Assessing Helicopter Turbine Engine Health: A Simple Yet Robust Probabilistic Approach

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 6, 2024
Peihua Han Qin Liang Erik Vanem Knut Erik Knutsen Houxiang Zhang

Abstract

This paper presents a data-driven approach for assessing the health of helicopter turbine engines, developed for the PHM North America 2024 Conference Data Challenge. The task involves both regression and classification to estimate the torque margin and classify engine health as either nominal or faulty. To quantify the reliability of predictions, probabilistic outputs are generated. We employ a two-stage model where the predicted torque margin serves as an input feature for health classification. For probabilistic torque margin estimation, we introduce an empirical error sampling method to generate torque margin samples, followed by a rule-based distribution selection scheme to evaluate the resulting distributions. For fault classification, logistic regression is used to provide confidence estimates, and we incorporate a score-optimized loss function during training to mitigate penalties for false negatives. Our approach demonstrates strong generalization to unseen assets, ranking 2nd in the competition with a score of 0.94, demonstrating its effectiveness in predicting health conditions and uncertainty for more informed helicopter engine management.

How to Cite

Han, P., Liang, Q., Vanem, E., Knutsen, K. E., & Zhang, H. (2024). Assessing Helicopter Turbine Engine Health: A Simple Yet Robust Probabilistic Approach. Annual Conference of the PHM Society, 16(1). https://doi.org/10.36001/phmconf.2024.v16i1.4186
Abstract 81 | PDF Downloads 54

##plugins.themes.bootstrap3.article.details##

Keywords

Data-Driven Approach, Logistic Regression, Custom loss function, Empirical Error Sampling

References
Adadi, A., & Berrada, M. (2018). Peeking inside the blackbox: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138 - 52160.

Amozegar, M., & Khorasani, K. (2016). An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines. Neural Networks, 76, 106–121.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199-231.

Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature Methods, 15(4), 233-234.

Carmichael, I., & Marron, J. (2018). Data science vs. statistics: two cultures? Japanese Journal of Statistics and Data Science, 1, 117-138.

Gohil, V., Dev, S., Upasani, G., Lo, D., Ranganathan, P., & Delimitrou, C. (2024). The importance of generalizability in machine learning for systems. IEEE Computer Architecture Letters, 23(1), 95-98.

Han, P., Ellefsen, A. L., Li, G., Æsøy, V., & Zhang, H. (2021). Fault prognostics using lstm networks: application to marine diesel engine. IEEE Sensors Journal, 21(22), 25986–25994.

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang, H. (2021). Fault detection with lstm-based variational autoencoder for maritime components. IEEE Sensors Journal, 21(19), 21903–21912.

Han, P., Li, G., Skulstad, R., Skjong, S., & Zhang, H. (2020). A deep learning approach to detect and isolate thruster failures for dynamically positioned vessels using motion data. IEEE Transactions on Instrumentation and Measurement, 70, 1–11.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). Springer.

Jiao, Z., Wang, H., Xing, J., Yang, Q., Yang, M., Zhou, Y., & Zhao, J. (2023). Lightgbm-based framework for lithium-ion battery remaining useful life prediction under driving conditions. IEEE Transactions on Industrial Informatics, 19(11), 11353–11362.

Kakavandi, F., Han, P., De Reus, R., Larsen, P. G., & Zhang, H. (2023). Interpretable fault detection approach with deep neural networks to industrial applications. In 2023 international conference on control, automation and diagnosis (iccad) (pp. 1–7).

Liang, Q., Knutsen, K. E., Vanem, E., Æsøy, V., & Zhang, H. (2024). A review of maritime equipment prognostics health management from a classification society perspective. Ocean Engineering, 301, 117619.

Liang, Q., Knutsen, K. E., Vanem, E., Zhang, H., & Æsøy, V. (2023). Unsupervised anomaly detection in marine diesel engines using transformer neural networks and residual analysis. In Phm society asia-pacific conference (Vol. 4).

Liang, Q., Tvete, H., & Brinks, H. (2020). Prediction of vessel propulsion power from machine learning models based on synchronized ais-, ship performance measurements and ecmwf weather data. In Iop conference series: Materials science and engineering (Vol. 929, p. 012012).

Liang, Q., Tvete, H. A., & Brinks, H. W. (2019). Prediction of vessel propulsion power using machine learning on ais data, ship performance measurements and weather data. In Journal of physics: Conference series (Vol. 1357, p. 012038).

Liang, Q., Vanem, E., Knutsen, K. E., & Zhang, H. (2022). Data-driven prediction of ship propulsion power using spark parallel random forest on comprehensive ship operation data. In 2022 ieee 17th international conference on control & automation (icca) (pp. 303–308).

Liang, Q., Vanem, E., Xue, Y., Alnes, Ø., Zhang, H., Lam, J., & Bruvik, K. (2023). Data-driven state of health monitoring for maritime battery systems–a case study on sensor data from ships in operation. Ships and Offshore Structures, 1–13.

Mathew, M. S., Kandukuri, S. T., & Omlin, C. W. (2024). Soft ordering 1-d cnn to estimate the capacity factor of windfarms for identifying the age-related performance degradation. In Phm society european conference (Vol. 8, pp. 9–9).

PHMSociety. (2024). PHM North America 2024 Conference Data Challenge. https://data.phmsociety.org/phm2024-conference-data-challenge/ .

Que, Z., & Xu, Z. (2019). A data-driven health prognostics approach for steam turbines based on xgboost and dtw. IEEE Access, 7, 93131–93138.

Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 43(2), 429-452.

Sauerbrei, W., & Royston, P. (1999). Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistical Society: Series A (Statistics in Society), 162(1), 71-94.

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289-310.

Tibshirani, R., & Hastie, T. (2021). A melting pot. Observational Studies, 7(1), 213-215.

Vanem, E. (2018). Statistical methods for condition monitoring systems. International Journal of Condition Monitoring, 8, 9-23.

Vanem, E., Liang, Q., Ferreira, C., Agrell, C., Karandikar, N., Wang, S., . . . others (2023). Data-driven approaches to diagnostics and state of health monitoring of maritime battery systems. In Proceedings of the annual conference of the phm society 2023.

Wang, T., Li, G., Skulstad, R., Æsøy, V., & Zhang, H. (2020). An effective model-based thruster failure detection method for dynamically positioned ships. In 2020 ieee international conference on mechatronics and automation (icma) (pp. 898–904).

Zhang, H., Li, G., Hatledal, L. I., Chu, Y., Ellefsen, A., Han, P., . . . Hildre, H. P. (2022). A digital twin of the research vessel gunnerus for lifecycle services: Outlining key technologies. IEEE Robotics & Automation Magazine, 30(3), 6–19.

Zio, E. (2022). Prognostics and health management (phm): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 218, 108119.
Section
Data Challenge Papers

Most read articles by the same author(s)