes to which the data belong. The misclassification rates 
for the three cases using the two approaches are reported in 
Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Proposed 
approach 

The CSPA-METIS 
approach 

Case 1 2.7% 36.9% 
Case 2 4.0% 40.3% 
Case 3 8.7% 43.6% 

Table 4. The misclassification rates of the proposed and 
CSPA-METIS approaches for the three test cases 

Furthermore, as the clusters of the sets of features are 
overlapped and spread (Case III), the performance of the 
proposed approach decreases compared to Case I, as 
expected. In conclusion, we can state that the proposed 
approach is superior to CSPA-METIS, for this particular 
dataset.  

Figure 14. Silhouette values (left) and the final consensus clustering obtained for the three artificial cases by the 
proposed approach (right) and CSPA-METIS (middle) 

 

 

  

 

 

  

 

 

  
Figure 14: Silhouette values (left) and the final consensus clustering obtained for the three artificial cases by the 

proposed approach (right) and the CSPA-METIS approach (middle) 
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6. THE REAL CASE STUDY 

The proposed approach has been applied to a real industrial 
case concerning N=149 real shut-down multidimensional 
transients of a NPP turbine. The generic i-th transient is a 
multidimensional transient in a Z=70 dimensional signal 
space with a time horizon of Np=4500 time steps (2.5 
hours). 

The objective is to partition the N=149 multidimensional 
transients into M (“a priori” unknown) dissimilar groups, 
such that transients belonging to the same group are more 
similar than those belonging to the other groups. 
Engineering and experts judgment suggest a set of H=2 base 
clusterings: 

1. Clustering of data representative of the turbine 
condition (j=1): seven signals of the turbine shaft 
vibrations have been considered (taken from sensors 
located at different stages of the turbine, whose detailed 
characteristics cannot be provided, due to 
confidentiality reasons), since vibration data contains 
signatures which, if properly interpreted, can reveal the 
operational condition of the turbine (Betta, Liguori, 
Paolillo, & Pietrosanto, 2002; Baraldi et al. 2013a). The 
similarity between the transients is measured by 
computing the pointwise difference between all seven 
vibration signals values. Then, a Spectral Clustering 
technique, embedding the unsupervised Fuzzy C-Means 
(FCM) algorithm, is applied to the obtained similarity 
matrix. Five different groups of transients 1 5optC  

 
representing different operational conditions have been 
identified thanks to the Eigengap heuristic theory (see 
Appendix A.1 – Step 3). 

2. Clustering of data representative of the environmental 
and operational conditions that can influence the 
turbine behavior (j=2): the values of turbine shaft 
speed, vacuum and structural temperature signals have 
been considered (Baraldi et al. 2013b) (taken from 
different locations of the turbine, whose details cannot 
be disseminated, due to confidentiality reasons). The 
optimum numbers of clusters is found to be 2 6optC  . 

The base clusterings results have been aggregated in a 
matrix Y with a size of 149x2 and the proposed approach 
has been applied following the steps illustrated in Section 3. 
The optimum number of clusters C* in the final consensus 
clustering is selected according to the Silhouette values for 
different numbers of clusters Ccandidate  that span in the 
interval [5,30], where the lower bound (5) is the minimum 
between  1

optC  and 2
optC , and the upper bound (30) is the 

number of the largest combination of the two base clusters 
(i.e., 5x6).  
It is important to point out that neither a too large nor a too 
small number of clusters can be considered as a valuable 

result from the practical point of view of linking turbine 
conditions with environmental and operational conditions: a 
large number of clusters makes the explanation of the 
turbine conditions too vague, whereas a small number is at 
risk of poor specification of the obtained clusters. In this 
analysis, the optimum number of clusters C* in the final 
consensus clustering is found to be C* =14, at which the 
Silhouette measure is maximized (star in Figure 15): this is 
a good compromise between small and large numbers of 
clusters. Figure 15 shows, indeed, that the Silhouette values 
for small and large numbers of C* are much worse than for 
C* =14, due to the dissimilarity of the data (inappropriately) 
assigned to the same clusters. 

