A Data Driven Health Monitoring Approach to Extending Small Sats Mission
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
In the next coming years, the International Space Station (ISS) plans to launch several small-sat missions powered by lithium-ion battery packs. An extended version of such mission requires dependable, energy dense, and durable power sources as well as system health monitoring. Hence a good health estimation framework to increase mission success is absolutely necessary as the devices are subjected to high demand operating conditions. This paper describes a hierarchical architecture which combines data-driven anomaly detection methods with a fine-grained model-based diagnosis and prognostics architecture. At the core of the architecture is a distributed stack of deep neural network that detects and classifies the data traces from nearby satellites based on prior observations. Any identified anomaly is transmitted to the ground, which then uses model-based diagnosis and prognosis framework to make health state estimation. In parallel, periodically the data traces from the satellites are transported to the ground and analyzed using model-based techniques. This data is then used to train the neural networks, which are run from ground systems and periodically updated. The collaborative architecture enables quick data-driven inference on the satellite and more intensive analysis on the ground where often time and power consumption are not constrained. The current work demonstrates implementation of this architecture through an initial battery data set. In the future we propose to apply this framework to other electric and electronic components on-board the small satellites.
How to Cite
##plugins.themes.bootstrap3.article.details##
online learning, deep neural networks, anomaly detection, health monitoring
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Prognostic and Health Management Society advocates open-access to scientific data and uses a Creative Commons license for publishing and distributing any papers. A Creative Commons license does not relinquish the author’s copyright; rather it allows them to share some of their rights with any member of the public under certain conditions whilst enjoying full legal protection. By submitting an article to the International Conference of the Prognostics and Health Management Society, the authors agree to be bound by the associated terms and conditions including the following:
As the author, you retain the copyright to your Work. By submitting your Work, you are granting anybody the right to copy, distribute and transmit your Work and to adapt your Work with proper attribution under the terms of the Creative Commons Attribution 3.0 United States license. You assign rights to the Prognostics and Health Management Society to publish and disseminate your Work through electronic and print media if it is accepted for publication. A license note citing the Creative Commons Attribution 3.0 United States License as shown below needs to be placed in the footnote on the first page of the article.
First Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.