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ABSTRACT

This paper presents a data-driven approach for assessing the
health of helicopter turbine engines, developed for the PHM
North America 2024 Conference Data Challenge. The task
involves both regression and classification to estimate the
torque margin and classify engine health as either nominal
or faulty. To quantify the reliability of predictions, proba-
bilistic outputs are generated. We employ a two-stage model
where the predicted torque margin serves as an input feature
for health classification. For probabilistic torque margin es-
timation, we introduce an empirical error sampling method
to generate torque margin samples, followed by a rule-based
distribution selection scheme to evaluate the resulting distri-
butions. For fault classification, logistic regression is used
to provide confidence estimates, and we incorporate a score-
optimized loss function during training to mitigate penalties
for false negatives. Our approach demonstrates strong gen-
eralization to unseen assets, ranking 2nd in the competition
with a score of 0.94, demonstrating its effectiveness in pre-
dicting health conditions and uncertainty for more informed
helicopter engine management.

1. INTRODUCTION

A turbine engine, also known as a gas turbine or jet engine, is
an internal combustion engine that turns fuel into mechanical
energy. In helicopters, these engines are crucial for provid-
ing the power needed for lift and maneuvering. They operate
under high-stress conditions and experience significant wear
and tear, which can lead to failures. Effective health assess-
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ment is essential to predict potential problems, prevent major
failures, and lower maintenance costs. It can ensure that en-
gines operate safely and efficiently, supporting reliable heli-
copter performance.

Prognostics and Health Management (PHM) is an integrated
framework designed to monitor, diagnose, and predict the
condition of systems (Zhang et al., 2022). It has been ap-
plied to many applications including turbine engines. PHM
encompasses three key components: anomaly detection (Han,
Ellefsen, Li, Holmeset, & Zhang, 2021), fault diagnos-
tics (Wang et al., 2020), and fault prognostics (Han, Ellefsen,
Li, Æsøy, & Zhang, 2021). PHM methods can be categorized
into model-based and data-driven approaches depending on
whether a physical model is used. Data-driven methods have
gained popularity in PHM due to their ability to handle com-
plex, high-dimensional data and uncover patterns that may be
challenging for traditional model-based approaches to cap-
ture (Liang, Knutsen, Vanem, Æsøy, & Zhang, 2024).

In data-driven settings, fault diagnostics can be addressed
through regression or classification. When using regression,
the target output typically represents the system’s degrada-
tion level, modeled as a continuous variable. For example,
Vanem et al. (2023); Liang, Vanem, et al. (2023) estimated
the state of health of a battery by extracting features from
charging and discharging curves and applying various sta-
tistical models. Similarly, Mathew et al. (2024) developed
a one-dimensional convolutional neural network to estimate
the capacity factor of wind farms, utilizing the Huber loss
function to mitigate the impact of outliers. In classification
tasks, the target output is a categorical variable, e.g., fault
detection often involves binary outputs, while fault isolation
deals with multiclass outputs that represent specific isolation
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outcomes. Amozegar and Khorasani (2016) proposed an en-
semble approach combining three different machine learning
models: multi-layer perceptron, radial basis function neural
network, and support vector machine, to detect and isolate
faults in gas turbine engines. Han et al. (2020) employed a
one-dimensional convolutional neural network with focal loss
to handle imbalanced datasets when isolating thruster faults
in marine vessels. A review of statistical methods for condi-
tion monitoring is presented in (Vanem, 2018); see also e.g.
(Hastie, Tibshirani, & Friedman, 2009) for a thorough intro-
duction to such methods.

The difference between classical statistical modelling and
machine learning has long been discussed in the data science
community (Breiman, 2001; Carmichael & Marron, 2018;
Bzdok, Altman, & Krzywinski, 2018). Although it may be
debated whether there is a fundamental difference (Tibshirani
& Hastie, 2021), the distinction between the models capabil-
ity of explaining and predicting have been raised (Shmueli,
2010), and explainability has emerged as an important topic,
in particular for complicated ”black box” models (Adadi &
Berrada, 2018; Kakavandi, Han, De Reus, Larsen, & Zhang,
2023; Liang, Knutsen, Vanem, Zhang, & Æsøy, 2023). An-
other issue with more complicated models is generalizability
and the risk of overfitting to a data sample (Gohil et al., 2024).
Although neural network based models are known to be uni-
versal approximators that are able to describe very compli-
cated patterns in a dataset, simpler models may be more ro-
bust in estimating the underlying structure in the population.
Hence, the principle of parsimony is an argument to choose
a simpler model, with fewer parameters, over a more compli-
cated model if it performs equally well. Notwithstanding, the
regression and classification models presented in this paper
are relatively simple models, but they are found to perform
very well on the data challenge problem at hand.