 
Figure 15. Silhouette values vs. cluster numbers 

Results of the application to the real case study are shown in 
Figure 16, where the N=149 transients are plotted in 
chronological order on the horizontal axis along with the 
j=1 base clustering results (the vertical axis) and the j=2 
base clustering results represented by six different markers 
(square, diamond, star, triangle, circle, and dot). 

Looking to the j=1 base clustering results, one can clearly 
identify four blocks of different labels 1 1 1 1

1 2 3 4( , , and ).C C C C
Since the transients are numbered in increasing order with 
respect to their “calendar” occurrence, it has been possible 
to infer from the experts that the functional behavior of the 
turbine is different in the four clusters because of major 
maintenance interventions that have been undertaken at the 
specific calendar times and have resulted in radical changes 
of the turbine behaviour.  

Among these main blocks, 17 transients (1, 3, 20, 24, 25, 
26, 28, 31, 51, 70, 114, 115, 130, 136, 145, 146, and 147) 
are classified as outliers, since they are not clustered 
together with the previous 4 groups and, thus, could be 
representative of different faulty conditions in the turbine 

1
5 )(C (Baraldi et al. 2013a). 

For the ease of clarity, we only consider vibration signal 1 
as an example of vibration signal evolution of the j=1 base 
clustering results for the 5 clusters 1 1 1 1 1

1 2 3 4 5,, , andC C C C C  
and the corresponding turbine speed values (Figure 17). 
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One can recognize that, on one side, the functional 
behaviors of transients belonging to clusters 1 to 4 

1 1 1 1
1 2 3 4( , , and )C C C C are similar, with some peculiarities that  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lead to their splitting into 4 clusters rather than being 
clustered together, whereas the transients of cluster 5 1

5 )(C  
greatly differ from the others (outliers) (Baraldi et al. 
2013a). 

 

 

  

 
Figure 17: The evolution of vibration signal 1 of the 5 obtained clusters of the j=1 base clustering and the 

corresponding turbine speed values 
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Figure 16. The 149 transients in chronological order along with the j=1 and j=2 base clustering results 

Figure 17. The evolution of vibration signal 1 of the 5 obtained clusters of the j=1 base clustering and the corresponding 
turbine speed values 
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It is worth mentioning that the consensus clustering P* can 
provide us with more insights than the j=1 base clustering. 
In fact, j=2 base clustering helps explaining the 
characteristics of 1

1C , 1
2C , 1

3C  and 1
4C  (of Figure 17) on the 

basis of the environmental and operational conditions. 

In fact, looking at the environmental and operational 
conditions obtained by the j=2 base clustering in Figure 16, 
one can recognize that transients of each cluster obtained by 
the j=1 base clustering are influenced by different 
environmental and operational conditions that are obtained 
by the j=2 base clustering. 

For example, Figure 18 shows pictorially that the transients 
belonging to 1

2C  of the j=1 base clustering have been 

splitted into four different final consensus clusters  *
3(P , *

7P

, *
10P , and *

13 ),P  each one due to a different environmental 

and operational conditions 2
5(C , 2

1C , 2
6C , and 2

4 )C  as 
recognized by the j=2 base clustering (circle, square, dot 
and triangle markers, respectively in Figure 16). 

 
Figure 18. Characteristics of cluster 2 of the j=1 base 

clustering in the final consensus clustering on the basis of 
four environmental and operational conditions of the j=2 

base clustering 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 (top) shows the evolution of vibration signal 1 
and the corresponding turbine speed for the transients 
belonging to 1

2C  of the j=1 base clustering splitted into four 
clusters *

3(P , *
7P , *

10P , and *
13 )P obtained in the final 

consensus clustering (Figure 19 (bottom)): the transients 
indeed have similar functional behaviors as obtained by the 
j=1 base clustering, but they are further divided since they 
are influenced by different environmental and operational 
conditions obtained by the j=2 base clustering. 

As last remark, it is worth mentioning that two clusters   
*

2(P  and *
12 )P  of the final consensus clustering aggregate 

most of the outliers which belong to 1
5C  of the j=1 base 

clustering (all these transients are explained by the 
environmental and operational conditions 2

2C  and 2
5C  of 

the j=2 base clustering).  