In addition, probabilistic outputs with uncertainty estimates
are particularly valuable for PHM (Zio, 2022), as they al-
low better maintenance scheduling and more effective risk
management. For practical deployment, it is crucial to quan-
tify the uncertainty and confidence in detection, diagnostics,
and prognostics, enabling more informed decision-making
regarding the operation of engineering systems. One potential
approach is the use of probabilistic models, such as Gaussian
processes, Bayesian neural networks, or ensemble methods
like bootstrap aggregation, to effectively capture uncertainty.

In this paper, we outline the development of a data-driven
model for assessing the health of helicopter turbine engines
as part of the PHM North America 2024 Conference Data
Challenge. Our approach generates probabilistic outputs that
predict the performance distribution of the engine and provide
confidence estimates regarding whether the engine is classi-
fied as faulty or nominal.

2. PROBLEM STATEMENT

The PHM North America 2024 Conference Data Challenge
focuses on evaluating the health of helicopter turbine engines,
addressing both regression and classification tasks. The ob-
jective is to assess engine health by predicting a key variable
known as the torque margin, which quantifies the extent of
engine underperformance, and by classifying whether the en-
gine is faulty. Additionally, the challenge requires reporting
the confidence levels for both the regression and classification
outputs, making it a probabilistic regression and classification
problem.

To summarize, for each observation in the dataset, the task is
to predict the asset’s health by:

• Estimating the torque margin as a probability distribution
function (PDF).

• Predicting the binary health state (0 = nominal, 1 =
faulty), along with a confidence metric represented as a
continuous variable ranging from 0 to 1.

2.1. Dataset description

The combined dataset consists of seven helicopter engines
(assets), all of the assets are the same make and model. Mea-
sured data for four of these assets is provided in the training
set, though the observations have been shuffled and asset IDs
removed to anonymize the data. The remaining three assets
are allocated to the test and validation sets.

Each engine is equipped with a range of sensors that capture
various measurements, as detailed in Table 1. The dataset is
structured as a tabular format, comprising 742,624 observa-
tions in the training set, 21,436 observations in the test set,
and 21,436 observations in the validation set.

Table 1. Sensor measurements from the dataset.

Variables Abbreviation Type
outside air temperature oat float
mean gas temperature mgt float

pressure altitude pa float
indicated airspeed ias float

net power np float
compressor speed ng float
torque measured Tmeasured float

For each operational condition, there is a specified design
(target) torque, which represents the expected performance
of the engine. The actual output torque is also measured. En-
gine health is evaluated by comparing the measured output
torque to the target torque. Specifically, the torque margin, an
indicator of engine health, is calculated as:

Tmargin = 100× (Tmeasured − Ttarget)

Ttarget
(1)
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where Tmargin represents the torque margin, Tmeasured is the
measured torque, Ttarget and is the target torque.

The objective is to estimate the torque margin Tmargin and
determine the health state (0 = nominal, 1 = faulty) using the
sensor measurements provided in Table 1.

2.2. Evaluation metrics

A key objective of this competition is to assess the confidence
associated with the submitted classification and regression
predictions. Confidence levels play a crucial role in the scor-
ing system. The classification and regression performance
will be evaluated independently, and the final score will be
the average of the classification and regression scores across
all predictions.

Classification score: The classification score will be lin-
early weighted for correct predictions and false positives,
with a strong penalty for highly confident false negatives.
This is because a false negative, which occurs when the model
predicts the engine is healthy when it is actually faulty, can
lead to costly repairs and, in the worst-case scenario, serious
safety risks. Figure 2 illustrates the regression score across
all possible scenarios.

Figure 1. An illustration of the classification score regarding
healthy and faulty states from official website (PHMSociety,
2024).

Regression score: The regression score is computed based
on the intersection of the true value with the predicted prob-

ability density function (PDF). If the maximum value of the
PDF exceeds 1, the score is normalized by the maximum PDF
value to prevent excessively high scores in cases where the
PDF is very narrow. Figure 2 illustrates examples of pre-
dictions and their corresponding scores using Normal and
Cauchy PDFs.

Figure 2. An illustration of the regression score from official
website (PHMSociety, 2024).

3. METHODOLOGY

3.1. Overview of the method and feature engineering

Instead of treating regression and classification as indepen-
dent tasks, we adopt a two-stage approach. First, the torque
margin is predicted, and this predicted torque margin is then
used as a feature for classification. Figure 3 provides an
overview of the proposed method.

𝑚𝑚𝑎𝑎𝑘𝑘𝑘𝑘𝑎𝑎𝑘𝑘 𝑝𝑝𝑎𝑎 𝑑𝑑𝑎𝑎𝑠𝑠 𝑘𝑘𝑝𝑝/𝑘𝑘𝑎𝑎

Polynomial 
regression

𝑇𝑇𝑖𝑖𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓𝑖𝑖

Empirical error 
sampling

𝑇𝑇𝑚𝑚𝑔𝑔𝑓𝑓𝑔𝑔𝑖𝑖𝑖𝑖 samples

Rule-based distribution 
selection scheme

𝑇𝑇𝑚𝑚𝑓𝑓𝑔𝑔𝑠𝑠𝑚𝑚𝑓𝑓𝑓𝑓𝑚𝑚
Logistic 

regression

𝑇𝑇𝑚𝑚𝑔𝑔𝑓𝑓𝑔𝑔𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓𝑖𝑖 samples

Logistic 
regression

If np/ng > 1

Yes No

pdf type, pdf parameters for 𝑇𝑇𝑚𝑚𝑔𝑔𝑓𝑓𝑔𝑔𝑖𝑖𝑖𝑖

• 0=nominal, 1=faulty
• confidence

• 0=nominal, 1=faulty
• confidence

Regression Classification

Figure 3. Overview of the methodology.

Instead of using net power np and compressor speed ng di-
rectly, we introduce a new feature, np/ng. The np/ng ratio
acts as a key indicator of how efficiently the engine converts
compressor speed into power. A higher ratio suggests that
the engine is producing more power for a given compressor
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speed, indicating improved efficiency. Conversely, a lower
ratio may signal inefficiencies or a mismatch between speed
and power output. By incorporating this feature, our model
effectively captures the subtle dynamics between compressor
speed and power generation. Note that a standard normaliza-
tion is performed for all the features.

For the regression task, instead of predicting the torque mar-
gin Tmargin directly, we predict the torque target Ttarget and
compute the torque margin using the measured torque values
Tmeasured. This approach is motivated by the observation
that features such as mgt and np/ng exhibit strong linear cor-
relations with Ttarget. In the classification task, two logistic
regression models are developed based on whether np/ng is
less than 1.

Figure 4 illustrates the relationship between mgt, np/ng, and
Ttarget. Both mgt and np/ng show strong linear correlations
with Ttarget, which led us to predict the torque target Ttarget

rather than the torque margin Tmargin. Additionally, there is
a clear distinction based on whether the np/ng ratio is greater
or less than 1. When np/ng < 1, the nominal and faulty
cases become linearly separable. This observation supports
our decision to adopt a two-model classification approach.

Figure 4. mgt, np/ng ratio with torque target

Key components of the methodology, such as empirical error
sampling, the rule-based distribution selection scheme, and
the score-optimized loss in logistic regression, are detailed in
the following sections.

3.2. Empirical error sampling for probabilistic output

In order to predict the torque target, a polynomial regression
model is employed, utilizing the input features: mgt, oat, ias,
pa, np/ng. The model is defined as:

ŷ = β⊤Φ(x) (2)

where Φ(x) represents the polynomial transformation of the
input feature vector x, incorporating all polynomial combina-
tions of the features up to the third order (as selected in this
study). Hence, the model can be regarded as a type of mul-
tivariable fractional polynomial regression (Royston & Alt-
man, 1994; Sauerbrei & Royston, 1999). The vector β con-

tains the corresponding regression coefficients, and the inter-
cept term is absorbed into β. Notably, the polynomial fea-
tures include interaction terms up to the third order, such as
x1x2 and x2

1 · x2. An example of how the model calculates
third-order features is provided below:

ŷ = β0 + β1x1 + β2x2 + · · ·+ βn1x
2
1 + · · ·

+βn2
x1 · x2 + βn3

x3
2 + · · ·+ βn4

x2
1 · x2 + · · ·

(3)

The error term for each training sample is calculated as the
residual between the observed target output yi and the pre-
dicted output ŷi:

ϵi = yi − ŷi = yi − β⊤Φ(xi) (4)

The complete set of training residuals is stored in the set E =
ϵ1, ϵ2, . . . , ϵn, where n represents the total number of training
samples.