This lead us to distinguish, in the set of outlier transients 
with peculiar behavior of the turbine, two representative 
faulty conditions at two different environmental and 
operational conditions *

2(P  and *
12 )P .  

Figure 20 shows the evolution of vibration signal 1 and the 
corresponding turbine speed for the transients of the two 
final consensus clusters *

2(P  and *
12 )P : despite that these 

transients are sufficiently similar in functional behaviour to 
belong to 1

5C  of the j=1 base clustering, their grouping into 
only two consensus clusters is driven (and can be explained) 
by the two different environmental and operational 
conditions 2

2(C  and 2
5 )C  obtained by the j=2 base 

clustering. 
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Figure 19: The evolution of vibration signal 1 of cluster 2 obtained by the j=1 base clustering with 

respect to the 4 clusters obtained in the final consensus clustering 
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Figure 19. The evolution of vibration signal 1 of cluster 2 obtained by the j=1 base clustering with respect to the 4 
clusters obtained in the final consensus clustering 
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The ability of the proposed approach to distinguish the 
different operational conditions of the turbine and recognize 
different faulty conditions of the turbine is an indication of 
the good performance of the proposed approach. 

7. CONCLUSIONS 

In this work, an approach to build a consensus clustering of 
individual base clusterings is proposed, based on Spectral 
Clustering and Silhouette validity index. First, the base 
clustering results are summarized in a co-association matrix 
by pairwise similarity computation. Then, a Spectral 
Clustering technique, embedding the unsupervised K-Means 
algorithm, is applied to the matrix of similarity values so 
that the clusters are formed by the most similar data. The 
optimum number of clusters is selected among several 
candidates based on the morphology of the obtained 
clusters, measured by the Silhouette validity index that 
gives reason of the similarity of data belonging to the same 
cluster and the dissimilarity with those in the other clusters. 

The proposed approach has been successfully applied to an 
artificial case study “properly” designed to reproduce the 
signal trend behavior of a Nuclear Power Plant (NPP) 
turbine during shut-down transients. The results obtained 
have been shown satisfactory by comparison to those 
obtained by the CSPA-METIS approach of literature. 
Further, three controlled datasets containing M sparse or 
overlapping clusters have been analyzed to verify the 
robustness with respect to clustering overlapping.   

Finally, the proposed approach has been applied to a real 
industrial case concerning the multidimensional signals of 
149 shut-down transients of a NPP turbine. Different base  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clusterings representative of different groupings of the shut-
down transients of the turbine have been obtained by using 
multiple, different sources of data (features), such as 
vibration, turbine shaft speed, temperature, and vacuum 
signals. The approach has led to distinguishing 14 different 
operational conditions of the turbine, representative of 
different behaviors under different environmental and 
operational conditions. Two peculiar behaviors of the 
turbine have been identified, representative of two faulty 
conditions at two different environmental and operational 
conditions. 
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METIS Serial Graph Partitioning and Fill-reducing 
Matrix Ordering Algorithm 

NC Normal operational conditions 
AC Abnormal operational conditions 
SOM Self-Organizing Maps 
FCM Fuzzy C-Means 
HMMs Hidden Markov Models 
P* Final consensus clustering 
X  Original space dataset matrix 

Y  Labels aggregation matrix (base clustering 
results) 

H Number of base clusterings 
j Index of base clustering 
N Number of data (rows) of X  
i Index of a datum (transient) belonging to X  

j
optC  Optimum number of clusters of the j-th set of 

features 
j

A  Adjacency binary similarity matrix of the j-th 
base clustering, j=1,…,H 

P  Pairwise binary similarity value  
S  Co-association matrix 

minC  Minimum number of clusters in the final 
consensus clustering P* 

maxC  Maximum number of clusters in the final 
consensus clustering P* 

candidateC  Possible number of clusters in the final 
consensus clustering P*, candidateC  ϵ [Cmin, Cmax]  

F Number of features (columns) of X  
Z Number of signals of each i-th transient 

jY  j-th base clustering result, j=1,…,H 
*C  Optimum number of clusters in the final 

consensus clustering 
*
candidateCP  Final consensus clustering with candidateC  

clusters, candidateC  ϵ [Cmin, Cmax] 