To introduce a probabilistic aspect into the model’s predic-
tions, we perform error sampling from the empirical distribu-
tion of the training residuals. For a new input feature vector
xnew, a sample from the probabilistic prediction ŷ

(j)
new is ob-

tained by adding a randomly sampled residual ϵ(j) from E to
the predicted output:

ŷ(j)new = β⊤Φ(xnew) + ϵ(j), ϵ(j) ∼ E (5)

By repeating this sampling process m times (with m = 1000
in this study), a set of probabilistic predictions is generated
{ŷ(1)new, ŷ

(2)
new, . . . , ŷ

(m)
new }. This ensemble of predictions reflects

the distribution of possible outcomes, allowing for a proba-
bilistic interpretation of the model’s output.

3.3. Rule-based distribution selection scheme

From the previous section, we have generated a
set of samples for the torque target, denoted as
{T̂ (1)

target, T̂
(2)
target, . . . , T̂

(m)
target}, to represent the proba-

bilistic output distribution. However, transforming this
torque target sample set into a torque margin sample set
{T̂ (1)

margin, T̂
(2)
margin, . . . , T̂

(m)
margin} is nontrivial, as the mea-

sured torque values are available.

Rather than fitting a statistical distribution to the sample set,
we define four distinct distributions, detailed in Table 2, to ap-
proximate the sample set while aiming to maximize the score.
The design of these distributions is to ensure that the maxi-
mum probability density function value is 1.

An illustration of the four designed distributions is provided
in Figure 5. The selection process follows a predefined rule:
distributions are evaluated in order of priority. If 99% of the
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samples fall within a given distribution, that distribution is se-
lected. If none of the first three distributions satisfy this rule,
the Cauchy distribution is applied. This design ensures that
no overconfident predictions will be given, as the regression
score normalizes when the PDF exceeds 1.

Table 2. Designed distributions.

Order Distribution Parameters
1 Uniform loc = T̂margin − 0.5, scale = 1
2 Beta a = 1.5, b = 1.5,

loc = T̂margin − 0.6365, scale = 1.273

3 Normal loc = T̂margin, scale = 1/
√
2π

4 Cauchy loc = T̂margin, scale = 1/π
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Figure 5. An illustration of the 4 designed distribution.

3.4. Score-optimized loss in logistic regression

In the binary classification task, logistic regression is em-
ployed to predict the probability of class 1 (faulty), see e.g.
(Hastie et al., 2009). The standard logistic regression model
outputs the probability as:

ŷ = σ(w⊤x) (6)

where x is the feature vector. w is the vector of model
weights. σ is the sigmoid function, which maps the output
to the range [0,1].

Typically, the log-likelihood is used as the loss function to
estimate the weights w. The log-likelihood loss is known for
producing well-calibrated models, where the predicted prob-
abilities accurately reflect the confidence of the predictions.
However, in this study, we introduce a custom loss function
that penalizes false negatives more heavily. This adjustment
reflects the critical nature of misclassifying faulty instances,
where a well-calibrated model may not necessarily lead to the
best classification score.

To address this, we design a custom loss function that directly
optimizes the classification score in Figure. 1. The custom
loss function is defined as:

Lcustom =(1− y)(1− ŷ)− (1− y)ŷ + yŷ

− y
(
4(1− ŷ)11 + (1− ŷ)

) (7)

where y is the ground truth binary class and ŷ is the predicted
probability of class 1. The custom loss function is designed
to penalize false negatives more heavily, particularly through
the last term, which includes a regression score raised to the
power of 11. The objective of this custom loss function is
to maximize the classification score, shifting the focus from
producing well-calibrated probabilities to improving perfor-
mance in terms of specific classification scores.

4. RESULTS AND DISCUSSIONS

4.1. Performance

Table 3 summarizes the final evaluation results for the top 10
competition entries. Our approach achieved 2nd place with a
score of 0.94, highlighting the effectiveness of our methodol-
ogy.

Table 3. Final Evaluation Result.

Rank Team Name Score
#1 goldriver 0.996590
#2 PHHQ 0.940693
#3 ajouPHM 0.917999
#4 MathWorks 0.913785
#5 Sliding Kurtosis Rules! 0.904316
#6 ppgeps 0.886953
#7 Ajoucau 0.866422
#8 Mad SoftMax 0.848976
#9 SuperNOVa 0.840498
#10 B-26418 0.787819

Table 4 presents the results of an ablation study on our ap-
proach, conducted on both the training and test sets. It’s im-
portant to note that the test scores are automatically gener-
ated after submission, and we only have access to the overall
score, preventing us from separately evaluating the regression
and classification components. We experimented with poly-
nomial features of varying orders for both tasks, as well as
with and without a custom loss function for classification. For
the regression task, higher-order polynomial features led to
better results, with a particularly notable improvement when
using second-order features compared to linear models. How-
ever, in classification, while the increased polynomial order
improved the training score, it caused a significant drop in
the test score, indicating overfitting. The use of a custom loss
function yielded a modest improvement in the training score
but resulted in a substantial gain in the test score.

4.2. Feature importance

One advantage of the adopted model comparing with other
complex and advanced models is the explainability. It is
straightforward to interpret how the model calculates the fi-
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Table 4. Scores on train and test set with different model
settings.

Model Train Test
Regr Cls Total Total

Final model 0.999 0.867 0.933 0.984
w 2-order poly (regr) 0.994 0.867 0.930 0.983

w/o poly (regr) 0.748 0.867 0.808 0.857
w/o custom loss (cls) 0.999 0.867 0.933 0.975
w 3-order poly (cls) 0.999 0.953 0.976 0.936
w 2-order poly (cls) 0.999 0.893 0.946 0.938

nal output based on the trained coefficient values. All fea-
tures are standard normalized prior to training the regression
and classification models. Figure 6 presents the feature im-
portance of the top 15 features in the regression task. The
most significant features, such as mgt, oat, and pa, dominate
the regression model output. These features are physically
meaningful: Higher mgt leads to greater expansion of gases,
which increases torque. Lower oat and lower pa improve air
density, allowing for more efficient combustion, which also
boosts torque. These relationships demonstrate the strong de-
pendence of engine torque on both thermal conditions (mgt)
and environmental factors (oat, pa).

Figure 6. Feature importance of the regression model.

Figure 7 shows the feature importance for the classification
model. The most influential feature is the torque margin, with
a large negative coefficient, indicating that a lower torque
margin significantly increases the likelihood that the engine
is classified as faulty. The torque margin represents the dif-
ference between the measured and target torque, making it a
direct indicator of engine underperformance.

4.3. Discussions

The results show that our approach achieves near-perfect
scores for regression but performs less optimally in classi-
fication. Throughout the competition, we experimented with
incorporating higher-order and custom features. While this

Figure 7. Feature importance of the classification model.

significantly improved the training score, the test score de-
clined, suggesting potential overfitting. This highlights the
need for further enhancing classification performance in fu-
ture iterations.

Additionally, several other advanced models have been
tested, including LightGBM (Jiao et al., 2023), Random For-
est (Liang, Vanem, Knutsen, & Zhang, 2022), XGBoost (Que
& Xu, 2019), and MLP (Multi-Layer Perceptron) (Liang,
Tvete, & Brinks, 2019, 2020). These strong models can all
get a perfect score on the training set, but it is less satisfa-
tory when evaluated on test data in daily assessments. And
perform a train-val spilt on training set did not help, mainly
contributes that the engine in training set are shuffle, making
it impossile to test the generalization performance of the
model. In addtion, the MLP yields a much better perfor-
mance than tree-based models, this could potentially due to
the reason that tree-based models are not able to generate a
continous smooth decision boundary.

The scoring function for regression normalizes the probabil-
ity density function to 1, which inadvertently penalizes highly
confident predictions. This motivated us to design a rule-
based distribution selection scheme in our approach. How-
ever, this creates a dilemma: the model can exploit this by
using a uniform distribution for all predictions, diminishing
the importance of capturing uncertainty in the process.

5. CONCLUSION

This paper presents a winning solution for assessing heli-
copter turbine engine health in the PHM North America 2024
Conference Data Challenge. The success of our approach is
driven by three key principles:

• Simplicity enhances generalization: We employed low-
order polynomial and linear models, which proved effec-
tive across unseen data.

• Torque target prediction: By predicting torque target in-
stead of torque margin, we simplify the problem.
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• Thoughtful probabilistic design: We carefully con-
structed probabilistic output distributions to avoid over-
confident predictions, ensuring accurate regression scor-
ing.

Our model is designed to handle both regression and classifi-
cation tasks using sensor measurements from helicopter tur-
bine engines. It generates probabilistic outputs, providing not
only predictions but also insights into the confidence of those
predictions. While the regression component achieved near-
perfect scores, there is room for improvement in the classifi-
cation aspect, indicating that future work could focus on re-
fining the classification performance.
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