*
*

C
P  Final consensus clustering at the optimum 

number of clusters, *C   
M True number of clusters in the final consensus 

clustering 
DB Davies-Bouldin criteria  

jX  j-th set of features of the original dataset, 
j=1,…,H 

candidateCSV  Silhouette validity value at ,candidateC  candidateC  ϵ 
[Cmin, Cmax] 

ia  Average distance of the i-th datum from the 
other data belonging to the same cluster 

ib  Minimum average distance of the i-th datum 
from the data belonging to a different cluster 

mS  Mean Silhouette value for the m-th cluster 

ijS  Pairwise similarity value between the i-th and j-
th data 

mC  m-th cluster in the final consensus clustering 

mn  Total number of data in the m-th cluster in the 
final consensus clustering 

iS  Silhouette value of the i-th datum 

D  Diagonal matrix with diagonal entries d1, d2,…, 
dN 

rsL  Normalized Laplacian Matrix 

candidateCu  The Ccandidate-th eigenvector of rsL  
O  Eigenvalue of rsL  
U  Eigenvectors of rsL  

I  Identity matrix of size [N, N] 
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APPENDIX 
Appendix A.1 Unsupervised Spectral Clustering  

Spectral Clustering technique uses the spectrum 
(eigenvalues) of the similarity matrix of the data to perform 
dimensionality reduction before clustering in fewer 
dimensions (Baraldi et al. 2012; Baraldi et al. 2013c). In this 
work, the similarity matrix S  of size NxN is computed by 
Cluster-based Similarity Partition Algorithm (CSPA). The 
Spectral Clustering technique entails four steps (Baraldi et 
al. 2013a): 

Step 1: Normalized Laplacian Matrix. Starting from the 

similarity matrix ,S  the degree matrix D is calculated, 
whose entries d1, d2,…, dN  are: 
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Based on ,D  the normalized Laplacian matrix ,rsL  is 
calculated: 

 1 1
rsL D L I D S

� �
  �  (A2) 

where L D S�=  and I is the identity matrix of size [N, N]. 

Step 2: Eigenvalues and eigenvectors of .rsL  Given ,rsL  
compute the eigenvectors 1 2, ,..., .Nu u u The first C 
eigenvalues are such that they are very small whereas λC+1 is 
relatively large (Ng, Jordan, & Weiss, 2001; Von Luxburg, 
2007; Zhao & Liu, 2007). 

Step 3: Number of clusters. The number of clusters is set 
equal to C, according to the Eigengap heuristic theory 
(Mohar, 1997). 

Step 4: Feature extraction. The relevant information on the 
structure of the matrix S is obtained by considering the 
eigenvectors 1 2, ,..., Nu u u associated to the C smallest 

eigenvalues of its laplacian matrix rsL . The square matrix 

S  is transformed into a matrix U of size [N, C], in which 

the C columns of U are the eigenvectors (Von Luxburg, 
2007). 
Appendix A.2 Silhouette validity index 

To evaluate the optimal number of clusters *C among 
several clusters candidates, Silhouette validity index has 
been adopted. The Silhouette value for the i-th datum, 
i=1,…,N, is a measure of how similar/dissimilar that datum 
is to others in its own cluster and to the other clusters, 
respectively. The Silhouette value for the i-th datum Si is 
defined as (Rousseeuw, 1987): 
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 � � � �- / max ,i
i i i iS b a a b  (A3) 

where ai is the average distance from the i-th datum to the 
others in the same cluster, and bi is the minimum average 
distance from the i-th datum to the others in a different 
cluster, minimized over clusters. 

The mean of the Silhouette values for the m-th cluster Cm is 
called the cluster mean Silhouette and is denoted as Sm (Eq. 
(A4)): 
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where mn  is total number of data in the m-th cluster. 

Finally, the global Silhouette index 
candidateCSV is the mean of 

the mean Silhouettes (Eq. (A5)) through all the clusters. 
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The Silhouette value ranges from -1 to +1. A high 
Silhouette value *C

SV  indicates that the *C  clusters of the 
final consensus clustering are well separated and 
compacted. 
 


